High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Processing and DNA Extraction
2.3. Real-Time PCR Detection of PCV3
2.4. PCV3 Full-Genome Sequencing and Phylogenetic Analysis
3. Results
3.1. Detection Rates of PCV3 in Serum, Oral- and Processing Fluid Samples in Different Pig Farms
3.2. PCV3 Detection in Different Age Groups
3.3. PCV3 Circulation Patterns in Three Different Farms with High PCV3 Prevalence
3.4. Genetic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tischer, I.; Rasch, R.; Tochtermann, G. Characterization of papovavirus and picornavirus-like particles in permanent pig kidney cell lines. Zent. Bakteriol. Parasitenkd. Infekt. Hyg. 1974, 226, 153–167. [Google Scholar]
- Tischer, I.; Mields, W.; Wolff, D.; Vagt, M.; Griem, W. Studies on Epidemiology and Pathogenicity of Porcine Circovirus. Arch. Virol. 1986, 91, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Harding, J. The Clinical Expression and Emergence of Porcine Circovirus 2. Vet. Microbiol. 2004, 98, 131–135. [Google Scholar] [CrossRef] [PubMed]
- West, K.H.; Bystrom, J.M.; Wojnarowicz, C.; Shantz, N.; Jacobson, M.; Allan, G.M.; Haines, D.M.; Clark, E.G.; Krakowka, S.; McNeilly, F.; et al. Myocarditis and Abortion Associated with Intrauterine Infection of Sows with Porcine Circovirus 2. J. Vet. Diagn. Investig. 1999, 11, 530–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosell, C.; Segalés, J.; Ramos-Vara, J.A.; Folch, J.M.; Rodriguez-Arrioja, G.M.; Duran, C.O.; Balasch, M.; Plana-Durán, J.; Domingo, M. Identification of Porcine Circovirus in Tissues of Pigs with Porcine Dermatitis and Nephropathy Syndrome. Vet. Rec. 2000, 146, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Ticó, G.; Segalés, J.; Martínez, J. The Blurred Border between Porcine Circovirus Type 2-Systemic Disease and Porcine Respiratory Disease Complex. Vet. Microbiol. 2013, 163, 242–247. [Google Scholar] [CrossRef]
- Baró, J.; Segalés, J.; Martínez, J. Porcine Circovirus Type 2 (PCV2) Enteric Disease: An Independent Condition or Part of the Systemic Disease? Vet. Microbiol. 2015, 176, 83–87. [Google Scholar] [CrossRef]
- Phan, T.G.; Giannitti, F.; Rossow, S.; Marthaler, D.; Knutson, T.P.; Li, L.; Deng, X.; Resende, T.; Vannucci, F.; Delwart, E. Detection of a Novel Circovirus PCV3 in Pigs with Cardiac and Multi-Systemic Inflammation. Virol. J. 2016, 13, 184. [Google Scholar] [CrossRef] [Green Version]
- Palinski, R.; Piñeyro, P.; Shang, P.; Yuan, F.; Guo, R.; Fang, Y.; Byers, E.; Hause, B.M. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J. Virol. 2017, 91, e01879-16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hu, W.; Li, J.; Liu, T.; Zhou, J.; Opriessnig, T.; Xiao, C. Novel Circovirus Species Identified in Farmed Pigs Designated as Porcine Circovirus 4, Hunan Province, China. Transbound. Emerg. Dis. 2020, 67, 1057–1061. [Google Scholar] [CrossRef]
- Nguyen, V.; Do, H.; Huynh, T.; Park, Y.; Park, B.; Chung, H. Molecular-based Detection, Genetic Characterization and Phylogenetic Analysis of Porcine Circovirus 4 from Korean Domestic Swine Farms. Transbound. Emerg. Dis. 2021, 69, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Ruiz, A.; Grassi, L.; Sibila, M.; Drigo, M.; Segalés, J. Lack of Porcine Circovirus 4 Genome Detection in Pig Samples from Italy and Spain. Pathogens 2020, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- Faccini, S.; Barbieri, I.; Gilioli, A.; Sala, G.; Gibelli, L.R.; Moreno, A.; Sacchi, C.; Rosignoli, C.; Franzini, G.; Nigrelli, A. Detection and Genetic Characterization of Porcine Circovirus Type 3 in Italy. Transbound. Emerg. Dis. 2017, 64, 1661–1664. [Google Scholar] [CrossRef] [PubMed]
- Stadejek, T.; Woźniak, A.; Miłek, D.; Biernacka, K. First Detection of Porcine Circovirus Type 3 on Commercial Pig Farms in Poland. Transbound. Emerg. Dis. 2017, 64, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Legnardi, M.; Hjulsager, C.K.; Klaumann, F.; Larsen, L.E.; Segales, J.; Drigo, M. Full-Genome Sequencing of Porcine Circovirus 3 Field Strains from Denmark, Italy and Spain Demonstrates a High within-Europe Genetic Heterogeneity. Transbound. Emerg. Dis. 2018, 65, 602–606. [Google Scholar] [CrossRef]
- Wen, S.; Sun, W.; Li, Z.; Zhuang, X.; Zhao, G.; Xie, C.; Zheng, M.; Jing, J.; Xiao, P.; Wang, M.; et al. The Detection of Porcine Circovirus 3 in Guangxi, China. Transbound. Emerg. Dis. 2018, 65, 27–31. [Google Scholar] [CrossRef]
- Kim, S.-C.; Nazki, S.; Kwon, S.; Juhng, J.-H.; Mun, K.-H.; Jeon, D.-Y.; Jeong, C.-G.; Khatun, A.; Kang, S.-J.; Kim, W.-I. The Prevalence and Genetic Characteristics of Porcine Circovirus Type 2 and 3 in Korea. BMC Vet. Res. 2018, 14, 294. [Google Scholar] [CrossRef] [Green Version]
- Tochetto, C.; Lima, D.A.; Varela, A.P.M.; Loiko, M.R.; Paim, W.P.; Scheffer, C.M.; Herpich, J.I.; Cerva, C.; Schmitd, C.; Cibulski, S.P.; et al. Full-Genome Sequence of Porcine Circovirus Type 3 Recovered from Serum of Sows with Stillbirths in Brazil. Transbound. Emerg. Dis. 2018, 65, 5–9. [Google Scholar] [CrossRef]
- Serena, M.S.; Cappuccio, J.A.; Barrales, H.; Metz, G.E.; Aspitia, C.G.; Lozada, I.; Perfumo, C.J.; Quiroga, M.A.; Piñeyro, P.; Echeverría, M.G. First Detection and Genetic Characterization of Porcine Circovirus Type 3 (PCV3) in Argentina and Its Association with Reproductive Failure. Transbound. Emerg. Dis. 2021, 68, 1761–1766. [Google Scholar] [CrossRef]
- Klaumann, F.; Franzo, G.; Sohrmann, M.; Correa-Fiz, F.; Drigo, M.; Núñez, J.I.; Sibila, M.; Segalés, J. Retrospective Detection of Porcine Circovirus 3 (PCV-3) in Pig Serum Samples from Spain. Transbound. Emerg. Dis. 2018, 65, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Su, M.; Guo, D.; Li, C.; Wei, S.; Feng, L.; Sun, D. Molecular Detection and Phylogenetic Analysis of Porcine Circovirus Type 3 in 21 Provinces of China during 2015–2017. Transbound. Emerg. Dis. 2019, 66, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.-L.; Zhou, X.; Zhang, H.; Hause, B.M.; Lin, T.; Liu, R.; Chen, Q.-L.; Wei, W.-K.; Lv, D.-H.; Wen, X.-H.; et al. Comparative Epidemiology of Porcine Circovirus Type 3 in Pigs with Different Clinical Presentations. Virol. J. 2017, 14, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.H.; Mai, K.J.; Zhou, L.; Wu, R.T.; Tang, X.Y.; Wu, J.L.; He, L.L.; Lan, T.; Xie, Q.M.; Sun, Y.; et al. Detection and Genome Sequencing of Porcine Circovirus 3 in Neonatal Pigs with Congenital Tremors in South China. Transbound. Emerg. Dis. 2017, 64, 1650–1654. [Google Scholar] [CrossRef] [PubMed]
- Alomar, J.; Saporiti, V.; Pérez, M.; Gonçalvez, D.; Sibila, M.; Segalés, J. Multisystemic Lymphoplasmacytic Inflammation Associated with PCV-3 in Wasting Pigs. Transbound. Emerg. Dis. 2021, 68, 2969–2974. [Google Scholar] [CrossRef]
- Molossi, F.A.; de Almeida, B.A.; de Cecco, B.S.; da Silva, M.S.; Mósena, A.C.S.; Brandalise, L.; Simão, G.M.R.; Canal, C.W.; Vanucci, F.; Pavarini, S.P.; et al. A Putative PCV3-Associated Disease in Piglets from Southern Brazil. Braz. J. Microbiol. 2022, 53, 491–498. [Google Scholar] [CrossRef]
- Arruda, B.; Piñeyro, P.; Derscheid, R.; Hause, B.; Byers, E.; Dion, K.; Long, D.; Sievers, C.; Tangen, J.; Williams, T.; et al. PCV3-Associated Disease in the United States Swine Herd. Emerg. Microbes Infect. 2019, 8, 684–698. [Google Scholar] [CrossRef] [Green Version]
- Deim, Z.; Dencső, L.; Erdélyi, I.; Valappil, S.K.; Varga, C.; Pósa, A.; Makrai, L.; Rákhely, G. Porcine Circovirus Type 3 Detection in a Hungarian Pig Farm Experiencing Reproductive Failures. Vet. Rec. 2019, 185, 84. [Google Scholar] [CrossRef]
- Saporiti, V.; Valls, L.; Maldonado, J.; Perez, M.; Correa-Fiz, F.; Segalés, J.; Sibila, M. Porcine Circovirus 3 Detection in Aborted Fetuses and Stillborn Piglets from Swine Reproductive Failure Cases. Viruses 2021, 13, 264. [Google Scholar] [CrossRef]
- Vargas-Bermúdez, D.S.; Vargas-Pinto, M.A.; Mogollón, J.D.; Jaime, J. Field Infection of a Gilt and Its Litter Demonstrates Vertical Transmission and Effect on Reproductive Failure Caused by Porcine Circovirus Type 3 (PCV3). BMC Vet. Res. 2021, 17, 150. [Google Scholar] [CrossRef]
- Saporiti, V.; Franzo, G.; Sibila, M.; Segalés, J. Porcine Circovirus 3 (PCV-3) as a Causal Agent of Disease in Swine and a Proposal of PCV-3 Associated Disease Case Definition. Transbound. Emerg. Dis. 2021, 68, 2936–2948. [Google Scholar] [CrossRef]
- Mora-Díaz, J.; Piñeyro, P.; Shen, H.; Schwartz, K.; Vannucci, F.; Li, G.; Arruda, B.; Giménez-Lirola, L. Isolation of PCV3 from Perinatal and Reproductive Cases of PCV3-Associated Disease and In Vivo Characterization of PCV3 Replication in CD/CD Growing Pigs. Viruses 2020, 12, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, M.; Li, X.; Zhai, W.; Yin, B.; Tian, K.; Mo, X. Structural Insight into the Type-Specific Epitope of Porcine Circovirus Type 3. Biosci. Rep. 2020, 40, BSR20201109. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Delwart, E.; Fux, R.; Hause, B.; Su, S.; Zhou, J.; Segalés, J. Genotyping Porcine Circovirus 3 (PCV-3) Nowadays: Does It Make Sense? Viruses 2020, 12, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Toh, H. Improved Accuracy of Multiple NcRNA Alignment by Incorporating Structural Information into a MAFFT-Based Framework. BMC Bioinform. 2008, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kwon, T.; Yoo, S.J.; Park, C.-K.; Lyoo, Y.S. Prevalence of Novel Porcine Circovirus 3 in Korean Pig Populations. Vet. Microbiol. 2017, 207, 178–180. [Google Scholar] [CrossRef]
- Saporiti, V.; Martorell, S.; Cruz, T.F.; Klaumann, F.; Correa-Fiz, F.; Balasch, M.; Sibila, M.; Segalés, J. Frequency of Detection and Phylogenetic Analysis of Porcine Circovirus 3 (PCV-3) in Healthy Primiparous and Multiparous Sows and Their Mummified Fetuses and Stillborn. Pathogens 2020, 9, 533. [Google Scholar] [CrossRef]
- Saporiti, V.; Huerta, E.; Correa-Fiz, F.; Grosse Liesner, B.; Duran, O.; Segalés, J.; Sibila, M. Detection and Genotyping of Porcine Circovirus 2 (PCV-2) and Detection of Porcine Circovirus 3 (PCV-3) in Sera from Fattening Pigs of Different European Countries. Transbound. Emerg. Dis. 2020, 67, 2521–2531. [Google Scholar] [CrossRef]
- Plut, J.; Jamnikar-Ciglenecki, U.; Golinar-Oven, I.; Knific, T.; Stukelj, M. A Molecular Survey and Phylogenetic Analysis of Porcine Circovirus Type 3 Using Oral Fluid, Faeces and Serum. BMC Vet. Res. 2020, 16, 281. [Google Scholar] [CrossRef]
- Woźniak, A.; Miłek, D.; Stadejek, T. Wide Range of the Prevalence and Viral Loads of Porcine Circovirus Type 3 (PCV3) in Different Clinical Materials from 21 Polish Pig Farms. Pathogens 2020, 9, 411. [Google Scholar] [CrossRef]
- Guo, Z.; Li, X.; Deng, R.; Zhang, G. Detection and Genetic Characteristics of Porcine Circovirus 3 Based on Oral Fluids from Asymptomatic Pigs in Central China. BMC Vet. Res. 2019, 15, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, W.A.; Angulo, J.; Zimmerman, J.J.; Linhares, D.C.L. Porcine Reproductive and Respiratory Syndrome Monitoring in Breeding Herds Using Processing Fluids. J. Swine Health Prod. 2018, 26, 5. [Google Scholar]
- Dénes, L.; Ruedas-Torres, I.; Szilasi, A.; Balka, G. Detection and Localization of Atypical Porcine Pestivirus in the Testicles of Naturally Infected, Congenital Tremor Affected Piglets. Transbound. Emerg. Dis. 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vilalta, C.; Sanhueza, J.M.; Murray, D.; Johnson, L.; Pieters, M. Detection of Mycoplasma Hyopneumoniae in Piglet Processing Fluids. Vet. Rec. 2019, 185, 510. [Google Scholar] [CrossRef]
- Pablo, P.; Arruda, B.L.; Burrough, E.R.; Gauger, P.; Main, R.G. Current Diagnostic Tests Are Capable of Detecting PCV3 in Tissues but More Information Is Necessary to Understand the Specific Role of the Virus in These Clinical Syndromes. Available online: https://www.nationalhogfarmer.com/animal-health/porcine-circovirus-3-new-member-pcvad-complex (accessed on 25 February 2022).
- Klaumann, F.; Correa-Fiz, F.; Sibila, M.; Núñez, J.I.; Segalés, J. Infection Dynamics of Porcine Circovirus Type 3 in Longitudinally Sampled Pigs from Four Spanish Farms. Vet. Rec. 2019, 184, 619. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Ohshima, Y.; Furuya, Y.; Nagao, A.; Oroku, K.; Tsutsumi, N.; Sasakawa, C.; Sato, T. First Detection of Porcine Circovirus Type 3 in Japan. J. Vet. Med. Sci. 2018, 80, 1468–1472. [Google Scholar] [CrossRef] [Green Version]
- Franzo, G.; Legnardi, M.; Tucciarone, C.M.; Drigo, M.; Klaumann, F.; Sohrmann, M.; Segalés, J. Porcine Circovirus Type 3: A Threat to the Pig Industry? Vet. Rec. 2018, 182, 83. [Google Scholar] [CrossRef] [Green Version]
- Boudry, G.; Péron, V.; Le Huërou-Luron, I.; Lallès, J.P.; Sève, B. Weaning Induces Both Transient and Long-Lasting Modifications of Absorptive, Secretory, and Barrier Properties of Piglet Intestine. J. Nutr. 2004, 134, 2256–2262. [Google Scholar] [CrossRef]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I.P. Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The Biological Stress of Early Weaned Piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Kedkovid, R.; Woonwong, Y.; Arunorat, J.; Sirisereewan, C.; Sangpratum, N.; Kesdangsakonwut, S.; Tummaruk, P.; Teankum, K.; Assavacheep, P.; Jittimanee, S.; et al. Porcine Circovirus Type 3 (PCV3) Shedding in Sow Colostrum. Vet. Microbiol. 2018, 220, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-G.; Loiacono, C.M.; Halbur, P.G.; Opriessnig, T. Age-Dependent Susceptibility to Porcine Circovirus Type 2 Infections Is Likely Associated with Declining Levels of Maternal Antibodies. J. Swine Health Prod. 2012, 20, 17–24. [Google Scholar]
- Rodrigues, I.L.F.; Cruz, A.C.M.; Souza, A.E.; Knackfuss, F.B.; Costa, C.H.C.; Silveira, R.L.; Castro, T.X. Retrospective Study of Porcine Circovirus 3 (PCV3) in Swine Tissue from Brazil (1967–2018). Braz. J. Microbiol. 2020, 51, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; He, W.; Correa-Fiz, F.; Li, G.; Legnardi, M.; Su, S.; Segalés, J. A Shift in Porcine Circovirus 3 (PCV-3) History Paradigm: Phylodynamic Analyses Reveal an Ancient Origin and Prolonged Undetected Circulation in the Worldwide Swine Population. Adv. Sci. 2019, 6, 1901004. [Google Scholar] [CrossRef] [Green Version]
Serum | Processing Fluid | Oral Fluid | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Farms | Sample Size | Number of Pools | Positive Sample Pools | Proportion of Positive Sample Pools | Sample Size | Positive Samples | Proportion of Positive Samples | Sample Size | Positive Samples | Proportion of Positive Samples |
Farm B | 100 | 20 | 1 | 5% | 5 | 4 | 80% | 10 | 1 | 10% |
Farm C | 100 | 20 | 1 | 5% | 4 | 2 | 50% | 10 | 3 | 30% |
Farm D | 100 | 20 | 0 | 0% | 10 | 0 | 0% | 10 | 5 | 50% |
Farm F | 100 | 20 | 0 | 0% | 5 | 5 | 100% | 10 | 4 | 40% |
Farm H | 130 | 26 | 6 | 23% | 2 | 1 | 50% | 10 | 3 | 30% |
Farm HM | 100 | 20 | 5 | 25% | 5 | 1 | 20% | 10 | 0 | 0% |
Farm HO | 100 | 20 | 0 | 0% | 5 | 1 | 20% | 10 | 1 | 10% |
Farm HS | 85 | 17 | 5 | 29% | 3 | 3 | 100% | 0 | 0 | 0% |
Farm J | 80 | 16 | 9 | 56% | 5 | 5 | 100% | 8 | 7 | 88% |
Farm JA | 100 | 20 | 7 | 35% | 5 | 4 | 80% | 9 | 8 | 89% |
Farm K | 100 | 20 | 11 | 55% | 5 | 5 | 100% | 10 | 5 | 50% |
Farm KU | 60 | 12 | 4 | 33% | 5 | 1 | 20% | 10 | 0 | 0% |
Farm N | 60 | 12 | 2 | 17% | 4 | 4 | 100% | 4 | 0 | 0% |
Farm O | 100 | 20 | 1 | 5% | 8 | 0 | 0% | 10 | 5 | 50% |
Farm P | 100 | 20 | 7 | 35% | 5 | 5 | 100% | 10 | 6 | 60% |
Farm PR | 70 | 14 | 10 | 71% | 2 | 0 | 0% | 10 | 9 | 90% |
Farm S | 100 | 20 | 3 | 15% | 5 | 5 | 100% | 10 | 0 | 0% |
Farm SO | 100 | 20 | 2 | 10% | 5 | 4 | 80% | 10 | 7 | 70% |
Farm SZ | 100 | 20 | 11 | 55% | 9 | 9 | 100% | 10 | 7 | 70% |
Farm Z | 70 | 14 | 0 | 0% | 0 | 0 | 0% | 5 | 0 | 0% |
Total | 1855 | 371 | 85 | 23% | 97 | 59 | 61% | 176 | 71 | 40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igriczi, B.; Dénes, L.; Biksi, I.; Albert, E.; Révész, T.; Balka, G. High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol. Viruses 2022, 14, 1219. https://doi.org/10.3390/v14061219
Igriczi B, Dénes L, Biksi I, Albert E, Révész T, Balka G. High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol. Viruses. 2022; 14(6):1219. https://doi.org/10.3390/v14061219
Chicago/Turabian StyleIgriczi, Barbara, Lilla Dénes, Imre Biksi, Ervin Albert, Tamás Révész, and Gyula Balka. 2022. "High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol" Viruses 14, no. 6: 1219. https://doi.org/10.3390/v14061219
APA StyleIgriczi, B., Dénes, L., Biksi, I., Albert, E., Révész, T., & Balka, G. (2022). High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol. Viruses, 14(6), 1219. https://doi.org/10.3390/v14061219