SARS-CoV-2 in Environmental Samples of Quarantined Households
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design Sample Size and Recruitment of Households
2.2. Sampling
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Household Data
3.2. Environmental Sampling Data
3.3. Associations between Human and Environmental Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Weekly Epidemiological Update on COVID-19—22 February 2022. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-february-2022 (accessed on 25 February 2022).
- Liu, J.; Liao, X.; Qian, S.; Yuan, J.; Wang, F.; Liu, Y.; Wang, Z.; Wang, F.-S.; Liu, L.; Zhang, Z. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg. Infect. Dis. 2020, 26, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 Entry Factors Are Highly Expressed in Nasal Epithelial Cells Together with Innate Immune Genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anfinrud, P.; Stadnytskyi, V.; Bax, C.E.; Bax, A. Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering. N. Engl. J. Med. 2020, 382, 2061–2063. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying Airborne Transmission as the Dominant Route for the Spread of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 14857–14863. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Morawska, L.; Cao, J. Airborne Transmission of SARS-CoV-2: The World Should Face the Reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef]
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus Infections—More Than Just the Common Cold. JAMA 2020, 323, 707. [Google Scholar] [CrossRef] [Green Version]
- Lednicky, J.A.; Lauzardo, M.; Fan, Z.H.; Jutla, A.; Tilly, T.B.; Gangwar, M.; Usmani, M.; Shankar, S.N.; Mohamed, K.; Eiguren-Fernandez, A.; et al. Viable SARS-CoV-2 in the Air of a Hospital Room with COVID-19 Patients. Int. J. Infect. Dis. 2020, 100, 476–482. [Google Scholar] [CrossRef]
- Nissen, K.; Krambrich, J.; Akaberi, D.; Hoffman, T.; Ling, J.; Lundkvist, Å.; Svensson, L.; Salaneck, E. Long-Distance Airborne Dispersal of SARS-CoV-2 in COVID-19 Wards. Sci. Rep. 2020, 10, 19589. [Google Scholar] [CrossRef]
- Morawska, L.; Milton, D.K. It Is Time to Address Airborne Transmission of Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Jia, W.; Qian, H.; Xiao, S.; Miao, T.; Yen, H.-L.; Tan, H.; Kang, M.; Cowling, B.J.; Li, Y. Lack of Cross-Transmission of SARS-CoV-2 between Passenger’s Cabins on the Diamond Princess Cruise Ship. Build. Environ. 2021, 198, 107839. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Contact Tracing: Public Health Management of Persons, Including Healthcare Workers, Having Had Contact with COVID-19 Cases in the European Union. Available online: https://www.ecdc.europa.eu/en/covid-19-contact-tracing-public-health-management (accessed on 25 February 2020).
- WHO. Coronavirus Disease 2019 (COVID-19): Situation Report—95 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200424-sitrep-95-covid-19.pdf?sfvrsn=e8065831_4 (accessed on 25 April 2020).
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 2020, 323, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, T.C.; Moura, C.R.F.; Monteiro, R.A.; da Silva Baracho, V.; Rodrigues, C.M.; Rocha, K.L.S.; da Cruz Ferreira, P.H.; Silva, T.J.; Rocha-Vieira, E.; de Oliveira, D.B. Detection of SARS-CoV-2 Genome on Inanimate Surfaces in COVID-19 Intensive Care Units and Emergency Care Cohort. Braz. J. Microbiol. 2022, 53, 213–220. [Google Scholar] [CrossRef]
- Hennessy, N.T.; Toomey, S.; Gautier, V.; O’Reilly, S.; de Barra, E.; Hanrahan, E.O.; Hennessy, B.T. COVID-19 Contamination of High-Touch Surfaces in the Public Domain. Ir. J. Med. Sci. 2022. [Google Scholar] [CrossRef]
- Guadalupe, J.J.; Rojas, M.I.; Pozo, G.; Erazo-Garcia, M.P.; Vega-Polo, P.; Terán-Velástegui, M.; Rohwer, F.; Torres, M.d.L. Presence of SARS-CoV-2 RNA on Surfaces of Public Places and a Transportation System Located in a Densely Populated Urban Area in South America. Viruses 2021, 14, 19. [Google Scholar] [CrossRef]
- Xie, C.; Zhao, H.; Li, K.; Zhang, Z.; Lu, X.; Peng, H.; Wang, D.; Chen, J.; Zhang, X.; Wu, D.; et al. The Evidence of Indirect Transmission of SARS-CoV-2 Reported in Guangzhou, China. BMC Public Health 2020, 20, 1202. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Xiang, D. Large SARS-CoV-2 Outbreak Caused by Asymptomatic Traveler, China. Emerg. Infect. Dis. 2020, 26, 2260–2263. [Google Scholar] [CrossRef]
- CDC. Science Brief: SARS-CoV-2 and Surface (Fomite) Transmission for Indoor Community Environments. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/surface-transmission.html (accessed on 3 March 2022).
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation with Biocidal Agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Service, R. Does Disinfecting Surfaces Really Prevent the Spread of Coronavirus? Science 2020. [Google Scholar] [CrossRef]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Li, X.; Chen, H.; Yan, S.; Li, Y.; Li, D.; Gong, Z. SARS-CoV-2 Infection Does Not Significantly Cause Acute Renal Injury: An Analysis of 116 Hospitalized Patients with COVID-19 in a Single Hospital, Wuhan, China. SSRN e Library. J. 2020. Preprint. [Google Scholar] [CrossRef]
- Saawarn, B.; Hait, S. Occurrence, Fate and Removal of SARS-CoV-2 in Wastewater: Current Knowledge and Future Perspectives. J. Environ. Chem. Eng. 2021, 9, 104870. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061. [Google Scholar] [CrossRef]
- ONS. Coronavirus (COVID-19) Latest Insights: Infections-Symptoms 2022. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19latestinsights/infections#symptoms (accessed on 3 March 2022).
- Schmithausen, R.M.; Döhla, M.; Schößler, H.; Diegmann, C.; Schulte, B.; Richter, E.; Eis-Hübinger, A.-M.; Streeck, H. Characteristic Temporary Loss of Taste and Olfactory Senses in SARS-CoV-2-Positive-Individuals with Mild Symptoms. Pathog. Immun. 2020, 5, 117. [Google Scholar] [CrossRef]
- Zeng, W.; Qi, K.; Ye, M.; Zheng, L.; Liu, X.; Hu, S.; Zhang, W.; Tang, W.; Xu, J.; Yu, D.; et al. Gastrointestinal Symptoms Are Associated with Severity of Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 168–176. [Google Scholar] [CrossRef]
- Greco, S.; Fabbri, N.; Bella, A.; Bonsi, B.; Parini, S.; Rocchi, C.; Giaccari, S.; Gavioli, M.; Passaro, A.; Feo, C.V. COVID-19 Inpatients with Gastrointestinal Onset: Sex and Care Needs’ Differences in the District of Ferrara, Italy. BMC Infect. Dis. 2021, 21, 739. [Google Scholar] [CrossRef]
- Agrawal, S.; Orschler, L.; Schubert, S.; Zachmann, K.; Heijnen, L.; Tavazzi, S.; Gawlik, B.M.; de Graaf, M.; Medema, G.; Lackner, S. Prevalence and Circulation Patterns of SARS-CoV-2 Variants in European Sewage Mirror Clinical Data of 54 European Cities. Water Res. 2022, 214, 118162. [Google Scholar] [CrossRef]
- Padilla-Reyes, D.A.; Álvarez, M.M.; Mora, A.; Cervantes-Avilés, P.A.; Kumar, M.; Loge, F.J.; Mahlknecht, J. Acquired Insights from the Long-Term Surveillance of SARS-CoV-2 RNA for COVID-19 Monitoring: The Case of Monterrey Metropolitan Area (Mexico). Environ. Res. 2022, 210, 112967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Zhu, S.; Shu, C.; Wang, D.; Song, J.; Song, Y.; Zhen, W.; Feng, Z.; Wu, G.; et al. Isolation of 2019-NCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Wkly. 2020, 2, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Miao, T.; Liu, L.; Zheng, X.; Luo, D.; Li, Y. Indoor Transmission of SARS-CoV-2. Indoor Air 2021, 31, 639–645. [Google Scholar] [CrossRef] [PubMed]
- WHO. Home Care for Patients with Suspected or Confirmed COVID-19 and Management of Their Contacts 2020. Available online: https://www.who.int/publications/i/item/home-care-for-patients-with-suspected-novel-coronavirus-(ncov)-infection-presenting-with-mild-symptoms-and-management-of-contacts (accessed on 13 August 2020).
- Streeck, H.; Schulte, B.; Kümmerer, B.M.; Richter, E.; Höller, T.; Fuhrmann, C.; Bartok, E.; Dolscheid-Pommerich, R.; Berger, M.; Wessendorf, L.; et al. Infection Fatality Rate of SARS-CoV2 in a Super-Spreading Event in Germany. Nat. Commun. 2020, 11, 5829. [Google Scholar] [CrossRef]
- WHO. Surface Sampling of Coronavirus Disease (COVID-19): A Practical “How to” Protocol for Health Care and Public Health Professionals 2020. Available online: https://www.who.int/publications/i/item/surface-sampling-of-coronavirus-disease-(-covid-19)-a-practical-how-to-protocol-for-health-care-and-public-health-professionals (accessed on 25 April 2020).
- Verreault, D.; Moineau, S.; Duchaine, C. Methods for Sampling of Airborne Viruses. Microbiol. Mol. Biol. Rev. 2008, 72, 413–444. [Google Scholar] [CrossRef] [Green Version]
- Cheng, V.C.; Wong, S.C.; Chen, J.H.; Yip, C.C.; Chuang, V.W.; Tsang, O.T.; Sridhar, S.; Chan, J.F.; Ho, P.L.; Yuen, K.Y. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019. (COVID-19). Infect. Control. Hosp. Epidemiol. 2020, 41, 1258–1265. [Google Scholar] [CrossRef]
- Mallach, G.; Kasloff, S.B.; Kovesi, T.; Kumar, A.; Kulka, R.; Krishnan, J.; Robert, B.; McGuinty, M.; den Otter-Moore, S.; Yazji, B.; et al. Aerosol SARS-CoV-2 in Hospitals and Long-Term Care Homes during the COVID-19 Pandemic. PLoS ONE 2021, 16, e0258151. [Google Scholar] [CrossRef]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Statistical Science; JSTOR Publishers: New York, NY, USA, 2001; Volume 2. [Google Scholar]
- Wu, J.; Huang, Y.; Tu, C.; Bi, C.; Chen, Z.; Luo, L.; Huang, M.; Chen, M.; Tan, C.; Wang, Z.; et al. Household Transmission of SARS-CoV-2, Zhuhai, China, 2020. Clin. Infect. Dis. 2020, 71, 2099–2108. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, W.; Zheng, X.; Wu, G.; Zhang, R. Household Transmission of SARS-CoV-2. J. Infect. 2020, 81, 179–182. [Google Scholar] [CrossRef]
- Madewell, Z.J.; Yang, Y.; Longini, I.M.; Halloran, M.E.; Dean, N.E. Factors Associated With Household Transmission of SARS-CoV-2: An Updated Systematic Review and Meta-Analysis. JAMA Netw. Open 2021, 4, e2122240. [Google Scholar] [CrossRef]
- Ren, S.-Y.; Wang, W.-B.; Hao, Y.-G.; Zhang, H.-R.; Wang, Z.-C.; Chen, Y.-L.; Gao, R.-D. Stability and Infectivity of Coronaviruses in Inanimate Environments. World J. Clin. Cases 2020, 8, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Smither, S.J.; Eastaugh, L.S.; Findlay, J.S.; Lever, M.S. Experimental Aerosol Survival of SARS-CoV-2 in Artificial Saliva and Tissue Culture Media at Medium and High Humidity. Emerg. Microbes Infect. 2020, 9, 1415–1417. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in Different Environmental Conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Bourgueil, E.; Hutet, E.; Cariolet, R.; Vannier, P. Air Sampling Procedure for Evaluation of Viral Excretion Level by Vaccinated Pigs Infected with Aujeszky’s Disease (Pseudorabies) Virus. Res. Vet. Sci. 1992, 52, 182–186. [Google Scholar] [CrossRef]
- da Silva, P.G.; Gonçalves, J.; Lopes, A.I.B.; Esteves, N.A.; Bamba, G.E.E.; Nascimento, M.S.J.; Branco, P.T.B.S.; Soares, R.R.G.; Sousa, S.I.V.; Mesquita, J.R. Evidence of Air and Surface Contamination with SARS-CoV-2 in a Major Hospital in Portugal. Int. J. Environ. Res. Public. Health 2022, 19, 525. [Google Scholar] [CrossRef]
- Zhou, J.; Otter, J.A.; Price, J.R.; Cimpeanu, C.; Meno Garcia, D.; Kinross, J.; Boshier, P.R.; Mason, S.; Bolt, F.; Holmes, A.H.; et al. Investigating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Surface and Air Contamination in an Acute Healthcare Setting During the Peak of the Coronavirus Disease 2019 (COVID-19) Pandemic in London. Clin. Infect. Dis. 2021, 73, e1870–e1877. [Google Scholar] [CrossRef]
- Borges, J.T.; Nakada, L.Y.K.; Maniero, M.G.; Guimarães, J.R. SARS-CoV-2: A Systematic Review of Indoor Air Sampling for Virus Detection. Environ. Sci. Pollut. Res. 2021, 28, 40460–40473. [Google Scholar] [CrossRef]
- Ling, Y.; Xu, S.-B.; Lin, Y.-X.; Tian, D.; Zhu, Z.-Q.; Dai, F.-H.; Wu, F.; Song, Z.-G.; Huang, W.; Chen, J.; et al. Persistence and Clearance of Viral RNA in 2019 Novel Coronavirus Disease Rehabilitation Patients. Chin. Med. J. (Engl.) 2020, 133, 1039–1043. [Google Scholar] [CrossRef]
- Xu, J.; Yin, Z.; Liu, Y.; Wang, S.; Duan, L.; An, Y.; Fan, J.; Liao, T.; Jin, Y.; Chen, J. Clinical Characteristics and Outcomes of Severe or Critical COVID-19 Patients Presenting No Respiratory Symptoms or Fever at Onset. Eng. Beijing China 2021, 7, 1452–1458. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, C.; Tian, D.; Hou, X.; Yang, Y. Management of Digestive Disorders and Procedures Associated With COVID-19. Am. J. Gastroenterol. 2020, 115, 1153–1155. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged Presence of SARS-CoV-2 Viral RNA in Faecal Samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434–435. [Google Scholar] [CrossRef]
- Díaz, L.A.; García-Salum, T.; Fuentes-López, E.; Reyes, D.; Ortiz, J.; Chahuan, J.; Levican, J.; Almonacid, L.I.; Valenzuela, G.H.; Serrano, E.; et al. High Prevalence of SARS-CoV-2 Detection and Prolonged Viral Shedding in Stools: A Systematic Review and Cohort Study. Gastroenterol. Hepatol. 2022. In Press. [Google Scholar] [CrossRef]
- KRINKO Anforderungen der Hygiene an abwasserführende Systeme in medizinischen Einrichtungen: Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsblatt-Gesundh.-Gesundh. 2020, 63, 484–501. [CrossRef] [PubMed] [Green Version]
- Lodder, W.; de Roda Husman, A.M. SARS-CoV-2 in Wastewater: Potential Health Risk, but Also Data Source. Lancet Gastroenterol. Hepatol. 2020, 5, 533–534. [Google Scholar] [CrossRef]
- Eslami, H.; Jalili, M. The Role of Environmental Factors to Transmission of SARS-CoV-2 (COVID-19). AMB Express 2020, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, H.; Zhang, S.; Ni, Z.; Ni, L.; Chen, Y.; Zhuo, L.; Zhong, Z.; Qu, T. SARS-CoV-2 RNA Detection of Hospital Isolation Wards Hygiene Monitoring during the Coronavirus Disease 2019 Outbreak in a Chinese Hospital. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 94, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, Z.; Gong, C.; Liu, H.; Li, B.; Li, K.; Chen, X.; Xu, C.; Jing, Q.; Liu, G.; et al. Sewage as a Possible Transmission Vehicle During a Coronavirus Disease 2019 Outbreak in a Densely Populated Community: Guangzhou, China, April 2020. Clin. Infect. Dis. 2021, 73, e1795–e1802. [Google Scholar] [CrossRef]
- Shutler, J.D.; Zaraska, K.; Holding, T.; Machnik, M.; Uppuluri, K.; Ashton, I.G.C.; Migdał, Ł.; Dahiya, R.S. Rapid Assessment of SARS-CoV-2 Transmission Risk for Fecally Contaminated River Water. ACS EST Water 2021, 1, 949–957. [Google Scholar] [CrossRef]
- Zhao, L.; Atoni, E.; Nyaruaba, R.; Du, Y.; Zhang, H.; Donde, O.; Huang, D.; Xiao, S.; Ren, N.; Ma, T.; et al. Environmental Surveillance of SARS-CoV-2 RNA in Wastewater Systems and Related Environments in Wuhan: April to May of 2020. J. Environ. Sci. 2022, 112, 115–120. [Google Scholar] [CrossRef]
- Melvin, R.G.; Hendrickson, E.N.; Chaudhry, N.; Georgewill, O.; Freese, R.; Schacker, T.W.; Simmons, G.E. A Novel Wastewater-Based Epidemiology Indexing Method Predicts SARS-CoV-2 Disease Prevalence across Treatment Facilities in Metropolitan and Regional Populations. Sci. Rep. 2021, 11, 21368. [Google Scholar] [CrossRef]
- Müller, H.; Sib, E.; Gajdiss, M.; Klanke, U.; Lenz-Plet, F.; Barabasch, V.; Albert, C.; Schallenberg, A.; Timm, C.; Zacharias, N.; et al. Dissemination of Multi-Resistant Gram-Negative Bacteria into German Wastewater and Surface Waters. FEMS Microbiol. Ecol. 2018, 94, fiy057. [Google Scholar] [CrossRef] [PubMed]
- Sib, E.; Voigt, A.M.; Wilbring, G.; Schreiber, C.; Faerber, H.A.; Skutlarek, D.; Parcina, M.; Mahn, R.; Wolf, D.; Brossart, P.; et al. Antibiotic Resistant Bacteria and Resistance Genes in Biofilms in Clinical Wastewater Networks. Int. J. Hyg. Environ. Health 2019, 222, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Voigt, A.M.; Faerber, H.A.; Wilbring, G.; Skutlarek, D.; Felder, C.; Mahn, R.; Wolf, D.; Brossart, P.; Hornung, T.; Engelhart, S.; et al. The Occurrence of Antimicrobial Substances in Toilet, Sink and Shower Drainpipes of Clinical Units: A Neglected Source of Antibiotic Residues. Int. J. Hyg. Environ. Health 2019, 222, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Voigt, A.M.; Ciorba, P.; Döhla, M.; Exner, M.; Felder, C.; Lenz-Plet, F.; Sib, E.; Skutlarek, D.; Schmithausen, R.M.; Faerber, H.A. The Investigation of Antibiotic Residues, Antibiotic Resistance Genes and Antibiotic-Resistant Organisms in a Drinking Water Reservoir System in Germany. Int. J. Hyg. Environ. Health 2020, 224, 113449. [Google Scholar] [CrossRef]
- Lodder, W.J.; de Roda Husman, A.M. Presence of Noroviruses and Other Enteric Viruses in Sewage and Surface Waters in The Netherlands. Appl. Environ. Microbiol. 2005, 71, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Casanova, L.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Survival of Surrogate Coronaviruses in Water. Water Res. 2009, 43, 1893–1898. [Google Scholar] [CrossRef]
- Leung, W.K.; To, K.; Chan, P.K.S.; Chan, H.L.Y.; Wu, A.K.L.; Lee, N.; Yuen, K.Y.; Sung, J.J.Y. Enteric Involvement of Severe Acute Respiratory Syndrome-Associated Coronavirus Infection. Gastroenterology 2003, 125, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- McKinney, K.R.; Gong, Y.Y.; Lewis, T.G. Environmental Transmission of SARS at Amoy Gardens. J. Environ. Health 2006, 68, 26–30; quiz 51–52. [Google Scholar]
Total | Per Household | |||
---|---|---|---|---|
Median | IQR | Range | ||
Number of households | 21 | |||
Number of adults (≥18) | 43 | 2 | 2–2 | 1–4 |
Number of children (<18) | 15 | 0 | 0–2 | 0–3 |
Proportion of females (%) | 51.72 | 50.00 | 50.00–66.67 | 0.00–100.00 |
Median household age (years) | 31.00 | 28.00–53.00 | 9.50–75.00 | |
Time of quarantine (days) | 5 | 5–6 | 0–6 |
Sample Type | n | qRT-PCR-Positive | |||
---|---|---|---|---|---|
n | % | (95%-CI) | |||
Air samples | 15 | 0 | 0% | ||
Wastewater samples | 66 | 10 | 15% | (8; 26) | |
Washbasin siphons | 26 | 5 | 19% | (9; 38) | |
Shower siphons | 16 | 3 | 19% | (7; 43) | |
Toilet | 23 | 2 | 9% | (2; 27) | |
Other | 1 | 0 | 0% | ||
Object samples | 119 | 4 | 3% | (1; 8) | |
Electronic devices | 52 | 1 | 2% | (0; 10) | |
Knobs and handles | 31 | 2 | 6% | (2; 21) | |
Plants and animals | 11 | 0 | 0% | ||
Furniture and fixtures | 19 | 1 | 5% | (1; 25) | |
Foods and drinks | 4 | 0 | 0% | ||
Clothing | 2 | 0 | 0% | ||
Total | 200 | 14 | 7% | (4; 11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Döhla, M.; Schulte, B.; Wilbring, G.; Kümmerer, B.M.; Döhla, C.; Sib, E.; Richter, E.; Ottensmeyer, P.F.; Haag, A.; Engelhart, S.; et al. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022, 14, 1075. https://doi.org/10.3390/v14051075
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, et al. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses. 2022; 14(5):1075. https://doi.org/10.3390/v14051075
Chicago/Turabian StyleDöhla, Manuel, Bianca Schulte, Gero Wilbring, Beate Mareike Kümmerer, Christin Döhla, Esther Sib, Enrico Richter, Patrick Frank Ottensmeyer, Alexandra Haag, Steffen Engelhart, and et al. 2022. "SARS-CoV-2 in Environmental Samples of Quarantined Households" Viruses 14, no. 5: 1075. https://doi.org/10.3390/v14051075
APA StyleDöhla, M., Schulte, B., Wilbring, G., Kümmerer, B. M., Döhla, C., Sib, E., Richter, E., Ottensmeyer, P. F., Haag, A., Engelhart, S., Eis-Hübinger, A. M., Exner, M., Mutters, N. T., Schmithausen, R. M., & Streeck, H. (2022). SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses, 14(5), 1075. https://doi.org/10.3390/v14051075