Persistent Hepatitis B Viraemia with Polymerase Mutations among HIV/HBV Co-Infected Patients on HBV-Active ART in KwaZulu-Natal, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. HBV and HIV Quantification
2.3. HBV Nested Polymerase Chain Reaction
2.4. PCR Purification and Sequencing
2.5. Sequence Analysis
2.6. Statistical Analysis
3. Results
Next Generation Sequencing and Phylogenetics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Health Organization Global Hepatitis Report 2017; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- WHO. Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections, 2019: Annex 1: Key Data at a Glance; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Matthews, P.C.; Geretti, A.M.; Goulder, P.J.; Klenerman, P. Epidemiology and impact of HIV coinfection with Hepatitis B and Hepatitis C viruses in Sub-Saharan Africa. J. Clin. Virol. 2014, 61, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Konopnicki, D.; Mocroft, A.; De Wit, S.; Antunes, F.; Ledergerber, B.; Katlama, C.; Zilmer, K.; Vella, S.; Kirk, O.; Lundgren, J.; et al. Hepatitis B and HIV: Prevalence, AIDS progression, response to highly active antiretroviral therapy and increased mortality in the Euro-SIDA cohort. Aids 2005, 19, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Mena, A.; Glass, T.R.; Winter, A.; Kimera, N.; Ntamatungiro, A.; Hatz, C.; Tanner, M.; Battegay, M.; Furrer, H.; Wandeler, G.; et al. Prevalence and Out-comes of Hepatitis B Coinfection and Associated Liver Disease among Antiretroviral Therapy-Naive Individuals in a Rural Tanzanian Human Immunodeficiency Virus Cohort. Open Forum Infect. Dis. 2016, 3, ofw162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kew, M.C. Hepatitis B virus/human immunodeficiency virus co-infection and its hepatocarcinogenic potential in Sub-Saharan Black Africans. Zahedan J. Res. Med. Sci. 2012, 12, e7876. [Google Scholar] [CrossRef] [Green Version]
- Palella, F.J., Jr.; Baker, R.K.; Moorman, A.C.; Chmiel, J.S.; Wood, K.C.; Brooks, J.T.; Holmberg, S.; HIV Outpatient Study Investigators. Mortality in the highly active antiretroviral therapy era: Changing causes of death and disease in the HIV outpatient study. JAIDS J. Acquir. Immune Defic. Syndr. 2006, 43, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.P.; Crane, M.; Audsley, J.; Lewin, S.R. HIV-Hepatitis B virus co-infection: Epidemiology, pathogenesis and treatment. Aids 2017, 31, 2035. [Google Scholar]
- Sheldon, J.; Ramos, B.; Garcia-Samaniego, J.; Rios, P.; Bartholomeusz, A.; Romero, M.; Locarnini, S.; Zoulim, F.; Soriano, V. Selection of Hepatitis B Virus (HBV) Vaccine Escape Mutants in HBV-Infected and HBV/HIV-Coinfected Patients Failing Antiretroviral Drugs with Anti-HBV Activity. JAIDS J. Acquir. Immune Defic. Syndr. 2007, 46, 279–282. [Google Scholar] [CrossRef]
- Chotiyaputta, W.; Lok, A.S. Hepatitis B virus variants. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 453. [Google Scholar]
- Zoulim, F.; Locarnini, S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology 2009, 137, 1593–1608.e2. [Google Scholar] [CrossRef]
- Tan, Y.-W.; Ge, G.-H.; Zhao, W.; Gan, J.-H.; Zhao, Y.; Niu, Z.-L.; Zhang, D.; Chen, L.; Yu, X.; Yang, L. YMDD motif mutations in chronic hepatitis B antiviral treatment naïve patients: A multi-center study. Braz. J. Infect. Dis. 2012, 16, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Lok, A.S. Hepatitis B therapy. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 275. [Google Scholar] [CrossRef] [PubMed]
- Hamers, R.L.; Zaaijer, H.L.; Wallis, C.L.; Siwale, M.; Ive, P.; Botes, M.E.; Sigaloff, K.C.E.; Hoepelman, A.I.M.; Stevens, W.S.; de Wit, T.F.R. HIV–HBV coinfection in southern Africa and the effect of lamivudine-versus tenofovir-containing cART on HBV outcomes. JAIDS J. Acquir. Immune Defic. Syndr. 2013, 64, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Lampertico, P.; Soffredini, R.; Yurdaydin, C.; Idilman, R.; Papatheodoridis, G.; Margariti, A.; Buti, M.; Esteban, R.; Zaltron, S.; Vavassori, A.; et al. Four years of tenofovir monotherapy for NUC naïve field practice European patients suppresses HBV replication in most patients with a favorable renal safety profile but does not prevent HCC in patients with or without cirrhosis. Dig. Liver Dis. 2014, 46, e14. [Google Scholar] [CrossRef]
- Marcellin, P.; Zoulim, F.; Hezode, C.; Causse, X.; Roche, B.; Truchi, R.; Pauwels, A.; Ouzan, D.; Dumortier, J.; Pageaux, G.-P.; et al. Effectiveness and safety of tenofovir disoproxil fumarate in chronic hepatitis B: A 3-year, prospective, real-world study in France. Am. J. Dig. Dis. 2016, 61, 3072–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, G.V.; Seaberg, E.C.; Avihingsanon, A.; Bowden, S.; Dore, G.J.; Lewin, S.R.; Sasadeusz, J.; Revill, P.; Littlejohn, M.; Hoy, J.; et al. Patterns and causes of suboptimal response to tenofovir-based therapy in individuals coinfected with HIV and hepatitis B virus. Clin. Infect. Dis. 2013, 56, e87–e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cathcart, A.L.; Chan, H.L.; Bhardwaj, N.; Liu, Y.; Marcellin, P.; Pan, C.Q.; Shalimar; Buti, M.; Cox, S.; Parhy, B.; et al. No resistance to tenofovir alafenamide detected through 96 weeks of treatment in patients with chronic hepatitis B infection. Antimicrob. Agents Chemotherapy 2018, 62, e01064-18. [Google Scholar] [CrossRef] [Green Version]
- Spearman, C.W.; Afihene, M.; Ally, R.; Apica, B.; Awuku, Y.; Cunha, L.; Dusheiko, G.; Gogela, N.; Kassianides, C.; Kew, M.; et al. Hepatitis B in sub-Saharan Africa: Strategies to achieve the 2030 elimination targets. Lancet Gastroenterol. Hepatol. 2017, 2, 900–909. [Google Scholar]
- Delmas, J.; Schorr, O.; Jamard, C.; Gibbs, C.; Trépo, C.; Hantz, O.; Zoulim, F. Inhibitory effect of adefovir on viral DNA synthesis and covalently closed circular DNA formation in duck hepatitis B virus-infected hepatocytes in vivo and in vitro. Antimicrob. Agents Chemother. 2002, 46, 425–433. [Google Scholar] [CrossRef] [Green Version]
- EASL. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar]
- WHO. World Health Organization Guidelines for the Prevention Care and Treatment of Persons with Chronic Hepatitis B Infection; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Vanden Eynden, E.; Vandamme, A.-M.; et al. Genome Detective: An automated system for virus identification from high-throughput sequencing data. Bioinformatics 2019, 35, 871–873. [Google Scholar] [CrossRef] [Green Version]
- Schultz, A.-K.; Bulla, I.; Abdou-Chekaraou, M.; Gordien, E.; Morgenstern, B.; Zoulim, F.; Dény, P.; Stanke, M. jpHMM: Recombination analysis in viruses with circular genomes such as the hepatitis B virus. Nucleic Acids Res. 2012, 40, W193–W198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol.Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. Model Finder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, F.; Entfellner, J.-B.D.; Wilkinson, E.; Correia, D.; Felipe, M.D.; De Oliveira, T.; Gascuel, O. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 2018, 556, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T.Y. ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Audsley, J.; Bent, S.J.; Littlejohn, M.; Avihingsanon, A.; Matthews, G.; Bowden, S.; Bayliss, J.; Luciani, F.; Yuen, L.; Fairley, C.K.; et al. Effects of long-term tenofovir-based combination antiretroviral therapy in HIV-hepatitis B virus coinfection on persistent hepatitis B virus viremia and the role of hepatitis B virus quasispecies diversity. Aids 2016, 30, 1597–1606. [Google Scholar] [CrossRef]
- Mak, L.-Y.; Huang, Q.; Wong, D.K.-H.; Stamm, L.; Cheung, K.-S.; Ko, K.-L.; Yan, R.; Ouyang, L.; Fung, J.; Seto, W.; et al. Residual HBV DNA and pgRNA viraemia is associated with hepatocellular carcinoma in chronic hepatitis B patients on antiviral therapy. J. Gastroenterol. 2021, 56, 479–488. [Google Scholar] [CrossRef]
- Martín-Carbonero, L.; Teixeira, T.; Poveda, E.; Plaza, Z.; Vispo, E.; González-Lahoz, J.; Soriano, V. Clinical and virological outcomes in HIV-infected patients with chronic hepatitis B on long-term nucleos(t)ide analogues. Aids 2011, 25, 73–79. [Google Scholar] [CrossRef]
- Msomi, N.; Naidoo, K.; Yende-Zuma, N.; Padayatchi, N.; Govender, K.; Singh, J.A.; Abdool-Karim, S.; Abdool-Karim, Q.; Mlisana, K. High incidence and persistence of hepatitis B virus infection in individuals receiving HIV care in KwaZulu-Natal, South Africa. BMC Infect. Dis. 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.; Bartholomeusz, A.; Locarnini, S. HBV drug resistance: Mechanisms, detection and interpretation. J. Hepatol. 2006, 44, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Makondo, E.; Bell, T.G.; Kramvis, A. Genotyping and molecular characterization of hepatitis B virus from human immunodeficiency virus-infected individuals in southern Africa. PLoS ONE 2012, 7, e46345. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, J.; Camino, N.; Rodés, B.; Bartholomeusz, A.; Kuiper, M.; Tacke, F.; Núñez, M.; Mauss, S.; Lutz, T.; Klausen, G.; et al. Selection of hepatitis B virus polymerase mutations in HIV-coinfected patients treated with tenofovir. Antiviral Ther. 2005, 10, 727. [Google Scholar]
- Park, E.-S.; Lee, A.R.; Kim, D.H.; Lee, J.-H.; Yoo, J.-J.; Ahn, S.H.; Sim, H.; Park, S.; Kang, H.S.; Won, J.; et al. Identification of a quadruple mutation that confers tenofovir resistance in chronic hepatitis B patients. J. Hepatol. 2019, 70, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.V.; Bartholomeusz, A.; Locarnini, S.; Ayres, A.; Sasaduesz, J.; Seaberg, E.; Cooper, D.A.; Lewin, S.R.; Dore, G.J.; Thio, C.L. Characteristics of drug resistant HBV in an international collaborative study of HIV-HBV-infected individuals on extended lamivudine therapy. Aids 2006, 20, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Lukhwareni, A.; Gededzha, M.P.; Amponsah-Dacosta, E.; Blackard, J.T.; Burnett, R.J.; Selabe, S.G.; Kyaw, T.; Mphahlele, M.J. Impact of Lamivudine-Based Antiretroviral Treatment on Hepatitis B Viremia in HIV-Coinfected South Africans. Viruses 2020, 12, 634. [Google Scholar] [CrossRef]
- Torresi, J.; Earnest-Silveira, L.; Deliyannis, G.; Edgtton, K.; Zhuang, H.; Locarnini, S.A.; Fyfe, J.; Sozzi, T.; Jackson, D.C. Reduced antigenicity of the hepatitis B virus HBsAg protein arising as a consequence of sequence changes in the overlapping polymerase gene that are selected by lamivudine therapy. Virology 2002, 293, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Mokaya, J.; McNaughton, A.L.; Bester, P.A.; Goedhals, D.; Barnes, E.; Marsden, B.D.; Matthews, P.C. Hepatitis B virus resistance to tenofovir: Fact or fiction? A systematic literature review and structural analysis of drug resistance mechanisms. Wellcome Open Res. 2020, 5, 151. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Wei, M.; Zhang, C.; Xu, T.; Liu, L.; Xu, Z. Potential resistant mutations within HBV reverse transcriptase sequences in nucleos (t) ide analogues-experienced patients with hepatitis B virus infection. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Neumann-Fraune, M.; Beggel, B.; Pfister, H.; Kaiser, R.; Verheyen, J. High frequency of complex mutational patterns in lamivudine resistant hepatitis B virus isolates. J. Med. Virol. 2013, 85, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Kramvis, A. Molecular characteristics and clinical relevance of African genotypes and subgenotypes of hepatitis B virus. SAMJ South Afr. Med. J. 2018, 108, 17–21. [Google Scholar]
- Andersson, M.I.; Preiser, W.; Van Rensburg, C.; Taljaard, J.; Hoffmann, C.J. The HIV/HBV co-infected patient: Time for proactive management. South Afr. Med. J. 2015, 105, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Health Sector Strategy on Viral Hepatitis 2016–2021. Towards Ending Viral Hepatitis; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
Variables | Total n = 150 |
---|---|
Gender, n (%) | |
Male | 96 (64.0) |
Female | 54 (36.0) |
Age group (years), n (%) | |
<18–25 | 14 (9.3) |
26-36 | 50 (33.3) |
36-45 | 56 (37.3) |
46-61 | 29 (19.3) |
History of TB status at enrolment, n (%) | |
Yes | 41 (27.3) |
No | 107 (71.3) |
Unknown | 2 (1.3) |
CD4+ count at enrolment (cells/mm3), n (%) | |
<200 | 64 (42.7) |
201–500 | 54 (36) |
>500 | 27 (18) |
Unknown | 5 (3.3) |
HIVVL (copies/mL), n (%) | |
LDL | 56 (37.3) |
<1000 | 43 (28.7) |
>1000 | 51 (34) |
HIVVL log10 median | 3.27 |
HIVVL log10 SD | 1.43 |
HIVVL log10 mean | 3.37 |
HBV Viral load at enrolment (IU/mL), n (%) | |
LDL | 90 (60) |
1–1000 | 27 (18) |
1001–10,000 | 10 (6.7) |
>10,000 | 23 (15.3) |
HBVVL Log10 median | 3.42 |
HBVVL Log10 SD | 2.17 |
HBVVL Log 10 mean | 3.95 |
ALT, n (%) | |
normal | 87 (58) |
2–5 × ULN | 53 (35.3) |
>5 × ULN | 7 (4.7) |
Unknown | 3 (2.0) |
HBV serological markers, proportion (%) | |
HBsAg positive | 135/145 (93) |
HBeAg positive | 71/143 (49.7) |
Anti-HBc (total) positive | 129/145 (89) |
Anti-sAg titres | |
>10 mIU/mL | 8/145 (5.5) |
<10 mIU/mL | 137/145 (94.5) |
HBV active ART, n (%) | |
TDF + LAM | 143 (95.3) |
TDF only | 1 (0.7) |
LAM only | 6 (4) |
Duration of TDF + LAM at enrolment, n (%) | |
≤6 months | 37 (24.7) |
>6 months | 106 (70.6) |
Unknown | 7 (4.7) |
Factor | Unadjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value |
---|---|---|---|---|
Gender (ref: female) | ||||
Male | 0.953 (0.483–1.880) | 0.890 | 0.959 (0.429–2.142) | 0.919 |
Age group (years) (ref: age ≥ 35) | ||||
18–25 | 1.357 (0.439–4.192) | 0.596 | 1.504 (0.371–6.102) | 0.568 |
26–35 | 2.205 (1.078–4.512) | 0.030 | 1.936 (0.849–4.413) | 0.116 |
History of TB at enrolment (ref: No TB) | ||||
Yes | 1.390 (0.672–2.877) | 0.374 | 1.747 (0.692–4.406) | 0.237 |
CD4+ count (cells/mm3) (ref: ≥500) | ||||
<200 | 5.213 (1.762–15.422) | 0.003 | 5.276 (1.575–17.670) | 0.007 |
201–500 | 2.497 (0.817–7.629) | 0.108 | 2.756 (0.821–9.251) | 0.101 |
HIVVL at baseline (copies/mL) (ref: <1000) | ||||
>1000 | 2.250 (1.128–4.489) | 0.021 | 2.014 (0.936–4.336) | 0.073 |
ALT at baseline (ref: ALT ≤ 40IU/mL) | ||||
ALT > 40 IU/mL | 0.895 (0.463–1.730) | 0.742 | 0.870 (0.411–1.842) | 0.716 |
Duration of HBV-active ART (ref: <6 months) | ||||
>6 months | 0.437 (0.211–0.903) | 0.025 | 0.465 (0.189–1.141) | 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msomi, N.; Parboosing, R.; Wilkinson, E.; Giandhari, J.; Govender, K.; Chimukangara, B.; Mlisana, K.P. Persistent Hepatitis B Viraemia with Polymerase Mutations among HIV/HBV Co-Infected Patients on HBV-Active ART in KwaZulu-Natal, South Africa. Viruses 2022, 14, 788. https://doi.org/10.3390/v14040788
Msomi N, Parboosing R, Wilkinson E, Giandhari J, Govender K, Chimukangara B, Mlisana KP. Persistent Hepatitis B Viraemia with Polymerase Mutations among HIV/HBV Co-Infected Patients on HBV-Active ART in KwaZulu-Natal, South Africa. Viruses. 2022; 14(4):788. https://doi.org/10.3390/v14040788
Chicago/Turabian StyleMsomi, Nokukhanya, Raveen Parboosing, Eduan Wilkinson, Jennifer Giandhari, Kerusha Govender, Benjamin Chimukangara, and Koleka P. Mlisana. 2022. "Persistent Hepatitis B Viraemia with Polymerase Mutations among HIV/HBV Co-Infected Patients on HBV-Active ART in KwaZulu-Natal, South Africa" Viruses 14, no. 4: 788. https://doi.org/10.3390/v14040788
APA StyleMsomi, N., Parboosing, R., Wilkinson, E., Giandhari, J., Govender, K., Chimukangara, B., & Mlisana, K. P. (2022). Persistent Hepatitis B Viraemia with Polymerase Mutations among HIV/HBV Co-Infected Patients on HBV-Active ART in KwaZulu-Natal, South Africa. Viruses, 14(4), 788. https://doi.org/10.3390/v14040788