Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sardinian ASF Epidemiological Context
2.2. ASF Management in the Sardinian Wild Boar Population
2.3. The Key Points of the EFSA Scientific Opinion, Based on Estonian Data
2.4. Standardization of the Exit Strategy and WBC-Counter Tool Development
2.4.1. Wild Boar Density Approach
2.4.2. Wild Boar Hunted Approach
2.5. Sardinian Exit Strategy
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Costard, S.; Wieland, B.; De Glanville, W.; Jori, F.; Rowlands, R.; Vosloo, W.; Roger, F.; Pfeiffer, D.; Dixon, L.K. African swine fever: How can global spread be prevented? Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2683–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penrith, M.-L.; Vosloo, W. Review of African swine fever: Transmission, spread and control: Review article. J. S. Afr. Vet. Assoc. 2009, 80, a172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Vizcaíno, J.M.; Mur, L.; Martínez-López, B. African swine fever: An epidemiological update. Transbound. Emerg. Dis. 2012, 59 (Suppl. 1), 27–35. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.K.; Sun, H.; Roberts, H. African swine fever. Antivir. Res. 2019, 165, 34–41. [Google Scholar] [CrossRef]
- Salguero, F.J. Comparative Pathology and Pathogenesis of African Swine Fever Infection in Swine. Front. Vet. Sci. 2020, 7, 282. [Google Scholar] [CrossRef]
- Martins, C.; Boinas, F.S.; Iacolina, L.; Ruinz-Fons, F.; Gavier-Widen, D. African swine fever (ASF), the pig health challenge of the century. In Understanding and Combatting African Swine Fever; Iacolina, L., Penrith, M.-L., Bellini, S., Chenais, E., Jori, F., Montoya, M., Ståhl, K., Gavier-Widén, D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 11–24. [Google Scholar]
- Chenais, E.; Ståhl, K.; Guberti, V.; Depner, K. Identification of Wild Boar-Habitat Epidemiologic Cycle in African Swine Fever Epizootic. Emerg. Infect. Dis. 2018, 24, 810–812. [Google Scholar] [CrossRef] [Green Version]
- Blome, S.; Franzke, K.; Beer, M. African swine fever–a review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Depner, K.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; et al. ASF exit strategy: Providing cumulative evidence of the absence of African swine fever virus circulation in wildboar populations using standard surveillance measures. EFSA J. 2021, 19, e06419. [Google Scholar]
- European Food Safety Authority (EFSA); Boklund, A.; Cay, B.; Depner, K.; Foldi, Z.; Guberti, V.; Masiulis, M.; Miteva, A.; More, S.; Olsevskis, E.; et al. Scientificreport on the epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J. 2018, 16, 5494. [Google Scholar]
- Gervasi, V.; Marcon, A.; Bellini, S.; Guberti, V. Evaluation of the Efficiency of Active and Passive Surveillance in the Detection of African Swine Fever in Wild Boar. Vet. Sci. 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Pautienius, A.; Schulz, K.; Staubach, C.; Grigas, J.; Zagrabskaite, R.; Buitkuviene, J.; Stankevicius, R.; Streimikyte, Z.; Oberauskas, V.; Zienius, D.; et al. African swine fever in the Lithuanian wild boar population in 2018: A snapshot. Virol. J. 2020, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Desvaux, S.; Urbaniak, C.; Petit, T.; Chaigneau, P.; Gerbier, G.; Decors, A.; Reveillaud, E.; Chollet, J.-Y.; Petit, G.; Faure, E.; et al. How to Strengthen Wildlife Surveillance to Support Freedom from Disease: Example of ASF Surveillance in France, at the Border with an Infected Area. Front. Vet. Sci. 2021, 8, 647439. [Google Scholar] [CrossRef] [PubMed]
- Loi, F.; Cappai, S.; Laddomada, A.; Oggiano, A.; Franzoni, G.; Feliziani, F.; Rolesu, S.; Guberti, V. Mathematical approach to estimating the main epidemiological parameters of African swine fever in wild boar. Vaccines 2020, 8, 521. [Google Scholar] [CrossRef]
- Schulz, K.; Schulz, J.; Staubach, C.; Blome, S.; Nurmoja, I.; Conraths, F.J.; Sauter-Louis, C.; Viltrop, A. African swine fever re-emerging in Estonia: The role of seropositive wild boar from an epidemiological perspective. Viruses 2021, 13, 2121. [Google Scholar] [CrossRef]
- Uttenthal, A.; Braae, U.C.; Ngowi, H.A.; Rasmussen, T.B.; Nielsen, J.; Johansen, M.V. ASFV in Tanzania: Asymptomatic pigs harbor virus of molecular similarity to Georgia 2007. Vet. Microbiol. 2013, 165, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Rangelova, D.; Nielsen, J.; Strandbygaard, B.; Koenen, F.; Blome, S.; Uttenthal, A. Efficacy of marker vaccine candidate CP7_E2alf in piglets with maternally derived Cstrain antibodies. Vaccine 2012, 30, 6376–6381. [Google Scholar] [CrossRef]
- Braae, U.C.; Johansen, M.V.; Ngowi, H.A.; Rasmussen, T.B.; Nielsen, J.; Uttenthal, A. Detection of African Swine Fever Virus DNA in Blood Samples Stored on FTA Cards from Asymptomatic Pigs in Mbeya Region. Tanzania. Transbound. Emerg. Dis. 2015, 62, 87–90. [Google Scholar] [CrossRef]
- Penrith, M.L.; Vosloo, W.; Jori, F.; Bastos, A.D. African swine fever virus eradication in Africa. Virus Res. 2013, 173, 228–246. [Google Scholar] [CrossRef] [Green Version]
- Sthal, K.; Sternberg-Lewerinb, S.; Blome, S.; Viltrop, A.; Penrith, M.L.; Chenais, E. Lack of evidence for long term carriers of African swine fever virus—A systematic review. Viruses Res. 2019, 272, 197725. [Google Scholar] [CrossRef]
- Müller, T.; Teuffert, J.; Staubach, C.; Selhorst, T.; Depner, K.R. Long-term studies on maternal immunity for Aujeszky’s disease and classical swine fever in wild boar piglets. J. Vet. Med. B Infect. Dis. Vet. Public Health 2005, 52, 432–436. [Google Scholar] [CrossRef]
- Cannon, R.M. Demonstrating disease freedom—Combining confidence levels. Prev. Vet. Med. 2002, 52, 27–249. [Google Scholar] [CrossRef]
- Cappai, S.; Rolesu, S.; Coccollone, A.; Laddomada, A.; Loi, F. Evaluation of biological and socio-economic factors related to persistence of African swine fever in Sardinia. Prev. Vet. Med. 2018, 152, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mannelli, A.; Sotgia, S.; Patta, C.; Oggiano, A.; Carboni, A.; Cossu, P.; Laddomada, A. Temporal and spatial patterns of African swine fever in Sardinia. Prev. Vet. Med. 1998, 35, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Jurado, C.; Fernandez-Carrion, E.; Mur, L.; Rolesu, S.; Laddomada, A.; Sanchez-Vizcaino, J.M. Why is African swine fever still present in Sardinia? Transbound. Emerg. Dis. 2017, 65, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Iscaro, C.; Dondo, A.; Ruoco, L.; Masoero, L.; Giammarioli, M.; Zoppi, S.; Guberti, V.; Feliziani, F. January 2022: Index case of new African Swine Fever incursion in manland Italy. Transbound. Emerg. Dis. 2022, 1–5. [Google Scholar] [CrossRef]
- Sistema Informativo Malattie Animali (SIMAN). Emergenza PSA. Available online: https://izsam.maps.arcgis.com/apps/dashboards/bc047a485e68458d83a61e48b4f8c20a (accessed on 13 June 2022).
- Loi, F.; Laddomada, A.; Coccollone, A.; Marrocu, E.; Piseddu, T.; Masala, G.; Bandino, E.; Cappai, S.; Rolesu, S. Socio-economic factors as indicators for various animal diseases in Sardinia. PLoS ONE 2019, 14, e0217367. [Google Scholar]
- National Italian Low n. 157/92. Available online: www.gazzettaufficiale.it/eli/id/1992/02/25/092G0211/sg#::text=La%20fauna%20selvatica%20e’%20patrimonio,danno%20effettivo%20alle%20produzioni%20agricole (accessed on 8 June 2022).
- Schulz, K.; Staubach, C.; Blome, S.; Nurmoja, I.; Viltrop, A.; Conraths, F.J.; Kristian, M.; Sauter-Louis, C. How to Demonstrate Freedom from African Swine Fever in Wild Boar—Estonia as an Example. Vaccines 2020, 8, 336. [Google Scholar] [CrossRef]
- Olsevskis, E.; Schulz, K.; Staubach, C.; Seržants, M.; Lamberga, K.; Pūle, D.; Ozoliņš, J.; Conraths, F.J.; Sauter-Louis, C. African swine fever in Latvian wild boar—A step closer to elimination. Transbound. Emerg. Dis. 2020, 67, 2615–2629. [Google Scholar] [CrossRef]
- Frant, M.P.; Gal-Cison, A.; Bocian, Ł.; Zietek-Barszcz, A.; Niemczuk, K.; Wozniakowski, G.; Szczotka-Bochniarz, A. African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives. Pathogens 2021, 10, 1219. [Google Scholar] [CrossRef]
- World Organization for Animal Health (OIE). African swine fever (Infectionwith African swine fever virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Oura, C.A.L., Arias, M., Eds.; OIE: Paris, France, 2019; pp. 1–18. [Google Scholar]
- Cappai, S.; Rolesu, S.; Feliziani, F.; Desini, P.; Guberti, V.; Loi, F. Standardized methodology for target surveillance against African swine fever. Vaccines 2020, 8, 723. [Google Scholar] [CrossRef]
- Lange, M.; Reichold, A.; Thulke, H.-H. Modelling advanced knowledge of African swine fever, resulting surveillance patterns on the population level and impact to reliable exit strategy definition. EFSA Support. Publ. 2021, 18, 6429. [Google Scholar] [CrossRef]
- Keuling, O.; Baubet, E.; Duscher, A.; Ebert, C.; Fischer, C.; Monaco, A.; Podgórski, T.; Prevot, C.; Ronnenberg, K.; Sodeikat, G.; et al. Mortality rates of wild boar Sus scrofa L. in central Europe. Eur. J. Wildl. Res. 2013, 59, 805–814. [Google Scholar] [CrossRef]
- Veeroja, R.; Männil, P. Population development and reproduction of wild boar (Sus scrofa) in Estonia. Wildl. Biol. Pract. 2014, 10, 17–21. [Google Scholar] [CrossRef]
- Gamelon, M.; Gaillard, J.-M.; Servanty, S.; Gimenez, O.; Toïgo, C.; Baubet, E.; Klein, F.; Lebreton, J.-D. Making use of harvest information to examine alternative management scenarios: A body weight-structured model for wild boar. J. Appl. Ecol. 2012, 49, 833–841. [Google Scholar] [CrossRef]
- Loi, F.; Cappai, S.; Coccollone, A.; Rolesu, S. Standardized Risk Analysis Approach Aimed to Evaluate the Last African swine fever Eradication Program Performance, in Sardinia. Front. Vet. Sci. 2019, 6, 299. [Google Scholar] [CrossRef]
- Mur, L.; Atzeni, M.; Martinez-Lopez, B.; Feliziani, F.; Rolesu, S.; Sanchez-Vizcaino, J.M. Thirty-Five-Year Presence of African Swine Fever in Sardinia: History, Evolution and Risk Factors for Disease Maintenance. Transbound. Emerg. Dis. 2014, 63, 165–177. [Google Scholar] [CrossRef]
- Apollonio, M.; Luccarini, S.; Cossu, A.; Chirichella, R. Aggiornamento Della Carta Delle Vocazioni Faunistiche Della Sardegna. 2012. Available online: http://www.sardegnaambiente.it/documenti/18_269_20121204134127.pdf (accessed on 30 April 2022).
- European Commission. Working Document: Strategic Approach to the Management of African Swine Fever for the EU—Rev. February 2020. Available online: https://ec.europa.eu/food/system/files/2020-04/ad_control-measures_asf_wrk-doc-sante-2015-7113.pdf (accessed on 9 June 2022).
- Cameron, A.R.; Meyer, A.; Faverjon, C.; Mackenzie, C. Quantification of the sensitivity of early detection surveillance. Transbound. Emerg. Dis. 2020, 67, 2532–2543. [Google Scholar] [CrossRef]
- Bosch, J.; Iglesias, I.; Muñoz, M.J.; de la Torre, A. A cartographic tool for managing African swine fever in eurasia: Mapping wild boar distribution based onthe quality of available habitats. Transbound. Emerg. Dis. 2016, 64, 1720–1733. [Google Scholar] [CrossRef]
- Ito, S.; Jurado, C.; Bosch, J.; Ito, M.; Sánchez-Vizcaíno, J.M.; Isoda, N.; Sakoda, Y. Role of wild boar in the spread of classical swine fever in Japan. Pathogens 2019, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Fiori, M.S.; Ferretti, L.; Floris, M.; Loi, F.; Di Nardo, A.; Sechi, A.M.; Ladu, A.; Puggioni, G.; Sanna, D.; Scarpa, F.; et al. First Genomic Evidence of Dual African Swine Fever Virus Infection: Case Report from Recent and Historical Outbreaks in Sardinia. Viruses 2021, 13, 2145. [Google Scholar] [CrossRef]
- Urner, N.; Mõtus, K.; Nurmoja, I.; Schulz, J.; Sauter-Louis, C.; Staubach, C.; Conraths, F.J.; Schulz, K. Hunters’ Acceptance of Measures against African Swine Fever in Wild Boar in Estonia. Prev. Vet. Med. 2020, 182, 105121. [Google Scholar] [CrossRef] [PubMed]
- Walczak, M.; Frant, M.; Juszkiewicz, M.; Mazur-Panasiuk, N.; Szymankiewicz, K.; Bruczyńska, M.; Woźniakowski, G. Vertical transmission of anti-ASFV antibodies as one of potential causes of seropositive results among young wild boar population in Poland. Pol. J. Vet. Sci. 2020, 23, 21–25. [Google Scholar] [PubMed]
- Schlafer, D.H.; McVicar, J.W.; Mebus, C.A. African swine fever convalescent sows: Subsequent pregnancyand the effect of colostral antibody on challenge inoculation of their pigs. Am. J. Vet. Res. 1984, 45, 1361–1366. [Google Scholar] [PubMed]
- Kaden, V.; Lange, E. Development of maternal antibodies after oral vaccination of young female wild boaragainst classical swine fever. Vet. Microbiol. 2004, 103, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Fenati, M.; Armaroli, E.; Corrain, R.; Guberti, V. Indirect estimation of porcine parvovirus maternal immunitydecay in free-living wild boar (Sus scrofa) piglets by capture-recapture data. Vet. J. 2009, 180, 262–264. [Google Scholar] [CrossRef]
- Laddomada, A.; Patta, C.; Oggiano, A.; Caccia, A.; Ruiu, A.; Cossu, P.; Firinu, A. Epidemiology of classical swine fever in Sardinia: A serological survey of wild boar and comparison with African swine fever. Vet. Rec. 1994, 134, 183–187. [Google Scholar] [CrossRef]
Key Points | Indicator | Specification | |
---|---|---|---|
1 | Land subdivision | Extension of the area (km2) | The exit strategy should be evaluated based on a portion of territory (i.e., LAU1, or HMU) |
2 | Active surveillance performance | Number of months covered by active surveillance, probability of false decision | The exit strategy to be applied in a specific area should be evaluated based on the combination of both active and passive surveillance, during which all hunted wild boar must be ASF tested. The inclusion or omission of active surveillance determines a shorten or longer period to make decisions and strategy performance in terms of the probability of a false decision |
3 | Number of samples expected—screening phase | Found dead animals expected to be found in a specific area by the extension of the area during the screening phase | During the screening phase, a total of one carcass/1000 km2/year should be found. Only found dead wild boar must be counted as valid carcasses, not wild boar killed by traffic accidents |
4 | Screening phase—month count | Number of months after the last ASFV PCR+ detection in each area | The screening phase starts from the last ASFV detection |
5 | Screening phase—carcasses found | Number of carcasses found during the screening phase in each area | During the screening phase, passive surveillance aiming to detect at least one carcass/1000 km2/year must be applied |
6 | Number of samples expected—screening phase | Animals found dead expected to be found in a specific area by the extension of the area during the confirmatory phase | During the confirmatory phase, a total of one, two, or six carcasses/1000 km2/year should be found. Only wild board found dead must be counted as valid carcasses, not wild boar killed by traffic accidents |
7 | Confirmatory phase—month count | Duration of the confirmatory phase (months) in each area | The confirmatory phase starts after the screening phase, and its duration depends on the level of confidence and the duration of the screening phase |
8 | Confirmatory phase—carcasses found | Number of carcasses found during the confirmatory phase in each area | During the confirmatory phase, enforced passive surveillance aiming to detect at least one, two, or six carcasses/1000 km2/year must be applied |
Hunting Management Unit * | Age Category | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
Goceano-Gallura (GG) | adult | 17 (3.95) | 6 (1.62) | 0 (0) | 1 (0.12) |
subadult | 1 (0.23) | 0 (0) | 1 (0.23) | 1 (0.57) | |
young | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Nuoro-Baronia (NB) | adult | 4 (0.44) | 4 (0.75) | 6 (0.73) | 1 (0.13) |
subadult | 1 (0.36) | 0 (0) | 1 (0.26) | 1 (0.41) | |
young | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Gennargentu-Ogliastra (GO) | adult | 27 (1.18) | 16 (1.19) | 9 (0.66) | 0 (0) |
subadult | 3 (0.45) | 1 (0.11) | 0 (0) | 0 (0) | |
young | 0 (0) | 1 (1.13) | 1 (1.12) | 1 (1.5) |
2019 ¥ | 2020 ¥ | 2021 § | 2022 ¶ | Total | |
---|---|---|---|---|---|
Carcasses # | 37 (4.0) | 32 (3.4) | 20 (3.7) | 9 (2.1) | 98 |
Killed by road traffic * | 206 (22.1) | 195 (21.0) | 173 (32.0) | 72 (13.6) | 646 |
Total | 243 (26.1) | 227 (24.4) | 193 (35.7) | 81 (15.7) | 744 |
HMU | Area Surface (km2) | Wild Boar Population | Wild Boar That Died by Hunting | Wild Boar That Naturally Died | Carcasses Expected/Year during the Screening Phase | Carcasses Expected/Year during the Confirmatory Phase |
---|---|---|---|---|---|---|
GG | 1716 | 6864 | 3089 | 343 | 3 | 6 |
NB | 1089 | 4356 | 1960 | 218 | 2 | 4 |
GO | 2497 | 9988 | 4495 | 499 | 5 | 10 |
Total area | 5302 | 21,208 | 9544 | 1060 | 10 | 20 |
HMU | Wild Boar Hunted during the Hunting Season | Wild Boar That Naturally Died | Carcasses Expected/Year during the Screening Phase | Carcasses Expected/Year during the Confirmatory Phase |
---|---|---|---|---|
GG | 1300 | 144 | 2 | 4 |
NB | 1266 | 141 | 1 | 2 |
GO | 1943 | 215 | 2 | 4 |
Total | 4509 | 501 | 5 | 10 |
GG-HMU | NB-HMU | GO-HMU | Total Infected Area | ||
---|---|---|---|---|---|
Screening phase | Starting date | 29/11/2020 | 06/01/2020 | 17/01/2021 | 17/01/2021 |
(dd/mm/yyyy) | 9 | 8 | 7 | 9 | |
Carcasses expected/year | 3 | 2 | 5 | 10 | |
Total carcasses expected | 2 | 1 | 3 | 7 | |
Carcasses found | 2 | 2 | 3 | 7 | |
Confirmatory phase | Starting date | 02/08/2021 | 09/10/2020 | 30/08/2021 | 30/08/2021 |
Months | 10 | 10 | 11 | 11 | |
Carcasses expected/year | 6 | 4 | 10 | 20 | |
Total carcasses expected | 5 | 3 | 8 | 17 | |
Carcasses found | 6 | 4 | 11 | 21 | |
Aims | Exit strategy completed | Exit strategy completed | Exit strategy completed | Exit strategy completed |
GG-HMU | NB-HMU | GO-HMU | Total Infected Area | ||
---|---|---|---|---|---|
Screening phase | Starting date | 29/11/2020 | 06/01/2020 | 17/01/2021 | 17/01/2021 |
(dd/mm/yyyy) | 9 | 8 | 7 | 7 | |
Carcasses expected/year | 1 | 1 | 2 | 4 | |
Total carcasses expected | 1 | 1 | 1 | 2 | |
Carcasses found | 2 | 2 | 3 | 7 | |
Confirmatory phase | Starting date | 02/08/2021 | 09/10/2020 | 30/08/2021 | 30/08/2021 |
Months | 12 | 12 | 14 | 12 | |
Carcasses expected/year | 2 | 2 | 4 | 8 | |
Total carcasses expected | 2 | 2 | 5 | 8 | |
Carcasses found | 6 | 4 | 11 | 21 | |
Aims | Exit strategy completed | Exit strategy completed | Exit strategy completed | Exit strategy completed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappai, S.; Baldi, I.; Desini, P.; Pintore, A.; Denurra, D.; Cherchi, M.; Rolesu, S.; Mandas, D.; Franzoni, G.; Fiori, M.S.; et al. Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool. Viruses 2022, 14, 1424. https://doi.org/10.3390/v14071424
Cappai S, Baldi I, Desini P, Pintore A, Denurra D, Cherchi M, Rolesu S, Mandas D, Franzoni G, Fiori MS, et al. Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool. Viruses. 2022; 14(7):1424. https://doi.org/10.3390/v14071424
Chicago/Turabian StyleCappai, Stefano, Ileana Baldi, Pietro Desini, Antonio Pintore, Daniele Denurra, Marcella Cherchi, Sandro Rolesu, Daniela Mandas, Giulia Franzoni, Mariangela Stefania Fiori, and et al. 2022. "Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool" Viruses 14, no. 7: 1424. https://doi.org/10.3390/v14071424
APA StyleCappai, S., Baldi, I., Desini, P., Pintore, A., Denurra, D., Cherchi, M., Rolesu, S., Mandas, D., Franzoni, G., Fiori, M. S., Oggiano, A., Feliziani, F., Guberti, V., & Loi, F. (2022). Changes in Estimating the Wild Boar Carcasses Sampling Effort: Applying the EFSA ASF Exit Strategy by Means of the WBC-Counter Tool. Viruses, 14(7), 1424. https://doi.org/10.3390/v14071424