Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and RNA Isolation for RNA-Seq
2.2. De Novo Assembly of Genomic Sequences
2.3. Virus Genome Annotation
2.4. Phylogenetic Analysis
2.5. Recombination Analysis
3. Results
3.1. Genome Organization and Sequence Similarity Analysis
3.1.1. Newly Described Bat Alphacoronaviruses
3.1.2. Sequence Similarity Analysis
3.1.3. SARS-Related and Newly Identified MERS-Related Coronaviruses
3.2. Phylogenetic Analysis
3.3. Recombination Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allocati, N.; Petrucci, A.G.; Di Giovanni, P.; Masulli, M.; Di Ilio, C.; De Laurenzi, V. Bat–man disease transmission: Zoonotic pathogens from wildlife reservoirs to human populations. Cell Death Discov. 2016, 2, 16048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-F.; Anderson, D.E. Viruses in bats and potential spillover to animals and humans. Curr. Opin. Virol. 2019, 34, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.; Li, X.; Lau, S.K.; Woo, P.C. Global epidemiology of bat coronaviruses. Viruses 2019, 11, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corman, V.M.; Baldwin, H.J.; Tateno, A.F.; Zerbinati, R.M.; Annan, A.; Owusu, M.; Nkrumah, E.E.; Maganga, G.D.; Oppong, S.; Adu-Sarkodie, Y. Evidence for an ancestral association of human coronavirus 229E with bats. J. Virol. 2015, 89, 11858–11870. [Google Scholar] [CrossRef] [Green Version]
- Huynh, J.; Li, S.; Yount, B.; Smith, A.; Sturges, L.; Olsen, J.C.; Nagel, J.; Johnson, J.B.; Agnihothram, S.; Gates, J.E. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 2012, 86, 12816–12825. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Tsoi, H.-W.; Wong, B.H.; Wong, S.S.; Leung, S.-Y.; Chan, K.-H.; Yuen, K.-Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 2005, 102, 14040–14045. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Qi, J.; Yuan, Y.; Xuan, Y.; Han, P.; Wan, Y.; Ji, W.; Li, Y.; Wu, Y.; Wang, J. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 2014, 16, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-W.; Dickerman, A.W.; Piñeyro, P.; Li, L.; Fang, L.; Kiehne, R.; Opriessnig, T.; Meng, X.-J. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. mBio 2013, 4, e00737-13. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Fan, H.; Lan, T.; Yang, X.-L.; Shi, W.-F.; Zhang, W.; Zhu, Y.; Zhang, Y.-W.; Xie, Q.-M.; Mani, S. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018, 556, 255. [Google Scholar] [CrossRef]
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Burki, T. The origin of SARS-CoV-2. Lancet Infect. Dis. 2020, 20, 1018–1019. [Google Scholar] [CrossRef]
- Delaune, D.; Hul, V.; Karlsson, E.A.; Hassanin, A.; Ou, T.P.; Baidaliuk, A.; Gámbaro, F.; Prot, M.; Tu, V.T.; Chea, S. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 2021, 12, 6563. [Google Scholar] [CrossRef] [PubMed]
- Wacharapluesadee, S.; Tan, C.W.; Maneeorn, P.; Duengkae, P.; Zhu, F.; Joyjinda, Y.; Kaewpom, T.; Chia, W.N.; Ampoot, W.; Lim, B.L. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 2021, 12, 972. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Kulcsar, K.; Misra, V.; Frieman, M.; Mossman, K. Bats and coronaviruses. Viruses 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brian, D.; Baric, R. Coronavirus genome structure and replication. In Coronavirus Replication and Reverse Genetics; Springer: Berlin, Germany, 2005; pp. 1–30. [Google Scholar]
- De Groot, R.J.; Baker, S.C.; Baric, R.; Enjuanes, L.; Gorbalenya, A.; Holmes, K.V.; Perlman, S.; Rottier, P.J.; Talbot, P.J.; Woo, P.C.; et al. Coronaviridae. In Virus Taxonomy, Classification and Nomenclature of Viruses; Ninth Report of the International Committee on Taxonomy of Viruses; International Union of Microbiological Societies, Virology Division; Elsevier Academic Press: Philadelphia, PA, USA, 2011; pp. 806–828. [Google Scholar]
- Liu, D.X.; Fung, T.S.; Chong, K.K.-L.; Shukla, A.; Hilgenfeld, R. Accessory proteins of SARS-CoV and other coronaviruses. Antivir. Res. 2014, 109, 97–109. [Google Scholar] [CrossRef]
- Lee, S.; Jo, S.-D.; Son, K.; An, I.; Jeong, J.; Wang, S.-J.; Kim, Y.; Jheong, W.; Oem, J.-K. Genetic characteristics of coronaviruses from Korean bats in 2016. Microb. Ecol. 2018, 75, 174–182. [Google Scholar] [CrossRef]
- Lo, V.T.; Yoon, S.W.; Noh, J.Y.; Kim, Y.; Choi, Y.G.; Jeong, D.G.; Kim, H.K. Long-term surveillance of bat coronaviruses in Korea: Diversity and distribution pattern. Transbound. Emerg. Dis. 2020, 67, 2839–2848. [Google Scholar] [CrossRef]
- Do, H.-Q.; Nguyen, V.-G.; Chung, C.-U.; Jeon, Y.-S.; Shin, S.; Jang, K.-C.; Pham, L.B.H.; Kong, A.; Kim, C.-U.; Park, Y.-H. Genomic Characterization of a Novel Alphacoronavirus Isolated from Bats, Korea, 2020. Viruses 2021, 13, 2041. [Google Scholar] [CrossRef]
- Kim, Y.; Son, K.; Kim, Y.-S.; Lee, S.-Y.; Jheong, W.; Oem, J.-K. Complete genome analysis of a SARS-like bat coronavirus identified in the Republic of Korea. Virus Genes 2019, 55, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.K.; Leung, C.Y.; Gilbert, M.; Joyner, P.H.; Ng, E.M.; Tse, T.M.; Guan, Y.; Peiris, J.S.; Poon, L.L. Avian coronavirus in wild aquatic birds. J. Virol. 2011, 85, 12815–12820. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, M.; Ali, H.S.; Stieger, N.; Groschup, M.H.; Wolf, R.; Ulrich, R.G. Molecular identification of small mammal species using novel cytochrome B gene-derived degenerated primers. Biochem. Genet. 2012, 50, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [Green Version]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Shi, X.; Jiang, L.; Zhang, S.; Wang, D.; Tong, P.; Guo, D.; Fu, L.; Cui, Y.; Liu, X. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013, 23, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Liu, B.; Han, Y.; Wang, Y.; Chen, L.; Wu, Z.; Yang, J. ZOVER: The database of zoonotic and vector-borne viruses. Nucleic Acids Res. 2022, 50, D943–D949. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Lam, C.S.; Lau, C.C.; Tsang, A.K.; Lau, J.H.; Bai, R.; Teng, J.L.; Tsang, C.C.; Wang, M. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012, 86, 3995–4008. [Google Scholar]
- Makino, S.; Keck, J.G.; Stohlman, S.A.; Lai, M. High-frequency RNA recombination of murine coronaviruses. J. Virol. 1986, 57, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Bobay, L.-M.; O’Donnell, A.C.; Ochman, H. Recombination events are concentrated in the spike protein region of Betacoronaviruses. PLoS Genet. 2020, 16, e1009272. [Google Scholar] [CrossRef] [PubMed]
- Forni, D.; Cagliani, R.; Clerici, M.; Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017, 25, 35–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiris, J.; Lai, S.; Poon, L.; Guan, Y.; Yam, L.; Lim, W.; Nicholls, J.; Yee, W.; Yan, W.; Cheung, M. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003, 361, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinzula, L. Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2. Biochem. Biophys. Res. Commun. 2021, 538, 116–124. [Google Scholar] [CrossRef]
- Su, Y.C.; Anderson, D.E.; Young, B.E.; Linster, M.; Zhu, F.; Jayakumar, J.; Zhuang, Y.; Kalimuddin, S.; Low, J.G.; Tan, C.W. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. mBio 2020, 11, e01610–e01620. [Google Scholar] [CrossRef]
- Ren, W.; Qu, X.; Li, W.; Han, Z.; Yu, M.; Zhou, P.; Zhang, S.-Y.; Wang, L.-F.; Deng, H.; Shi, Z. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J. Virol. 2008, 82, 1899–1907. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.K.; Poon, L.L.; Gomaa, M.M.; Shehata, M.M.; Perera, R.A.; Zeid, D.A.; El Rifay, A.S.; Siu, L.Y.; Guan, Y.; Webby, R.J. MERS coronaviruses in dromedary camels, Egypt. Emerg. Infect. Dis. 2014, 20, 1049. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.-M.; Wang, N.; Yang, X.-L.; Liu, H.-Z.; Zhang, W.; Li, B.; Hu, B.; Peng, C.; Geng, Q.-B.; Zhu, G.-J. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. J. Virol. 2018, 92, e00116–e00118. [Google Scholar] [CrossRef] [Green Version]
- Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef]
- Lau, S.K.; Zhang, L.; Luk, H.K.; Xiong, L.; Peng, X.; Li, K.S.; He, X.; Zhao, P.; Fan, R.Y.; Wong, A.C. Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of MERS-related coronavirus spike proteins for human DPP4 binding. J. Infect. Dis. 2018, 218, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Du, L.; Liu, C.; Wang, L.; Ma, C.; Tang, J.; Baric, R.S.; Jiang, S.; Li, F. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. USA 2014, 111, 12516–12521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudas, G.; Rambaut, A. MERS-CoV recombination: Implications about the reservoir and potential for adaptation. Virus Evol. 2016, 2, vev023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample No. | Identified Bat Species in Sample | Date of Collection | Location | Sample Type |
---|---|---|---|---|
B20-50 | Rhinolophus ferrumequinum | 30 March 2020 | Jeonnam | Feces |
B20-180 | Rhinolophus ferrumequinum | 20 September 2020 | Gangwon | Feces |
B20-97 | Myotis petax | 16 May 2020 | Gangwon | Feces |
B20-104 | Rhinolophus ferrumequinum | 18 May 2020 | Gangwon | Feces |
B20-177 | Myotis macrodactylus | 21 September 2020 | Gangwon | Feces |
Genome | TRS-L | TRS-B | ||||
---|---|---|---|---|---|---|
S | E | M | N | Other ORFs | ||
Betacoronavirus | ||||||
B20-50 | AAACGAACUUUAAAAU (180) | AACGAA (1) | UACGAA (3) | AACGAA (45) | AACGAA (6) | ORF3: AACGAA (3) ORF7: AACGAA(1) |
B20-180 | UAACGAACUUAAAU (163) | AACGAA (46) | AACGAA (2) | AACGAA (10) | AACGAA (18) | ORF5: AACGAA (2) ORF4b: AACGAA (209) ORF3: AACGAU (7) |
Alphacoronavirus | ||||||
B20-97 | CAACUAAACGAAAUU (211) | AACUAU (8) | AACUAA (6) | AACGAA (0) | CUAAAC (6) | ORF3: AACUAA (10) ORF8: AACUAA (3) |
B20-104-1 | CAACUAAACGAAAUU (218) | AACUAA (5) | ACGAAA (23) | AACUAA (4) | AACUAA (3) | ORF3: AACUAA (39) ORF8: CGAAAU (61) |
B20-104-1 | CAACUAAACGAAAUU (217) | AACCAA (1) | AACUAACGAA (5) | AACUAA (4) | AACUAA (3) | ORF3: UACGAA (23) ORF8: UAAACG (0) |
B20-177 | CAACUAAACGAAAUU (213) | UACGAA (0) | GAAAUU (13) | AACGAA (0) | GAAAUU (0) | ORF3: AACUAA (42) ORF8: AACGAA (0) |
Query Sequences | Close Sequences | % Nucleotide or Amino Acid Identity * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genome | ADRP nsp3 | 3CLpro nsp5 | RdRp nsp12 | Hel nsp13 | ExoN nsp14 | NendoU nsp15 | O-MT nsp16 | S | N | Concatenate Domains | ||
Alphacoronavirus | ||||||||||||
B20-97 | PEDV | 67.4 | 70.4 | 78.7 | 90.0 | 93.7 | 89.2 | 84.9 | 92.3 | 59.1 | 56.1 | 87.3 |
BatCoV_512 | 64.1 | 65.6 | 75.0 | 86.4 | 85.6 | 84.3 | 79.2 | 89.6 | 57.2 | 55.9 | 83.5 | |
B20-104-1 | BatCoV Anlong-57 | 80.5 | 83.3 | 91.9 | 96.9 | 97.9 | 94.1 | 91.0 | 97.0 | 83.2 | 84.5 | 94.6 |
BtMr-SAX2011 | 81.2 | 85.6 | 92.9 | 97.5 | 96.8 | 95.5 | 91.6 | 96.3 | 82.5 | 82.6 | 95.3 | |
B20-104-2 | BatCoV Anlong-57 | 72.6 | 74.6 | 84.1 | 94.4 | 95.8 | 90.4 | 88.4 | 92.3 | 63.7 | 68.8 | 90.6 |
BtMr-SAX2011 | 71.7 | 69.6 | 84.8 | 94.6 | 93.7 | 91.2 | 84.5 | 93.3 | 63.6 | 68.8 | 90.6 | |
B20-177 | BatCoV_Jingmen | 72.4 | 76.0 | 85.5 | 91.1 | 95.8 | 93.1 | 92.8 | 97.4 | 75.4 | 69.1 | 90.8 |
PEDV | 67.2 | 72.0 | 77.0 | 86.7 | 88.5 | 85.7 | 81.9 | 91.9 | 60.1 | 55.1 | 85.4 | |
Betacoronavirus | ||||||||||||
B20-50 | BatCoV 16BO133 | 97.6 | 99.2 | 99.3 | 99.9 | 100 | 100 | 100 | 100 | 99.6 | 99.3 | 99.8 |
B20-180 | MERS-CoV | 74.0 | 80.6 | 86.9 | 94.4 | 97.9 | 95.0 | 90.1 | 89.2 | 68.8 | 78.1 | 92.2 |
HKU4 | 69.1 | 67.9 | 78.1 | 89.7 | 92.6 | 86.3 | 77.8 | 84.8 | 71.8 | 72.4 | 86.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, V.T.; Yoon, S.W.; Choi, Y.G.; Jeong, D.G.; Kim, H.K. Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats. Viruses 2022, 14, 1389. https://doi.org/10.3390/v14071389
Lo VT, Yoon SW, Choi YG, Jeong DG, Kim HK. Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats. Viruses. 2022; 14(7):1389. https://doi.org/10.3390/v14071389
Chicago/Turabian StyleLo, Van Thi, Sun Woo Yoon, Yong Gun Choi, Dae Gwin Jeong, and Hye Kwon Kim. 2022. "Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats" Viruses 14, no. 7: 1389. https://doi.org/10.3390/v14071389
APA StyleLo, V. T., Yoon, S. W., Choi, Y. G., Jeong, D. G., & Kim, H. K. (2022). Genomic Comparisons of Alphacoronaviruses and Betacoronaviruses from Korean Bats. Viruses, 14(7), 1389. https://doi.org/10.3390/v14071389