Gene Expression Profile Induced by Two Different Variants of Street Rabies Virus in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strains
2.2. Experimental Design
2.3. RNA Extraction and RT-qPCR
2.4. Microarray
2.5. Statistical Analysis
3. Results
3.1. Assessment of Lethality of RABV Variants V2 and V3
3.2. Transcriptome Analysis of Mouse Brain RNA
3.3. Microarray Results Validation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Hampson, K.; Coudeville, L.; Lembo, T.; Sambo, M.; Kieffer, A.; Attlan, M.; Barrat, J.; Blanton, J.D.; Briggs, D.J.; Cleaveland, S.; et al. Estimating the global burden of endemic canine rabies. PLoS Negl. Trop. Dis. 2015, 9, e0003709. [Google Scholar] [CrossRef] [Green Version]
- Pieracci, E.G.; Pearson, C.M.; Wallace, R.M.; Blanton, J.D.; Whitehouse, E.R.; Ma, X.; Stauffer, K.; Chipman, R.B.; Olson, V. Vital Signs: Trends in Human Rabies Deaths and Exposures—United States, 1938–2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 524–528. [Google Scholar] [CrossRef] [Green Version]
- Vigilato, M.A.; Cosivi, O.; Knobl, T.; Clavijo, A.; Silva, H.M. Rabies update for Latin America and the Caribbean. Emerg. Infect. Dis. 2013, 19, 678–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.W.; Sarmento, L.; Wang, Y.; Li, X.Q.; Dhingra, V.; Tseggai, T.; Jiang, B.; Fu, Z.F. Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J. Virol. 2005, 79, 12554–12565. [Google Scholar] [CrossRef] [Green Version]
- Hemachudha, T.; Ugolini, G.; Wacharapluesadee, S.; Sungkarat, W.; Shuangshoti, S.; Laothamatas, J. Human rabies: Neuropathogenesis, diagnosis, and management. Lancet Neurol. 2013, 12, 498–513. [Google Scholar] [CrossRef]
- Jackson, A.C.; Randle, E.; Lawrance, G.; Rossiter, J.P. Neuronal apoptosis does not play an important role in human rabies encephalitis. J. Neurovirol. 2008, 14, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Hooper, D.C.; Spitsin, S.; Koprowski, H.; Dietzschold, B. Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J. Virol. 1999, 73, 510–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udow, S.J.; Marrie, R.A.; Jackson, A.C. Clinical features of dog- and bat-acquired rabies in humans. Clin. Infect. Dis. 2013, 57, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Appolinario, C.M.; Allendorf, S.D.; Peres, M.G.; Ribeiro, B.D.; Fonseca, C.R.; Vicente, A.F.; Antunes, J.M.; Megid, J. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice. Am. J. Trop. Med. Hyg. 2016, 94, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Etienne, W.; Meyer, M.H.; Peppers, J.; Meyer, R.A., Jr. Comparison of mRNA gene expression by RT-PCR and DNA microarray. Biotechniques 2004, 36, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Appolinario, C.; Allendorf, S.D.; Vicente, A.F.; Ribeiro, B.D.; Fonseca, C.R.; Antunes, J.M.; Peres, M.G.; Kotait, I.; Carrieri, M.L.; Megid, J. Fluorescent antibody test, quantitative polymerase chain reaction pattern and clinical aspects of rabies virus strains isolated from main reservoirs in Brazil. Braz. J. Infect. Dis. Off. Publ. Braz. Soc. Infect. Dis. 2015, 19, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appolinario, C.M.; Allendorf, S.D.; Peres, M.G.; Fonseca, C.R.; Vicente, A.F.; Antunes, J.M.A.d.P.; Pantoja, J.C.F.; Megid, J. Evaluation of short-interfering RNAs treatment in experimental rabies due to wild-type virus. Braz. J. Infect. Dis. 2015, 19, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Fuoco, N.L.; Fernandes, E.R.; Guedes, F.; Dos Ramos Silva, S.; Guimaraes, L.P.; Silva, N.U.; Ribeiro, O.G.; Katz, I.S.S. Nyctinomops laticaudatus bat-associated Rabies virus causes disease with a shorter clinical period and has lower pathogenic potential than strains isolated from wild canids. Arch. Virol. 2019, 164, 2469–2477. [Google Scholar] [CrossRef] [PubMed]
- Ubol, S.; Kasisith, J.; Mitmoonpitak, C.; Pitidhamabhorn, D. Screening of upregulated genes in suckling mouse central nervous system during the disease stage of rabies virus infection. Microbiol. Immunol. 2006, 50, 951–959. [Google Scholar] [CrossRef]
- Thoulouze, M.I.; Lafage, M.; Schachner, M.; Hartmann, U.; Cremer, H.; Lafon, M. The neural cell adhesion molecule is a receptor for rabies virus. J. Virol. 1998, 72, 7181–7190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopy, D.; Detje, C.N.; Lafage, M.; Kalinke, U.; Lafon, M. The type I interferon response bridles rabies virus infection and reduces pathogenicity. J. Neurovirol. 2011, 17, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, F.; Bi, S.; Guo, H.; Zhang, B.; Wu, F.; Liang, J.; Yang, Y.; Tian, Q.; Ju, C.; et al. Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus. Front. Microbiol. 2016, 7, 751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafon, M.; Mégret, F.; Meuth, S.G.; Simon, O.; Velandia Romero, M.L.; Lafage, M.; Chen, L.; Alexopoulou, L.; Flavell, R.A.; Prehaud, C.; et al. Detrimental contribution of the immuno-inhibitor B7-H1 to Rabies Virus encephalitis. J. Immunol. 2008, 180, 7506–7515. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, N.; Uda, A.; Inoue, S.; Kojima, D.; Hamamoto, N.; Kaku, Y.; Okutani, A.; Park, C.; Yamada, A. Gene expression analysis of host immune response in the central nervous system following lethal CVS-11 infection in mice. Jpn J. Infect. Dis. 2011, 64, 463–472. [Google Scholar]
- Li, X.Q.; Sarmento, L.; Fu, Z.F. Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J. Virol. 2005, 79, 10063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feige, L.; Zaeck, L.M.; Sehl-Ewert, J.; Finke, S.; Bourhy, H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021, 13, 2364. [Google Scholar] [CrossRef] [PubMed]
- Raman, G.V.; Prosser, A.; Spreadbury, P.L.; Cockcroft, P.M.; Okubadejo, O.A. Rabies presenting with myocarditis and encephalitis. J. Infect. 1988, 17, 155–158. [Google Scholar] [CrossRef]
- Hofman, P.; Bourhy, H.; Michiels, J.F.; Dellamonica, P.; Sureau, P.; Boissy, C.; Loubière, R. Rabies encephalomyelitis with myocarditis and pancreatitis. Report on a case recently imported into France. Ann. Pathol. 1992, 12, 339–346. [Google Scholar]
- Silva, L.; Antunes, A. Vomeronasal Receptors in Vertebrates and the Evolution of Pheromone Detection. Annu. Rev. Anim. Biosci. 2017, 5, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, M.; Parmar, H.; Patankar, T.; Castillo, M. Imaging Findings in Rabies Encephalitis. Am. J. Neuroradiol. 2001, 22, 677–680. [Google Scholar] [PubMed]
- Mori, I.; Goshima, F.; Ito, H.; Koide, N.; Yoshida, T.; Yokochi, T.; Kimura, Y.; Nishiyama, Y. The vomeronasal chemosensory system as a route of neuroinvasion by herpes simplex virus. Virology 2005, 334, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafay, F.; Coulon, P.; Astic, L.; Saucier, D.; Riche, D.; Holley, A.; Flamand, A. Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation. Virology 1991, 183, 320–330. [Google Scholar] [CrossRef]
- Chopy, D.; Pothlichet, J.; Lafage, M.; Megret, F.; Fiette, L.; Si-Tahar, M.; Lafon, M. Ambivalent role of innate immune response in rabies virus pathogenesis. J. Virol. 2011, 85, 6657–6668. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.; Rangarajan, P. Common host genes are activated in mouse brain by Japanese encephalitis and rabies virus. J. Gen. Virol. 2003, 84, 1729–1735. [Google Scholar] [CrossRef]
- Phares, T.W.; Kean, R.B.; Mikheeva, T.; Hooper, D.C. Regional differenced in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J. Immunol. 2006, 176, 7666–7675. [Google Scholar] [CrossRef]
- Solanki, A.; Radotra, B.D.; Vasishta, R.K. Correlation of cytokine expression with rabies virus distribution in rabies encephalitis. J. Neuroimmunol. 2009, 217, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Toriumi, H.; Kuang, Y.; Chen, H.; Fu, Z.F. The roles of chemokines in rabies virus infection: Overexpression may not always be beneficial. J. Virol. 2009, 83, 11808–11818. [Google Scholar] [CrossRef] [Green Version]
- Phehaud, C.; Megret, F.; Lafage, M.; Lafon, M. Virus infection switches TLR-3 positive human neurons into high producers of interferon-beta. J. Virol. 2005, 79, 12893–12904. [Google Scholar]
- Kuang, Y.; Lackay, S.N.; Zhao, L.; Fu, Z.F. Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res. 2009, 144, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Matasani, T.; Ito, N.; Shimizu, K.; Ito, Y.; Nakagawa, K.; Sawaki, Y.; Koyama, H.; Sugiyama, M. Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J. Virol. 2010, 84, 4002–4012. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.C.; Roy, A.; Barkhouse, D.A.; Li, J.; Kean, R.B. Rabies virus clearance from the central nervous system. Adv. Virus Res. 2011, 79, 56–66. [Google Scholar]
Experimental Procedure | V2 (Number of Animals) | V3 (Number of Animals) | Non-Infected (Number of Animals) |
---|---|---|---|
Viral inoculation | Yes (24) | Yes (24) | - |
Only viral diluent inoculation | - | - | Yes (16) |
30-day period evaluation | Yes (8) | Yes (8) | - |
Killed 5 d.p.i. * | Yes (8) | Yes (8) | Yes (8) |
Killed 10 d.p.i. * | Yes (8) | Yes (8) | Yes (8) |
Daily weights and clinical evaluation | Yes (24) | Yes (24) | Yes (16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appolinário, C.M.; Daly, J.M.; Emes, R.D.; Marchi, F.A.; Ribeiro, B.L.D.; Megid, J. Gene Expression Profile Induced by Two Different Variants of Street Rabies Virus in Mice. Viruses 2022, 14, 692. https://doi.org/10.3390/v14040692
Appolinário CM, Daly JM, Emes RD, Marchi FA, Ribeiro BLD, Megid J. Gene Expression Profile Induced by Two Different Variants of Street Rabies Virus in Mice. Viruses. 2022; 14(4):692. https://doi.org/10.3390/v14040692
Chicago/Turabian StyleAppolinário, Camila M., Janet M. Daly, Richard D. Emes, Fabio Albuquerque Marchi, Bruna Leticia Devidé Ribeiro, and Jane Megid. 2022. "Gene Expression Profile Induced by Two Different Variants of Street Rabies Virus in Mice" Viruses 14, no. 4: 692. https://doi.org/10.3390/v14040692
APA StyleAppolinário, C. M., Daly, J. M., Emes, R. D., Marchi, F. A., Ribeiro, B. L. D., & Megid, J. (2022). Gene Expression Profile Induced by Two Different Variants of Street Rabies Virus in Mice. Viruses, 14(4), 692. https://doi.org/10.3390/v14040692