Molecular Analysis of SARS-CoV-2 Lineages in Armenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Real-Time PCR Detection of SARS-CoV-2
2.3. Sequencing
2.4. Nanopore Sequencing
2.4.1. cDNA Generation
2.4.2. Amplicon Generation
2.4.3. Barcoding and Library Preparation
2.4.4. Nanopore Sequencing
2.4.5. Data Preprocessing, Demultiplexing, and Alignment
2.5. Illumina Short-Read Sequencing
2.6. Phylogenetic and Variant Analysis
2.7. Functional Annotation of SARS-CoV-2 Genomes
3. Results and Discussion
3.1. Phylodynamic and Phylogeographic Analysis of Sequences
3.2. Functional Annotation of Variants
3.3. Comparison of Oxford Nanopore and Illumina Sequencing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [CrossRef] [PubMed] [Green Version]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A Novel Coronavirus Outbreak of Global Health Concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A New Coronavirus Associated with Human Respiratory Disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- van Kasteren, P.B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.B.E.M.; Meijer, A. Comparison of Seven Commercial RT-PCR Diagnostic Kits for COVID-19. J. Clin. Virol. 2020, 128, 104412. [Google Scholar] [CrossRef]
- Pybus, O.G.; Tatem, A.J.; Lemey, P. Virus Evolution and Transmission in an Ever More Connected World. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142878. [Google Scholar] [CrossRef] [Green Version]
- Nie, Q.; Li, X.; Chen, W.; Liu, D.; Chen, Y.; Li, H.; Li, D.; Tian, M.; Tan, W.; Zai, J. Phylogenetic and Phylodynamic Analyses of SARS-CoV-2. Virus Res. 2020, 287, 198098. [Google Scholar] [CrossRef]
- du Plessis, L.; McCrone, J.T.; Zarebski, A.E.; Hill, V.; Ruis, C.; Gutierrez, B.; Raghwani, J.; Ashworth, J.; Colquhoun, R.; Connor, T.R.; et al. Establishment and Lineage Dynamics of the SARS-CoV-2 Epidemic in the UK. Science 2021, 371, 708–712. [Google Scholar] [CrossRef]
- Nemira, A.; Adeniyi, A.E.; Gasich, E.L.; Bulda, K.Y.; Valentovich, L.N.; Krasko, A.G.; Glebova, O.; Kirpich, A.; Skums, P. SARS-CoV-2 Transmission Dynamics in Belarus in 2020 Revealed by Genomic and Incidence Data Analysis. Commun. Med. 2021, 1, 31. [Google Scholar] [CrossRef]
- Gutierrez, B.; Márquez, S.; Prado-Vivar, B.; Becerra-Wong, M.; Guadalupe, J.J.; da Silva Candido, D.; Fernandez-Cadena, J.C.; Morey-Leon, G.; Armas-Gonzalez, R.; Andrade-Molina, D.M.; et al. Genomic Epidemiology of SARS-CoV-2 Transmission Lineages in Ecuador. Virus Evol. 2021, 7, veab051. [Google Scholar] [CrossRef]
- Gankin, Y.; Nemira, A.; Koniukhovskii, V.; Chowell, G.; Weppelmann, T.A.; Skums, P.; Kirpich, A. Investigating the First Stage of the COVID-19 Pandemic in Ukraine Using Epidemiological and Genomic Data. Infect. Genet. Evol. 2021, 95, 105087. [Google Scholar] [CrossRef]
- Kaleta, T.; Kern, L.; Hong, S.L.; Hölzer, M.; Kochs, G.; Beer, J.; Schnepf, D.; Schwemmle, M.; Bollen, N.; Kolb, P.; et al. Antibody Escape and Global Spread of SARS-CoV-2 Lineage A.27. Nat. Commun. 2022, 13, 1152. [Google Scholar] [CrossRef]
- Home—Covid. Available online: https://covid.ncdc.am/en/home (accessed on 31 March 2022).
- Elbe, S.; Buckland-Merrett, G. Data, Disease and Diplomacy: GISAID’s Innovative Contribution to Global Health. Glob. Chall. 2017, 1, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, Y.; McCauley, J. GISAID: Global Initiative on Sharing All Influenza Data—From Vision to Reality. Eurosurveillance 2017, 22, 30494. [Google Scholar] [CrossRef] [Green Version]
- Tyson, J.R.; James, P.; Stoddart, D.; Sparks, N.; Wickenhagen, A.; Hall, G.; Choi, J.H.; Lapointe, H.; Kamelian, K.; Smith, A.D.; et al. Improvements to the ARTIC Multiplex PCR Method for SARS-CoV-2 Genome Sequencing Using Nanopore. bioRxiv 2020, 3, 1. [Google Scholar] [CrossRef]
- Bull, R.A.; Adikari, T.N.; Ferguson, J.M.; Hammond, J.M.; Stevanovski, I.; Beukers, A.G.; Naing, Z.; Yeang, M.; Verich, A.; Gamaarachchi, H.; et al. Analytical Validity of Nanopore Sequencing for Rapid SARS-CoV-2 Genome Analysis. Nat. Commun. 2020, 11, 6272. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, H.; Mao, L.; Yu, H.; Yu, X.; Sun, Z.; Qian, X.; Cheng, S.; Chen, S.; Chen, J.; et al. Rapid Genomic Characterization of SARS-CoV-2 Viruses from Clinical Specimens Using Nanopore Sequencing. Sci. Rep. 2020, 10, 17492. [Google Scholar] [CrossRef]
- Gohl, D.M.; Garbe, J.; Grady, P.; Daniel, J.; Watson, R.H.B.; Auch, B.; Nelson, A.; Yohe, S.; Beckman, K.B. A Rapid, Cost-Effective Tailed Amplicon Method for Sequencing SARS-CoV-2. BMC Genom. 2020, 21, 863. [Google Scholar] [CrossRef]
- Artic Network. Available online: https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html (accessed on 31 March 2022).
- Loman, N.J.; Quick, J.; Simpson, J.T. A Complete Bacterial Genome Assembled de Novo Using Only Nanopore Sequencing Data. Nat. Methods 2015, 12, 733–735. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Addetia, A.; Lin, M.J.; Peddu, V.; Roychoudhury, P.; Jerome, K.R.; Greninger, A.L. Sensitive Recovery of Complete SARS-CoV-2 Genomes from Clinical Samples by Use of Swift Biosciences’ SARS-CoV-2 Multiplex Amplicon Sequencing Panel. J. Clin. Microbiol. 2021, 59, e02226-20. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.J.; Rachleff, V.M.; Xie, H.; Shrestha, L.; Lieberman, N.A.P.; Peddu, V.; Addetia, A.; Casto, A.M.; Breit, N.; Mathias, P.C.; et al. Host-Pathogen Dynamics in Longitudinal Clinical Specimens from Patients with COVID-19. Sci Rep 2022, 12, 5856. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Holmes, E.C.; O’Toole, Á.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A Dynamic Nomenclature Proposal for SARS-CoV-2 Lineages to Assist Genomic Epidemiology. Nat. Microbiol. 2020, 5, 1403–1407. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Sagulenko, P.; Puller, V.; Neher, R.A. TreeTime: Maximum-Likelihood Phylodynamic Analysis. Virus Evol. 2018, 4, vex042. [Google Scholar] [CrossRef]
- Rambaut, A.; Lam, T.T.; Carvalho, L.M.; Pybus, O.G. Exploring the Temporal Structure of Heterochronous Sequences Using TempEst (Formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heled, J.; Bouckaert, R.R. Looking for Trees in the Forest: Summary Tree from Posterior Samples. BMC Evol. Biol. 2013, 13, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiara, M.; Zambelli, F.; Tangaro, M.A.; Mandreoli, P.; Horner, D.S.; Pesole, G. CorGAT: A Tool for the Functional Annotation of SARS-CoV-2 Genomes. Bioinformatics 2020, 36, 5522–5523. [Google Scholar] [CrossRef]
- Kiyotani, K.; Toyoshima, Y.; Nemoto, K.; Nakamura, Y. Bioinformatic Prediction of Potential T Cell Epitopes for SARS-Cov-2. J. Hum. Genet. 2020, 65, 569–575. [Google Scholar] [CrossRef] [PubMed]
- RFE/RL’s Armenian Service—Ազատություն ռ/կ. Available online: https://www.azatutyun.am/a/30462197.html (accessed on 1 April 2022).
- Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus. Cell 2020, 182, 812–827.e19. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Travel Restrictions—The Government of the Republic of Armenia. Available online: https://www.gov.am/en/covid-travel-restrictions/ (accessed on 1 April 2022).
- Nyberg, T.; Ferguson, N.M.; Nash, S.G.; Webster, H.H.; Flaxman, S.; Andrews, N.; Hinsley, W.; Bernal, J.L.; Kall, M.; Bhatt, S.; et al. Comparative Analysis of the Risks of Hospitalisation and Death Associated with SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) Variants in England: A Cohort Study. Lancet 2022, 399, 1303–1312. [Google Scholar] [CrossRef]
- Taylor, C.A.; Whitaker, M.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Chai, S.J.; Alden, N.B.; Yousey-Hindes, K.; Anderson, E.J.; et al. COVID-19–Associated Hospitalizations among Adults During SARS-CoV-2 Delta and Omicron Variant Predominance, by Race/Ethnicity and Vaccination Status—COVID-NET, 14 States, July 2021–January 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 466–473. [Google Scholar] [CrossRef]
- Migliorini, F.; Torsiello, E.; Spiezia, F.; Oliva, F.; Tingart, M.; Maffulli, N. Association between HLA Genotypes and COVID-19 Susceptibility, Severity and Progression: A Comprehensive Review of the Literature. Eur. J. Med. Res. 2021, 26, 84. [Google Scholar] [CrossRef]
- Shkurnikov, M.; Nersisyan, S.; Jankevic, T.; Galatenko, A.; Gordeev, I.; Vechorko, V.; Tonevitsky, A. Association of HLA Class I Genotypes With Severity of Coronavirus Disease-19. Front. Immunol. 2021, 12, 423. [Google Scholar] [CrossRef]
- Douillard, V.; Castelli, E.C.; Mack, S.J.; Hollenbach, J.A.; Gourraud, P.A.; Vince, N.; Limou, S. Current HLA Investigations on SARS-CoV-2 and Perspectives. Front. Genet. 2021, 12, 774922. [Google Scholar] [CrossRef]
- Pisanti, S.; Deelen, J.; Gallina, A.M.; Caputo, M.; Citro, M.; Abate, M.; Sacchi, N.; Vecchione, C.; Martinelli, R. Correlation of the Two Most Frequent HLA Haplotypes in the Italian Population to the Differential Regional Incidence of COVID-19. J. Transl. Med. 2020, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Bolze, A.; Neveux, I.; Schiabor Barrett, K.M.; White, S.; Isaksson, M.; Dabe, S.; Lee, W.; Grzymski, J.J.; Washington, N.L.; Cirulli, E.T. HLA-A∗03:01 Is Associated with Increased Risk of Fever, Chills, and Stronger Side Effects from Pfizer-BioNTech COVID-19 Vaccination. Hum. Genet. Genom. Adv. 2022, 3, 100084. [Google Scholar] [CrossRef] [PubMed]
- Hovhannisyan, A.; Madelian, V.; Avagyan, S.; Nazaretyan, M.; Hyussyan, A.; Sirunyan, A.; Arakelyan, R.; Manukyan, Z.; Yepiskoposyan, L.; Mayilyan, K.R.; et al. HLA-C*04:01 Affects HLA Class I Heterozygosity and Predicted Affinity to SARS-CoV-2 Peptides, and in Combination With Age and Sex of Armenian Patients Contributes to COVID-19 Severity. Front. Immunol. 2022, 13, 769900. [Google Scholar] [CrossRef] [PubMed]
- Matevosyan, L.; Chattopadhyay, S.; Madelian, V.; Avagyan, S.; Nazaretyan, M.; Hyussian, A.; Vardapetyan, E.; Arutunyan, R.; Jordan, F. HLA-A, HLA-B, and HLA-DRB1 Allele Distribution in a Large Armenian Population Sample. Tissue Antigens 2011, 78, 21–30. [Google Scholar] [CrossRef]
- Itokawa, K.; Sekizuka, T.; Hashino, M.; Tanaka, R.; Kuroda, M. A Proposal of Alternative Primers for the ARTIC Network’s Multiplex PCR to Improve Coverage of SARS-CoV-2 Genome Sequencing. PLoS One 2020, 15, e0239403. [Google Scholar] [CrossRef]
- Armenia Extends Closure of Border with Iran Over Coronavirus Fears. Available online: https://www.rferl.org/a/armenia-extends-iran-border-closure-coronavirus-fears/30465130.html (accessed on 1 April 2022).
- Thye, A.Y.K.; Law, J.W.F.; Pusparajah, P.; Letchumanan, V.; Chan, K.G.; Lee, L.H. Emerging SARS-CoV-2 Variants of Concern (VOCs): An Impending Global Crisis. Biomedicines 2021, 9, 1303. [Google Scholar] [CrossRef]
- Muttineni, R.; Kammili, N.; Bingi, T.C.; Raja Rao, M.; Putty, K.; Dholaniya, P.S.; Puli, R.K.; Pakalapati, S.; Doodipala, M.R.; Upadhyay, A.A.; et al. Clinical and Whole Genome Characterization of SARS-CoV-2 in India. PLoS ONE 2021, 16, e0246173. [Google Scholar] [CrossRef]
- Arakelyan, A.; Avetyan, D. Molecular Genetic Analysis of SARS-CoV-2 Lineages in Armenia—additional data [Data set]. Zenodo 2022. [Google Scholar] [CrossRef]
Clade | HLA-A*02:01, HLA-A*24:02 (Protective Alleles) | HLA-A*01:01, HLA-A*03:01, HLA-B*51:01 (Risk Alleles) |
---|---|---|
19A | 3 mutations | 2 mutations |
20B | 228 mutations | 128 mutations |
20I (Alpha, V1) | 68 mutations | 24 mutations |
21J (Delta) | 453 mutations | 303 mutations |
21K (Omicron) | 76 mutations | 19 mutations |
Sample | Oxford Nanopore | Illumina | ||
---|---|---|---|---|
PANGO Lineage | Nextstrain Clade | PANGO Lineage | Nextstrain Clade | |
IMB1-1/2021 | B.1.1.163 | 20B | B.1.1.163 | 20B |
IMB1-2/2021 | B.1.1.163 | 20B | B.1.1.163 | 20B |
IMB1-5/2021 | B.1.1.163 | 20B | B.1 | 20A |
IMB2-1/2021 | B.1.1 | 20B | B.1.1.7 | 20I (Alpha, V1) |
IMB2-2/2021 | B.1.1.163 | 20B | B.1.1.163 | 20B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avetyan, D.; Hakobyan, S.; Nikoghosyan, M.; Ghukasyan, L.; Khachatryan, G.; Sirunyan, T.; Muradyan, N.; Zakharyan, R.; Chavushyan, A.; Hayrapetyan, V.; et al. Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses 2022, 14, 1074. https://doi.org/10.3390/v14051074
Avetyan D, Hakobyan S, Nikoghosyan M, Ghukasyan L, Khachatryan G, Sirunyan T, Muradyan N, Zakharyan R, Chavushyan A, Hayrapetyan V, et al. Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses. 2022; 14(5):1074. https://doi.org/10.3390/v14051074
Chicago/Turabian StyleAvetyan, Diana, Siras Hakobyan, Maria Nikoghosyan, Lilit Ghukasyan, Gisane Khachatryan, Tamara Sirunyan, Nelli Muradyan, Roksana Zakharyan, Andranik Chavushyan, Varduhi Hayrapetyan, and et al. 2022. "Molecular Analysis of SARS-CoV-2 Lineages in Armenia" Viruses 14, no. 5: 1074. https://doi.org/10.3390/v14051074
APA StyleAvetyan, D., Hakobyan, S., Nikoghosyan, M., Ghukasyan, L., Khachatryan, G., Sirunyan, T., Muradyan, N., Zakharyan, R., Chavushyan, A., Hayrapetyan, V., Hovhannisyan, A., Mohamed Bakhash, S. A., Jerome, K. R., Roychoudhury, P., Greninger, A. L., Niazyan, L., Davidyants, M., Melik-Andreasyan, G., Sargsyan, S., ... Arakelyan, A. (2022). Molecular Analysis of SARS-CoV-2 Lineages in Armenia. Viruses, 14(5), 1074. https://doi.org/10.3390/v14051074