Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer—The Value of Bradford Hill Criteria
Abstract
:1. Introduction
- Identification and history of MMTV in human breast cancer.
- Epidemiology.
- Strength of the association between MMTV and breast cancer.
- Temporality (timing) of the association—evidence of infection by MMTV in normal tissues before the development of the cancer.
- Exposure. Does exposure to MMTV lead to infection, oncogenesis, and cancer?
- Experimental evidence—for example, the capacity of MMTV to cause cancer in experimental animals, the capacity to infect human cells, the ability of MMTV to transform normal human cells into malignant cells, and evidence that a vaccine or therapy can inhibit MMTV from infecting or transforming cells.
- Coherence, analogy—comparison of MMTV in human breast cancer with mouse mammary tumours.
- Transmission—identification of the source and means of transmission of MMTV to humans and specific tissues.
- Biological plausibility.
- Oncogenic mechanisms. While not necessarily helpful in determining causation, understanding oncogenic mechanisms is helpful for the development of prevention and treatment.
- Specificity. This criteria was in Hill’s original list but is rarely helpful as many viruses lead to cancer in many organs.
1.1. Assessment of the Role of MMTV in Human Breast Cancer
1.2. Contamination Issues
2. Epidemiology
Migration and Breast Cancer
3. Strength of the Association between MMTV and Human Breast Cancer—Consistency
3.1. Serology
3.2. Genetics
4. Temporality (Timing) of the Association
5. Exposure
6. Experimental Evidence
7. Analogy
8. MMTV Transmission
9. Biological Plausibility
10. Oncogenic Mechanisms
11. Specificity
12. Discussion
12.1. Alternative Opinions
12.2. Multiple Viral and Causal Factors
12.3. Prevention
13. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, A.B. The environment and disease: Association or causation? Proc. R Soc. Med. 1965, 58, 295–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goedert, J.J.; Rabkin, C.S.; Ross, S.R. Prevalence of serologic reactivity against four strains of mouse mammary tumour virus among US women with breast cancer. Br. J. Cancer 2006, 94, 548–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.J.; Southey, M.C.; Giles, G.G.; Hopper, J.L. No evidence of MMTV-like env sequences in specimens from the Australian Breast Cancer Family Study. Breast Cancer Res. Treat. 2011, 125, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Perzova, R.; Abbott, L.; Benz, P.; Landas, S.; Khan, S.; Glaser, J.; Cunningham, C.K.; Poiesz, B. Is MMTV associated with human breast cancer? Maybe, but probably not. Virol. J. 2017, 14, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hameed, Y.; Usman, M.; Ahmad, M. Does mouse mammary tumor-like virus cause human breast cancer? Applying Bradford Hill criteria postulates. Bull. Natl. Res. Cent. 2020, 44, 183. [Google Scholar] [CrossRef]
- Amarante, M.K.; Pereira, N.; Vitiello, G.A.F.; Watanabe, M.A.E. Involvement of a mouse mammary tumor virus (MMTV) homologue in human breast cancer: Evidence for, against and possible causes of controversies. Microb. Pathog. 2019, 130, 283–294. [Google Scholar] [CrossRef]
- Lawson, J.S.; Glenn, W.K. Evidence for a causal role by mouse mammary tumour-like virus in human breast cancer. NPJ Breast Cancer 2019, 5, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Hamad, M.; Matalka, I.; Al Zoubi, M.S.; Armogida, I.; Khasawneh, R.; Al-Husaini, M.; Sughayer, M.; Jaradat, S.; Al-Nasser, A.D.; Mazzanti, C.M. Human Mammary Tumor Virus, Human Papilloma Virus, and Epstein-Barr Virus Infection Are Associated with Sporadic Breast Cancer Metastasis. Breast Cancer 2020, 14, 1178223420976388. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Pereira, N.; Vitiello, G.A.F.; Banin-Hirata, B.K.; Fernandes, G.S.A.; Salles, M.J.S.; Amarante, M.K.; Watanabe, M.A.E. Mouse Mammary Tumor Virus (MMTV)-Like env Sequence in Brazilian Breast Cancer Samples: Implications in Clinicopathological Parameters in Molecular Subtypes. Int. J. Environ. Res. Public Health 2020, 17, 9496. [Google Scholar] [CrossRef]
- Loutfy, S.A.; Abdallah, Z.F.; Shaalan, M.; Moneer, M.; Karam, A.; Moneer, M.M.; Sayed, I.M.; Abd El-Hafeez, A.A.; Ghosh, P.; Zekri, A.N. Prevalence of MMTV-Like env Sequences and Its Association with BRCA1/2 Genes Mutations Among Egyptian Breast Cancer Patients. Cancer Manag Res. 2021, 13, 2835–2848. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-L.; Zhang, X.-L.; Yang, M.; Lin, J.; Yue, Y.-F.; Li, Y.-D.; Wang, X.; Shu, Q.; Jin, H.-C. Prevalence and characteristics of mouse mammary tumor virus-like virus associated breast cancer in China. Infect. Agents Cancer 2021, 16, 47. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.F.; Ali, A.; Fawad, N.; Rafique, S.; Ullah, I.; Rehman, G.; Shams, M.U.; Idrees, M. MMTV-LIKE virus and c-myc over-expression are associated with invasive breast cancer. Infect. Genet. Evol. 2021, 91, 104827. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Ulamec, M.; Peric-Balja, M.; Ramic, S.; Al Moustafa, A.-E.; Vranic, S.; Al-Farsi, H.F. Presence of high-risk HPVs, EBV, and MMTV in human triple-negative breast cancer. Hum. Vaccines Immunother. 2021, 17, 4457–4466. [Google Scholar] [CrossRef] [PubMed]
- Lessi, F.; Grandi, N.; Mazzanti, C.M.; Civita, P.; Scatena, C.; Aretini, P.; Bandiera, P.; Fornaciari, A.; Giuffra, V.; Fornaciari, G.; et al. A human MMTV-like betaretrovirus linked to breast cancer has been present in humans at least since the copper age. Aging 2020, 12, 15978–15994. [Google Scholar] [CrossRef]
- Naccarato, A.G.; Lessi, F.; Zavaglia, K.; Scatena, C.; Al Hamad, M.A.; Aretini, P.; Menicagli, M.; Roncella, M.; Ghilli, M.; Caligo, M.A.; et al. Mouse mammary tumor virus (MMTV)-like exogenous sequences are associated with sporadic but not hereditary human breast carcinoma. Aging 2019, 11, 7236–7241. [Google Scholar] [CrossRef]
- Ziegler, R.G.; Hoover, R.N.; Pike, M.C.; Hildesheim, A.; Nomura, A.M.; West, D.W.; Wu-Williams, A.H.; Kolonel, L.N.; Horn-Ross, P.L.; Rosenthal, J.F.; et al. Migration Patterns and Breast Cancer Risk in Asian-American Women. J. Natl. Cancer Inst. 1993, 85, 1819–1827. [Google Scholar] [CrossRef]
- Vonka, V. Causality in medicine: The case of tumours and viruses. Philos. Trans. R Soc. Lond B Biol. Sci. 2000, 355, 1831–1841. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.H.; Charney, J.; Kramarsky, B.; Lasfargues, E.Y.; Sarkar, N.H.; Brennan, M.J.; Burrows, J.H.; Sirsat, S.M.; Paymaster, J.C.; Vaidya, A.B. Search for a Human Breast Cancer Virus. Nature 1971, 229, 611–615. [Google Scholar] [CrossRef]
- Axel, R.; Schlom, J.; Spiegelman, S. Presence in Human Breast Cancer of RNA homologous to Mouse Mammary Tumour Virus RNA. Nature 1972, 235, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.; Dixon, M.; Smith, R.; Peters, G.; Dickson, C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: Two frameshift suppression events are required for translation of gag and pol. J. Virol. 1987, 61, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Crépin, M.; Lidereau, R.; Chermann, J.C.; Pouillart, P.; Magdamenat, H.; Montagnier, L. Sequences related to mouse mammary tumor virus genome in tumor cells and lymphocytes from patients with breast cancer. Biochem. Biophys. Res. Commun. 1981, 118, 324–331. [Google Scholar] [CrossRef]
- Szakacs, J.G.; Moscinski, L.C. Sequence homology of deoxyribonucleic acid to mouse mammary tumor virus genome in human breast tumors. Ann. Clin. Lab. Sci. 1991, 21, 402–412. [Google Scholar] [PubMed]
- Wang, Y.; Holland, J.F.; Bleiweiss, I.J.; Melana, S.; Liu, X.; Pelisson, I.; Cantarella, A.; Stellrecht, K.; Mani, S.; Pogo, B.G. Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res. 1995, 55, 5173–5179. [Google Scholar] [PubMed]
- Witkin, S.S.; Sarkar, N.H.; Kinne, D.W.; Good, R.A.; Day, N.K. Antibodies reactive with the mouse mammary tumor virus in sera of breast cancer patients. Int. J. Cancer 1980, 25, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Day, N.K.; Witkin, S.S.; Sarkar, N.H.; Kinne, D.; Jussawalla, D.J.; Levin, A.; Hsia, C.C.; Geller, N.; Good, R.A. Antibodies reactive with murine mammary tumor virus in sera of patients with breast cancer: Geographic and family studies. Proc. Natl. Acad. Sci. USA 1981, 78, 2483–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etkind, P.; Du, J.; Khan, A.; Pillitteri, J.; Wiernik, P.H. Mouse mammary tumor virus-like ENV gene sequences in human breast tumors and in a lymphoma of a breast cancer patient. Clin. Cancer Res. 2000, 6, 1273–1278. [Google Scholar] [PubMed]
- Ford, C.E.; Tran, D.; Deng, Y.-M.; Ta, V.T.; Rawlinson, W.D.; Lawson, J.S. Mouse mammary tumor virus-like gene sequences in breast tumors of Australian and Vietnamese women. Clin. Cancer Res. 2003, 9, 1118–1120. [Google Scholar]
- Liu, B.; Wang, Y.; Melana, S.M.; Pelisson, I.; Najfeld, V.; Holland, J.F.; Pogo, B.G. Identification of a proviral structure in human breast cancer. Cancer Res. 2001, 61, 1754–1759. [Google Scholar]
- Melana, S.M.; Nepomnaschy, I.; Sakalian, M.; Abbott, A.; Hasa, J.; Holland, J.F.; Pogo, B.G. Characterization of Viral Particles Isolated from Primary Cultures of Human Breast Cancer Cells. Cancer Res. 2007, 67, 8960–8965. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Pelisson, I.; Melana, S.M.; Go, V.; Holland, J.F.; Pogo, B.G.-T. MMTV-like env gene sequences in human breast cancer. Arch. Virol. 2001, 146, 171–180. [Google Scholar] [CrossRef]
- Mazzanti, C.M.; Al Hamad, M.; Fanelli, G.; Scatena, C.; Zammarchi, F.; Zavaglia, K.; Lessi, F.; Pistello, M.; Naccarato, A.G.; Bevilacqua, G. A Mouse Mammary Tumor Virus env-Like Exogenous Sequence Is Strictly Related to Progression of Human Sporadic Breast Carcinoma. Am. J. Pathol. 2011, 179, 2083–2090. [Google Scholar] [CrossRef] [PubMed]
- Indik, S.; Günzburg, W.H.; Kulich, P.; Salmons, B.; Rouault, F. Rapid spread of mouse mammary tumor virus in cultured human breast cells. Retrovirology 2007, 4, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faschinger, A.; Rouault, F.; Sollner, J.; Lukas, A.; Salmons, B.; Gunzburg, W.H.; Indik, S. Mouse Mammary Tumor Virus Integration Site Selection in Human and Mouse Genomes. J. Virol. 2008, 82, 1360–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Indik, S.; Wasilenko, S.T.; Faschinger, A.; Carpenter, E.J.; Tian, Z.; Zhang, Y.; Wong, G.K.; Mason, A.L. Frequent proviral integration of the human betaretrovirus in biliary epithelium of patients with autoimmune and idiopathic liver disease. Aliment. Pharmacol. Ther. 2015, 41, 393–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa-Tejada, R.; Keydar, I.; Ramanarayanan, M.; Ohno, T.; Fenoglio, C.; Spiegelman, S. Detection in human breast carcinomas of an antigenimmunologically related to a group-specific antigen of mouse mammary tumor virus. Proc. Natl Acad. Sci. USA 1978, 75, 1529–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melana, S.M.; Holland, J.F.; Pogo, B.G. Search for mouse mammary tumor virus-like env sequences in cancer and normal breast from the same individuals. Clin. Cancer Res. 2001, 7, 283–284. [Google Scholar] [PubMed]
- Melana, S.M.; Picconi, M.A.; Rossi, C.; Mural, J.; Alonio, L.V.; Teyssié, A.; Holland, J.F.; Pogo, B.G. Detección de secuencias homológas al gen env del virus del Tumor Mamario Murino (MMTV) en cáncer de mama de pacientes argentinas [Detection of murine mammary tumor virus (MMTV) env gene-like sequences in breast cancer from Argentine patients]. Medicina 2002, 62, 323–327. (In Spanish) [Google Scholar] [PubMed]
- Ford, C.E.; Faedo, M.; Rawlinson, W.D. Mouse Mammary Tumor Virus-like RNA Transcripts and DNA Are Found in Affected Cells of Human Breast Cancer. Clin. Cancer Res. 2004, 10, 7284–7289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zammarchi, F.; Pistello, M.; Piersigilli, A.; Murr, R.; Di Cristofano, C.; Naccarato, A.G.; Bevilacqua, G. MMTV-like sequences in human breast cancer: A fluorescent PCR/laser microdissection approach. J. Pathol. 2006, 209, 436–444. [Google Scholar] [CrossRef]
- Hachana, M.R.; Trimeche, M.; Ziadi, S.; Amara, K.; Gaddas, N.; Mokni, M.; Korbi, S. Prevalence and characteristics of the MMTV-like associated breast carcinomas in Tunisia. Cancer Lett. 2008, 271, 222–230. [Google Scholar] [CrossRef]
- Lawson, J.S.; Glenn, W.K.; Salmons, B.; Ye, Y.; Heng, R.B.; Moody, P.; Johal, H.; Rawlinson, W.D.; Delprado, W.; Lutze-Mann, L.; et al. Mouse Mammary Tumor Virus–like Sequences in Human Breast Cancer. Cancer Res. 2010, 70, 3576–3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, W.K.; Heng, R.B.; Delprado, W.; Iacopetta, B.; Whitaker, N.J.; Lawson, J.S. Epstein-Barr Virus, Human Papillomavirus and Mouse Mammary Tumour Virus as Multiple Viruses in Breast Cancer. PLoS ONE 2012, 7, e48788. [Google Scholar] [CrossRef] [PubMed]
- Slaoui, M.; El Mzibri, M.; Razine, R.; Qmichou, Z.; Attaleb, M.; Amrani, M. Detection of MMTV-Like sequences in Moroccan breast cancer cases. Infect. Agents Cancer 2014, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Cedro-Tanda, A.; Córdova-Solis, A.; Juárez-Cedillo, T.; Pina-Jiménez, E.; Hernández-Caballero, M.E.; Moctezuma-Meza, C.; Castelazo-Rico, G.; Gómez-Delgado, A.; Monsalvo-Reyes, A.C.; Salamanca-Gómez, F.A.; et al. Prevalence of HMTV in breast carcinomas and unaffected tissue from Mexican women. BMC Cancer 2014, 14, 942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naushad, W.; Bin Rahat, T.; Gomez, M.K.; Ashiq, M.T.; Younas, M.; Sadia, H. Detection and identification of mouse mammary tumor virus-like DNA sequences in blood and breast tissues of breast cancer patients. Tumor Biol. 2014, 35, 8077–8086. [Google Scholar] [CrossRef]
- Reza, M.A.; Reza, M.H.; Mahdiyeh, L.; Mehdi, F.; Hamid, Z.N. Evaluation Frequency of Merkel Cell Polyoma, Epstein-Barr and Mouse Mammary Tumor Viruses in Patients with Breast Cancer in Kerman, Southeast of Iran. Asian Pac. J. Cancer Prev. 2015, 16, 7351–7357. [Google Scholar] [CrossRef] [Green Version]
- Shariatpanahi, S.; Farahani, N.; Salehi, A.R.; Salehi, R. High prevalence of mouse mammary tumor virus-like gene sequences in breast cancer samples of Iranian women. Nucleosides Nucleotides Nucleic Acids 2017, 36, 621–630. [Google Scholar] [CrossRef]
- Al Dossary, R.; Alkharsah, K.R.; Kussaibi, H. Prevalence of Mouse Mammary Tumor Virus (MMTV)-like sequences in human breast cancer tissues and adjacent normal breast tissues in Saudi Arabia. BMC Cancer 2018, 18, 170. [Google Scholar] [CrossRef] [Green Version]
- Seo, I.; Cho, J.-H.; Lee, M.-H.; Park, W.-J.; Kwon, S.-Y.; Lee, J.-H. Clinical and Prognostic Value of Human Mammary Tumor Virus in Korean Patients with Breast Carcinoma. Ann. Clin. Lab. Sci. 2019, 49, 171–174. [Google Scholar]
- Zangen, R.; Harden, S.; Cohen, D.; Parrella, P.; Sidransky, D. Mouse mammary tumor-like env gene as a molecular marker for breast cancer? Int. J. Cancer 2002, 102, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Witt, A.; Hartmann, B.; Marton, E.; Zeillinger, R.; Schreiber, M.; Kubista, E. The mouse mammary tumor virus-like env gene sequence is not detectable in breast cancer tissue of Austrian patients. Oncol. Rep. 2003, 10, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Mant, C.; Cason, J. A human murine mammary tumour virus-like agent is an unconvincing aetiological agent for human breast cancer. Rev. Med. Virol. 2004, 14, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Bindra, A.; Muradrasoli, S.; Kisekka, R.; Nordgren, H.; Wärnberg, F.; Blomberg, J. Search for DNA of exogenous mouse mammary tumor virus-related virus in human breast cancer samples. J. Gen. Virol. 2007, 88, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Frank, O.; Verbeke, C.; Schwarz, N.; Mayer, J.; Fabarius, A.; Hehlmann, R.; Leib-Mösch, C.; Seifarth, W. Variable transcriptional activity of endogenous retroviruses in human breast cancer. J. Virol. 2008, 82, 1808–1818. [Google Scholar] [CrossRef] [Green Version]
- Fukuoka, H.; Moriuchi, M.; Yano, H.; Nagayasu, T.; Moriuchi, H. No association of mouse mammary tumor virus-related retrovirus with Japanese cases of breast cancer. J. Med. Virol. 2008, 80, 1447–1451. [Google Scholar] [CrossRef]
- Motamedifar, M.; Saki, M.; Ghaderi, A. Lack of association of mouse mammary tumor virus-like sequences in Iranian breast cancer patients. Med. Princ. Pract. 2012, 21, 244–248. [Google Scholar] [CrossRef]
- Tabriz, H.M.; Zendehdel, K.; Shahsiah, R.; Fereidooni, F.; Mehdipour, B.; Hosseini, Z.M. Lack of detection of the mouse mammary tumor-like virus (MMTV) Env gene in Iranian women breast cancer using real time PCR. Asian Pac. J. Cancer Prev. 2013, 14, 2945–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Sánchez, A.; Molina-Muñoz, T.; Martínez-López, J.L.E.; Hernández-Sancén, P.; Mantilla, A.; Leal, Y.A.; Torres, J.; Fuentes-Pananá, E.M. No association between Epstein-Barr Virus and Mouse Mammary Tumor Virus with breast cancer in Mexican women. Sci. Rep. 2013, 3, 2970. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A. MMTV-related env sequences in human breast tumor. Int. J. Cancer 2003, 106, 138. [Google Scholar] [CrossRef]
- Pogo, B.G.-T.; Melana, S.M.; Moran, H.; Holland, J.F. Presence of MMTV-like env gene sequences in human breast cancer. Breast Cancer Res. Treat. 2011, 125, 295–297. [Google Scholar] [CrossRef]
- Nartey, T.; Mazzanti, C.M.; Melana, S.; Glenn, W.K.; Bevilacqua, G.; Holland, J.F.; Whitaker, N.J.; Lawson, J.S.; Pogo, B.G.T. Mouse mammary tumor-like virus (MMTV) is present in human breast tissue before development of virally associated breast cancer. Infect. Agents Cancer 2017, 12, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzanti, C.M.; Lessi, F.; Armogida, I.; Zavaglia, K.; Franceschi, S.; AI Hamad, M.; Roncella, M.; Ghilli, M.; Boldrini, A.; Aretini, P.; et al. Human saliva as route of inter-human infection for mouse mammary tumor virus. Oncotarget 2015, 6, 18355–18363. [Google Scholar] [CrossRef]
- Larsson Lab. Available online: http://larssonlab.org/tcga-viruses/report_BRCA.php (accessed on 15 January 2022).
- Lehrer, S.; Rheinstein, P.H. Mouse mammary tumor viral env sequences are not present in the human genome but are present in breast tumors and normal breast tissues. Virus Res. 2019, 266, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.-W.; Larsson, E. Tumour virology in the era of high-throughput genomics. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapatka, M.; Borozan, I.; Brewer, D.S.; Iskar, M.; Grundhoff, A.; Alawi, M.; Desai, N.; Sültmann, H.; Moch, H.; Cooper, C.S.; et al. The landscape of viral associations in human cancers. Nat. Genet. 2020, 52, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asplund, M.; Kjartansdóttir, K.R.; Mollerup, S.; Vinner, L.; Fridholm, H.; Herrera, J.A.R.; Friis-Nielsen, J.; Hansen, T.A.; Jensen, R.H.; Nielsen, I.B.; et al. Contaminating viral sequences in high-throughput sequencing viromics: A linkage study of 700 sequencing libraries. Clin. Microbiol. Infect. 2019, 25, 1277–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinner, L.; Mourier, T.; Friis-Nielsen, J.; Gniadecki, R.; Dybkaer, K.; Rosenberg, J.; Langhoff, J.L.; Cruz, D.F.S.; Fonager, J.; Izarzugaza, J.M.G.; et al. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing. Sci. Rep. 2015, 5, 13201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Goldin, B.R.; Aldercreutz, H.; Gorbach, S.L.; Woods, M.N.; Dwyer, J.T.; Conlon, T.; Bohn, E.; Gershoff, S.N. The relationship between estrogen levels and diets of Caucasian American and Oriental immigrant women. Am. J. Clin. Nutr. 1986, 44, 945–953. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.M.; Wang, Q.S.; Ross, R.K.; Henderson, B.E.; Yu, M.C. Diet and breast cancer in Shanghai and Tianjin, China. Br. J. Cancer 1995, 71, 1353–1358. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, T. Epidemiology of breast cancer with special reference to the role of diet. Prev. Med. 1978, 7, 173–195. [Google Scholar] [CrossRef]
- Parkin, D.M.; Whelan, S.L.; Ferlay, J.; Raymond, L.; Young, J. Cancer Incidence in Five Continents; Scientific Publication 143; IARC: Lyon, France, 1997; Volume 7. [Google Scholar]
- Cato, A.C.; Henderson, D.; Ponta, H. The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J. 1987, 6, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Tran, D.D.; Ford, C.; Rawlinson, W.D. Elevated Expression of the Tumor Suppressing Protein p53 is Associated with the Presence of Mouse Mammary Tumor-Like env Gene Sequences (MMTV-like) in Human Breast Cancer. Breast Cancer Res. Treat. 2004, 87, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Melana, S.M.; Baker, B.; Bleiweiss, I.; Fernandez-Cobo, M.; Mandeli, J.F.; Holland, J.F.; Pogo, B.G.T. High Prevalence of MMTV-like env Gene Sequences in Gestational Breast Cancer. Med. Oncol. 2003, 20, 233–236. [Google Scholar] [CrossRef]
- Stewart, T.H.; Sage, R.D.; Stewart, A.F.; Cameron, D.W. Breast cancer incidence highest in the range of one species of house mouse, Mus domesticus. Br. J. Cancer 2000, 82, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.F.R.; Chen, H.-H. Revisiting the MMTV Zoonotic Hypothesis to Account for Geographic Variation in Breast Cancer Incidence. Viruses 2022, 14, 559. [Google Scholar] [CrossRef]
- Stanford, J.L.; Herrinton, L.J.; Schwartz, S.M.; Weiss, N.S. Breast Cancer Incidence in Asian Migrants to the United States and Their Descendants. Epidemiology 1995, 6, 181–183. [Google Scholar] [CrossRef]
- Morey, B.N.; Gee, G.C.; Von Ehrenstein, O.S.; Shariff-Marco, S.; Canchola, A.J.; Yang, J.; Allen, L.; Lee, S.S.-J.; Bautista, R.; La Chica, T.; et al. Higher Breast Cancer Risk Among Immigrant Asian American Women Than Among US-Born Asian American Women. Prev. Chronic Dis. 2019, 16, E20. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Read, M. Dietary pattern changes of Asian immigrants. Nutr. Res. 1996, 16, 1277–1293. [Google Scholar] [CrossRef]
- Kudo, Y.; Falciglia, G.A.; Couch, S.C. Evolution of meal patterns and food choices of Japanese-American females born in the United States. Eur. J. Clin. Nutr. 2000, 54, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Kovarik, A.; Hlubinova, K.; Prachar, J.; Simkovic, D.; Knotek, J. No significant correlation between specific antibodies to mouse mammary tumour virus and human cancer. Br. J. Cancer 1989, 60, 572–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Bashiri, K.; Kneteman, M.; Cave, K.; Hong, Y.; Mackey, J.R.; Alter, H.J.; Mason, A.L. Seroprevalence of Human Betaretrovirus Surface Protein Antibodies in Patients with Breast Cancer and Liver Disease. J. Oncol. 2020, 2020, 7406146. [Google Scholar] [PubMed]
- Müller, M.; Grossman, H. An antigen in human breast cancer sera related to the murine mammary tumour virus. Nat. New Biol. 1972, 237, 116–117. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Tanaka, H. Occurrence of antibody against intracytoplasmic A-particles of mouse mammary tumor virus in sera from breast cancer patients. Gan 1978, 69, 539–544. [Google Scholar]
- Mehta, S.P.; Sirsat, S.M.; Jussawalla, D.J. Humoral antibodies to mouse mammary tumor virus in sera from breast cancer patients. Indian J. Exp. Biol. 1978, 16, 1126–1130. [Google Scholar]
- Witkin, S.S.; Egeli, R.A.; Sarkar, N.H.; Good, R.A.; Day, N.K. Virolysis of mouse mammary tumor virus by sera from breast cancer patients. Proc. Natl. Acad. Sci. USA 1979, 76, 2984–2987. [Google Scholar] [CrossRef] [Green Version]
- Imai, M.; Yamada, C.; Saga, S.; Nagayoshi, S.; Hoshino, M. Immunological cross reaction between sera from patients with breast cancer and mouse mammary tumor virus. Gan 1979, 70, 63–74. [Google Scholar]
- Nagayoshi, S.; Imai, M.; Tsutsui, Y.; Saga, S.; Takahashi, M.; Hoshino, M. Use of the immune adherence hemagglutination test for titration of breast cancer patients’ sea cross-reacting with purified mouse mammary tumor virus. Gan 1981, 72, 98–103. [Google Scholar]
- Tomana, M.; Kajdos, A.H.; Niedermeier, W.; Durkin, W.J.; Mestecky, J. Antibodies to mouse mammary tumor virus-related antigen in sera of patients with breast carcinoma. Cancer 1981, 47, 2696–2703. [Google Scholar] [CrossRef]
- Zotter, S.; Grossmann, H.; Johannsen, B.A.; Pilz, C. Is there any diagnostic relevance of human antibodies which react with mouse mammary tumor virus (MuMTV)? Arch. Geschwulstforsch. 1981, 51, 338–343. [Google Scholar] [PubMed]
- Holder, W.D., Jr.; Wells, S.A., Jr. Antibody reacting with the murine mammary tumor virus in the serum of patients with breast carcinoma: A possible serological detection method for breast carcinoma. Cancer Res. 1983, 43, 239–244. [Google Scholar]
- Litvinov, S.V.; Remennik, I.V.; Kriukova, I.N. Humoral antibodies to the antigens related to the structural protein antigens of the mammary cancer virus (MTV) in breast cancer patients and in healthy donors. Bull. Exp. Biol. Med. 1984, 97, 600–603. [Google Scholar] [CrossRef]
- Chattopadhyay, J.; Chattopadhyay, U.; Chowdhury, J.R. Immunological relatedness of a murine mammary tumor-associated antigen and human breast cancer. Gan 1984, 75, 342–348. [Google Scholar] [PubMed]
- Petrucelli, N.; Daly, M.B.; Pal, T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In GeneReviews; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1998. [Google Scholar]
- Mavaddat, N.; Antoniou, A.C.; Easton, D.F.; Garcia-Closas, M. Genetic susceptibility to breast cancer. Mol. Oncol. 2010, 4, 174–191. [Google Scholar] [CrossRef]
- Dion, A.S.; Girardi, A.J.; Williams, C.C.; Pomenti, A.A. Serologic Responses to Murine Mammary Tumor Virus (MuMTV) in MuMTV-Exposed Laboratory Personnel. J. Natl. Cancer Inst. 1986, 76, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Konstantoulas, C.J.; Indik, S. C3H strain of mouse mammary tumour virus, like GR strain, infects human mammary epithelial cells, albeit less efficiently than murine mammary epithelial cells. J. Gen. Virol. 2015, 96 Pt 3, 650–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, E.; Lareef, M.H.; Rassa, J.C.; Grande, S.M.; King, L.B.; Russo, J.; Ross, S.R.; Monroe, J.G. MMTV Env encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. J. Exp. Med. 2005, 201, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, A.L.; Zhang, G. Linking human beta retrovirus infection with primary biliary cirrhosis. Gastroenterol. Clin. Biol. 2010, 34, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Basolo, F.; Fontanini, G.; Serra, C.; Dolei, A.; Proietti, E.; Belardelli, F.; Conaldi, P.G.; Bistocchi, M.; Squartini, F.; Toniolo, A. Interferon-alpha/beta in virus-induced mouse mammary carcinogenesis: Effects on the spontaneous process and on the progression of transplanted pre-neoplastic lesions. Int. J. Cancer 1992, 51, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Jordan, V.C.; Lababidi, M.K.; Langan-Fahey, S. Suppression of mouse mammary tumorigenesis by long term Tamoxifen therapy. J. Natl. Cancer Inst. 1991, 83, 492–496. [Google Scholar] [CrossRef]
- Dudley, J.P.; Golovkina, T.V.; Ross, S.R. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models. ILAR J. 2016, 57, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Lushnikova, A.A.; Kryukova, I.N.; Rotin, D.L.; Lubchenko, L.N. Detection of the env MMTV-homologous sequences in mammary carcinoma patient intestine lymphoid tissue. Dokl. Biol. Sci. 2004, 399, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R. Mouse Mammary Tumor Virus Molecular Biology and Oncogenesis. Viruses 2010, 2, 2000–2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johal, H.; Ford, C.; Glenn, W.; Heads, J.; Lawson, J.; Rawlinson, W. Mouse mammary tumor like virus sequences in breast milk from healthy lactating women. Breast Cancer Res. Treat. 2011, 129, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Nartey, T.; Moran, H.; Marin, T.; Arcaro, K.F.; Anderton, D.L.; Etkind, P.; Holland, J.F.; Melana, S.M.; Pogo, B.G.-T. Human Mammary Tumor Virus (HMTV) sequences in human milk. Infect. Agents Cancer 2014, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishio, M.; Xu, L.; Sasaki, M.; Haga, S.; Okumoto, M.; Mori, N.; Sarkar, N.H.; Acha-Orbea, H.; Enami, J.; Imai, S. Complete nucleotide sequence of mouse mammary tumor virus from jyg chinese wild mice: Absence of bacterial insertion sequences in the cloned viral gag gene. Breast Cancer 1994, 1, 89–94. [Google Scholar] [CrossRef]
- Callahan, R.; Mudunuri, U.; Bargo, S.; Raafat, A.; McCurdy, D.; Boulanger, C.; Lowther, W.; Stephens, R.; Luke, B.T.; Stewart, C.; et al. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors. Oncotarget 2012, 3, 1320–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melana, S.M.; Nepomnaschy, I.; Hasa, J.; Djougarian, A.; Djougarian, A.; Holland, J.F.; Pogo, B.G. Detection of human mammary tumor virus proteins in human breast cancer cells. J. Virol. Methods 2010, 163, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.R. MMTV Infectious Cycle and the Contribution of Virus-encoded Proteins to Transformation of Mammary Tissue. J. Mammary Gland Biol. Neoplasia 2008, 13, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.Z.; Gill, R.F.; Wang, H. Mouse mammary tumor virus associated antigens and superantigens--immuno-molecular correlates of neoplastic progression. Semin. Cancer Biol. 1993, 4, 205–213. [Google Scholar] [PubMed]
- Wang, Y.; Jiang, J.-D.; Xu, D.; Li, Y.; Qu, C.; Holland, J.F.; Pogo, B.G.T. A Mouse Mammary Tumor Virus-like Long Terminal Repeat Superantigen in Human Breast Cancer. Cancer Res. 2004, 64, 4105–4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smorodinsky, N.I.; Argov, S.; Ghendles, Y.; Bakimer, R.; Krup, M.; Lupu, R.; Keydar, I.; Shoenfeld, Y. Human Monoclonal Antibodies Derived from Pleural Effusion Lymphocytes of a Patient with Breast Carcinoma React with Human Breast Cancer-Associated Antigens and Mouse Mammary Tumor Virus Polypeptides. Pathobiology 1987, 55, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Mazzanti, C.; Civita, P.; Menicagli, M.; Ngan, C.C.; Whitaker, N.J.; Hochman, J.; Braitbard, O.; Yosufi, B.; Glenn, W.K. Association of Mouse Mammary Tumor Virus with Human Breast Cancer: Histology, Immunohistochemistry and Polymerase Chain Reaction Analyses. Front. Oncol. 2018, 8, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papiernik, M.; Waché, A.-C.; Pontoux, C.; Nabarra, B. Massive mammary gland infection and pregnancy-dependent mammary tumor development in mice infected neonatally with mouse mammary tumor virus (SW) but not in mice infected as adults, despite a dramatic local response. Eur. J. Immunol. 1997, 27, 2145–2151. [Google Scholar] [CrossRef]
- Hollern, D.P.; Swiatnicki, R.; Andrechek, E.R. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers. PLoS Genet 2018, 14, e1007135. [Google Scholar] [CrossRef]
- Fine, D.L.; Arthur, L.O.; Gardner, M.B. Prevalence of murine mammary tumor virus antibody and antigens in normal and tumor-bearing feral mice. J. Natl. Cancer Inst. 1978, 61, 485–491. [Google Scholar]
- Briand, P. Hormone-dependent mammary tumors in mice and rats as a model for human breast cancer (review). Anticancer Res. 1983, 3, 273–281. [Google Scholar]
- Lawson, J.S.; Glenn, W.K. Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer. Infect. Agents Cancer 2017, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.H.; Charney, J.; Dion, A.S.; Moore, D.H. Effect of human milk on the mouse mammary tumor virus. Cancer Res. 1973, 33, 626–629. [Google Scholar]
- Velin, D.; Fotopoulos, G.; Luthi, F.; Kraehenbuhl, J.-P. The Nasal-associated Lymphoid Tissue of Adult Mice Acts as an Entry Site for the Mouse Mammary Tumor Retrovirus. J. Exp. Med. 1997, 185, 1871–1876. [Google Scholar] [CrossRef] [Green Version]
- Etkind, P.R.; Stewart, A.F.; Wiernik, P.H. Mouse mammary tumor virus (MMTV)-like DNA sequences in the breast tumors of father, mother, and daughter. Infect Agent Cancer 2008, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Szabo, S.; Haislip, A.M.; Traina-Dorge, V.; Costin, J.M.; Crawford, B.E., 2nd; Wilson, R.B.; Garry, R.F. Human, rhesus macaque, and feline sequences highly similar to mouse mammary tumor virus sequences. Microsc. Res. Tech. 2005, 68, 209–221. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Lin, H.-Y.; Chiou, S.-S.; Chang, C.-C.; Wang, S.-P.; Lin, K.-H.; Chulakasian, S.; Wong, M.-L.; Chang, S.-C. Mouse Mammary Tumor Virus-Like Nucleotide Sequences in Canine and Feline Mammary Tumors. J. Clin. Microbiol. 2010, 48, 4354–4362. [Google Scholar] [CrossRef] [Green Version]
- Laumbacher, B.; Fellerhoff, B.; Herzberger, B.; Wank, R. Do dogs harbour risk factors for human breast cancer? Med. Hypotheses 2006, 67, 21–26. [Google Scholar] [CrossRef]
- Gecan, J.S.; Thrasher, J.J.; Eisenberg, W.; Brickey, P.M. Rodent Excreta Contamination and Insect Damage of Wheat. J. Food Prot. 1980, 43, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, D. Searching for human oncoviruses: Histories, challenges, and opportunities. J. Cell. Biochem. 2018, 119, 4897–4906. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Roniger, M.; Bar-Sinai, A.; Braitbard, O.; Natan, C.; Love, D.C.; Hanover, J.A.; Hochman, J. The Signal Peptide of Mouse Mammary Tumor Virus-Env: A Phosphoprotein Tumor Modulator. Mol. Cancer Res. 2012, 10, 1077–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monot, M.; Archer, F.; Gomes, M.; Mornex, J.-F.; Leroux, C. Advances in the study of transmissible respiratory tumours in small ruminants. Vet. Microbiol. 2015, 181, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Conticello, S.G. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008, 9, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asaoka, M.; Patnaik, S.K.; Ishikawa, T.; Takabe, K. Different members of the APOBEC3 family of DNA mutators have opposing associations with the landscape of breast cancer. Am. J. Cancer Res. 2021, 11, 5111–5125. [Google Scholar] [PubMed]
- Okeoma, C.M.; Huegel, A.L.; Lingappa, J.; Feldman, M.D.; Ross, S.R. APOBEC3 proteins expressed in mammary epithelial cells are packaged into retroviruses and can restrict transmission of milk-borne virions. Cell Host Microbe 2010, 8, 534–543. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.B.; Lackey, L.; Carpenter, M.A.; Rathore, A.; Land, A.M.; Leonard, B.; Refsland, E.W.; Kotandeniya, D.; Tretyakova, N.; Nikas, J.B.; et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 2013, 494, 366–370. [Google Scholar] [CrossRef]
- Salter, J.D.; Bennett, R.P.; Smith, H.C. The APOBEC Protein Family: United by Structure, Divergent in Function. Trends Biochem. Sci. 2016, 41, 578–594. [Google Scholar] [CrossRef] [Green Version]
- Gansmo, L.B.; Romundstad, P.; Hveem, K.; Vatten, L.; Nik-Zainal, S.; Lønning, P.E.; Knappskog, S. APOBEC3A/B deletion polymorphism and cancer risk. Carcinogenesis 2018, 39, 118–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohba, K.; Ichiyama, K.; Yajima, M.; Gemma, N.; Nikaido, M.; Wu, Q.; Chong, P.P.; Mori, S.; Yamamoto, R.; Wong, J.E.L.; et al. In Vivo and In Vitro Studies Suggest a Possible Involvement of HPV Infection in the Early Stage of Breast Carcinogenesis via APOBEC3B Induction. PLoS ONE 2014, 9, e97787. [Google Scholar] [CrossRef]
- Vieira, V.C.; Leonard, B.; White, E.A.; Starrett, G.J.; Temiz, N.A.; Lorenz, L.D.; Lee, D.; Soares, M.A.; Lambert, P.F.; Howley, P.; et al. Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B. mBio 2014, 5, e02234-14. [Google Scholar] [CrossRef] [Green Version]
- Johal, H.; Faedo, M.; Faltas, J.; Lau, A.; Mousina, R.; Cozzi, P.; Defazio, A.; Rawlinson, W.D. DNA of mouse mammary tumor virus-like virus is present in human tumors influenced by hormones. J. Med. Virol. 2010, 82, 1044–1050. [Google Scholar] [CrossRef]
- Graff, S.; Moore, D.H.; Stanley, W.M.; Randall, H.T.; Haagensen, C.D. Isolation of mouse mammary carcinoma virus. Cancer 1949, 2, 755–762. [Google Scholar] [CrossRef]
- Gannon, O.M.; Antonsson, A.; Bennett, I.C.; Saunders, N.A. Viral infections and breast cancer—A current perspective. Cancer Lett. 2018, 420, 182–189. [Google Scholar] [CrossRef]
- Lawson, J.S.; Salmons, B.; Gunzburg, W.H. Commentary regarding Gannon et al. Viral infections and breast cancer—A current perspective. Cancer Lett. 2018, 424, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.S.; Glenn, W.K. Catching viral breast cancer. Infect Agent Cancer 2021, 16, 37. [Google Scholar] [CrossRef] [PubMed]
- Nagi, K.; Gupta, I.; Jurdi, N.; Jabeen, A.; Yasmeen, A.; Batist, G.; Vranic, S.; Al-Moustafa, A.-E. High-risk human papillomaviruses and Epstein–Barr virus in breast cancer in Lebanese women and their association with tumor grade: A molecular and tissue microarray study. Cancer Cell Int. 2021, 21, 308. [Google Scholar] [CrossRef] [PubMed]
- Makielski, K.R.; Lee, D.; Lorenz, L.D.; Nawandar, D.M.; Chiu, Y.-F.; Kenney, S.C.; Lambert, P.F. Human papillomavirus promotes Epstein-Barr virus maintenance and lytic reactivation in immortalized oral keratinocytes. Virology 2016, 495, 52–62. [Google Scholar] [CrossRef]
- Braitbard, O.; Roniger, M.; Bar-Sinai, A.; Rajchman, D.; Gross, T.; Abramovitch, H.; La Ferla, M.; Franceschi, S.; Lessi, F.; Naccarato, A.G.; et al. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers. Oncotarget 2016, 7, 21168–21180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astori, M.; Karapetian, O. Immunization with a mouse mammary tumour virus envelope protein epitope protects against tumour formation without inhibition of the virus infection. J. Gen. Virol. 1997, 78 Pt 8, 1935–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Country | Method | Breast Cancer | 0.001 s | Significance for Difference, Breast Cancer versus Controls, p Value |
---|---|---|---|---|---|
Axel 1972 [19] | US | Molecular hybridisation | 19/29 66% | 0.001 s | 0.004 s |
Mesa-Tajada 1978 [35] | US | IHC | 15/131 39% | 0/18 0% | 0.001 s |
Wang 1995 [23] | US | PCR | 121/314 38.5% | 2/107 2% | |
Etkind 2000 [26] | US | PCR | 27/73 37% | 0/35 0% | |
Melana 2001 [36] | US | PCR | 32/106 30% | 1/106 1% | 0.001 s |
Melana 2002 [37] | Argentina | PCR | 23/74 31% | 1/10 10% | 0.003 s |
Ford 2003 [27] | Australia | PCR | 19/45 42% | 2/111 2% | 0.001 s |
Ford 2004 [38] | Australia | PCR | 45/144 31% | 0/111 0% | 0.001 s |
Zammarchi 2006 [39] | Italy | PCR | 15/45 33% | 0/8 0% | 0.008 s |
Hachana 2008 [40] | Tunisia | PCR | 17/122 14% | 0/122 0% | 0.001 s |
Lawson 2010 [41] | Australia | In situ PCR | 33/74 45% | 0/29 0% | 0.001 s |
Mazzanti 2011 [31] | Italy | PCR | 47/69 68% | 0/20 0% | 0.001 s |
Glenn 2012 [42] | Australia | PCR | 39/50 78% | 13/40 33% | 0.045 s |
Slaoui 2014 [43] | Morocco | PCR | 24/42 57% | 6/18 33% | 0.312 ns |
Cedro-Tanda 2014 [44] | Mexico | PCR | 57/458 12% | 72/458 16% | 0.308 ns |
Naushad 2014 [45] | Pakistan | PCR | 83/250 29% | 0/15 0% | 0.001 s |
Reza 2015 [46] | Iran | PCR | 12/100 12% | 0/100 0% | 0.002 s |
Shariatpanahi 2017 [47] | Iran | PCR | 19/59 32% | 3/59 5% | 0.002 s |
Al Dossary 2018 [48] | Saudi Arabia | PCR | 6/101 6% | 0/51 0% | 0.082 ns |
Seo 2019 [49] | Korea | PCR | 12/128 9% | 0/128 0% | 0.013 s |
Al Hamad 2020 [8] | Jordan | PCR | 11/100 11% | 0/20 0% | 0.023 s |
Periera 2020 [9] | Brazil | PCR | 41/217 19% | 30/196 15% Tissues adjacent to cancer | 0.417 ns |
Loutfy 2021 [10] | Egypt | PCR | 38/50 76% | 0/10 0% | 0.001 s |
Wang 2021 [11] | China | PCR | 21/119 18% | 2/50 4% | 0.05 s |
Khalid 2021 [12] | Pakistan | PCR | 69/105 66% | 2/15 13% | 0.023 s |
Gupta 2021 [13] | Croatia | PCR | 5/70 7% | 0/16 0% | 0.056 ns |
Study | Location | Method | Breast Cancer | Controls | Statistical Significance |
---|---|---|---|---|---|
Muller 1972 [85] | Germany | Immuno Fluorescence | 75/228 33% | 11/95 12% | 0.002 s |
Ogawa 1978 [86] | Japan | Immuno Fluorescence | 26/43 60% | 4/37 11% | 0.001 s |
Mehta 1978 [87] | India | Immuno Fluorescence | 26/34 76% | 0/10 0% | 0.003 s |
Witkin 1979 [88] | US | Virolytic Assay | 11/65 17% | 2/60 3% | 0.001 s |
Imai 1979 [89] | Japan | Immuno Fluorescence | 49/89 55% | 18/68 27% | 0.020 s |
Witkin 1980 [24] | US | Elisa | 14/54 26% | 5/63 8% | 0.026 s |
Day 1981 [25] | US | Elisa | 27/145 19% | 1/36 3% | 0.026 s |
Nagayoshi 1981 [90] | Japan | Hemaglutination | 34/96 36% | 3/59 5% | 0.001 s |
Tomana 1981 [91] | US | Immuno Fluorescence | 56/137 41% | 2/56 4% | 0.001 s |
Zotter 1981 [92] | Germany | Immuno Precipitation | 84/367 23% | 11/184 6% | 0.001 s |
Holder 1983 [93] | US | Viral Agglutination | 41/52 79% | 2/18 11% | 0.004 s |
Litvinov 1984 [94] | Russia | Radio Immune Assay | 51/92 55% | 3/94 3% | 0.001 s |
Chattopadhyah 1984 [95] | India | Hemaglutination | 14/14 100% | 0/13 0% | 0.004 s |
Kovarik 1989 [83] | Czech Slovakia | Immunoblotting | 2/60 3% | 0/60 0% | 0.226 ns |
Goerdert 2006 [2] | US | Immunoblotting | 0/92 | ||
Zhang 2020 [84] | Canada | Elisa GP 52 | 10/98 10% | 2/98 2% | 0.017 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawson, J.S.; Glenn, W.K. Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer—The Value of Bradford Hill Criteria. Viruses 2022, 14, 721. https://doi.org/10.3390/v14040721
Lawson JS, Glenn WK. Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer—The Value of Bradford Hill Criteria. Viruses. 2022; 14(4):721. https://doi.org/10.3390/v14040721
Chicago/Turabian StyleLawson, James S., and Wendy K. Glenn. 2022. "Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer—The Value of Bradford Hill Criteria" Viruses 14, no. 4: 721. https://doi.org/10.3390/v14040721
APA StyleLawson, J. S., & Glenn, W. K. (2022). Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer—The Value of Bradford Hill Criteria. Viruses, 14(4), 721. https://doi.org/10.3390/v14040721