Examination of the Virome of Taro Plants Affected by a Lethal Disease, the Alomae-Bobone Virus Complex, in Papua New Guinea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. HTS Analyses and Genome Sequencing
2.3. Virus Detection Using PCR-Based Assays
2.4. Rolling Circle Amplification
2.5. In Silico Genomic and Proteomic Analyses
2.6. Phylogenetic Analyses
3. Results
3.1. Symptomology
3.2. Virome Analysis
3.3. Molecular Characterization of Viruses Infecting Taro Plants from PNG
4. Discussion
4.1. CBDaV Is Involved with ABVC
4.2. Are Other Viruses Involved with ABVC?
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gollifer, D.E.; Brown, J.F. Virus diseases of Colocasia esculenta in the British Solomon Islands. Plant Dis. Rep. 1972, 56, 597–599. [Google Scholar]
- Shaw, D.E.; Plumb, R.T.; Jackson, G.V.H. Virus diseases of taro (Colocasia esculenta) and Xanthosoma spp. in Papua New Guinea. Papua New Guin. Agric. J. 1979, 30, 71–97. [Google Scholar]
- Ivancic, A.; Liloqula, R.; Levela, H.; Saelea, J. Effect of Alomae-Bobone Virus Complex on young taro seedlings and other aroid species in controlled conditions. In Proceedings of the Sustainable Taro Culture for the Pacific Conference, Honolulu, HI, USA, 24–25 September 1992; pp. 25–31. [Google Scholar]
- James, M.; Kenten, R.H.; Woods, R.D. Virus-like Particles Associated with Two Diseases of Colocasia esculenta (L.) Schott in the British Solomon Islands. J. Gen. Virol. 1973, 21, 145–153. [Google Scholar] [CrossRef]
- Pearson, M.N.; Jackson, G.V.H.; Saelea, J.; Morar, S.G. Evidence for two rhabdoviruses in taro (Colocasia esculenta) in the Pacific region. Australas. Plant Pathol. 1999, 28, 248–253. [Google Scholar] [CrossRef]
- Gollifer, D.E.; Jackson, G.V.H.; Dabek, A.J.; Plumb, R.T.; May, Y.Y. The Occurrence and Transmission of Viruses of Edible Aroids in the Solomon Islands and the Southwest Pacific. PANS 1977, 23, 171–177. [Google Scholar] [CrossRef]
- Revill, P.; Trinh, X.; Dale, J.; Harding, R.M. Taro vein chlorosis virus: Characterization and variability of a new nucleorhabdovirus. J. Gen. Virol. 2005, 86, 491–499. [Google Scholar] [CrossRef]
- Higgins, C.M.; Bejerman, N.; Li, M.; James, A.; Dietzgen, R.G.; Pearson, M.N.; Revill, P.; Harding, R. Complete genome sequence of Colocasia bobone disease-associated virus, a putative cytorhabdovirus infecting taro. Arch. Virol. 2016, 161, 745–748. [Google Scholar] [CrossRef]
- Yang, I.C.; Hafner, G.J.; Dale, J.; Harding, R.M. Genomic characterisation of taro bacilliform virus. Arch. Virol. 2003, 148, 937–949. [Google Scholar] [CrossRef]
- Kazmi, S.A.; Yang, Z.; Hong, N.; Wang, G.; Wang, Y. Characterization by Small RNA Sequencing of Taro Bacilliform CH Virus (TaBCHV), a Novel Badnavirus. PLoS ONE 2015, 10, e0134147. [Google Scholar] [CrossRef]
- Zettler, F.W.; Foxe, M.J.; Hartman, R.D.; Edwardson, J.R.; Christie, R.G. Filamentous Viruses Infecting Dasheen and other Araceous Plants. Phytopathology 1970, 60, 983–987. [Google Scholar] [CrossRef]
- Revill, P.A.; Jackson, G.V.H.; Hafnerc, G.J.; Yang, I.; Maino, M.K.; Dowling, M.L.; Devitt, L.C.; Dale, J.L.; Harding, R.M. Incidence and distribution of viruses of Taro (Colocasia esculenta) in Pacific Island countries. Australas. Plant Pathol. 2005, 34, 327–331. [Google Scholar] [CrossRef]
- Marais, A.; Faure, C.; Couture, C.; Bergey, B.; Gentit, P.; Candresse, T. Characterization by Deep Sequencing of Divergent Plum bark necrosis stem pitting-associated virus (PBNSPaV) Isolates and Development of a Broad-Spectrum PBNSPaV Detection Assay. Phytopathology 2014, 104, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef] [PubMed]
- Villamor, D.E.V.; Ho, T.; Al Rwahnih, M.; Martin, R.R.; Tzanetakis, I.E. High Throughput Sequencing For Plant Virus Detection and Discovery. Phytopathology 2019, 109, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Bejerman, N.; Debat, H.; Dietzgen, R.G. The Plant Negative-Sense RNA Virosphere: Virus Discovery Through New Eyes. Front. Microbiol. 2020, 11, 588427. [Google Scholar] [CrossRef] [PubMed]
- Gaafar, Y.Z.A.; Ziebell, H. Comparative study on three viral enrichment approaches based on RNA extraction for plant virus/viroid detection using high-throughput sequencing. PLoS ONE 2020, 15, e0237951. [Google Scholar] [CrossRef]
- Dodds, J.A.; Morris, T.J.; Jordan, R.L. Plant Viral Double-Stranded RNA. Annu. Rev. Phytopathol. 1984, 22, 151–168. [Google Scholar] [CrossRef]
- Melzer, M.J.; Borth, W.B.; Sether, D.M.; Ferreira, S.; Gonsalves, D.; Hu, J.S. Genetic diversity and evidence for recent modular recombination in Hawaiian Citrus tristeza virus. Virus Genes 2009, 40, 111–118. [Google Scholar] [CrossRef]
- Olmedo-Velarde, A.; Park, A.C.; Sugano, J.; Uchida, J.Y.; Kawate, M.; Borth, W.B.; Hu, J.S.; Melzer, M.J. Characterization of Ti Ringspot-Associated Virus, a Novel Emaravirus Associated with an Emerging Ringspot Disease of Cordyline fruticosa. Plant Dis. 2019, 103, 2345–2352. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, K.K.; Sugikawa, J.; Kerr, C.; Melzer, M.J. Air potato (Dioscorea bulbifera) plants displaying virus-like symptoms are co-infected with a novel potyvirus and a novel ampelovirus. Virus Genes 2018, 55, 117–121. [Google Scholar] [CrossRef]
- Li, R.; Mock, R.; Huang, Q.; Abad, J.; Hartung, J.; Kinard, G. A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. J. Virol. Methods 2008, 154, 48–55. [Google Scholar] [CrossRef]
- Olmedo-Velarde, A.; Hu, J.; Melzer, M.J. A Virus Infecting Hibiscus rosa-sinensis Represents an Evolutionary Link Between Cileviruses and Higreviruses. Front. Microbiol. 2021, 12, 660237. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Church, D.M.; Federhen, S.; Lash, A.E.; Madden, T.L.; Pontius, J.U.; Schuler, G.D.; Schriml, L.M.; Sequeira, E.; Tatusova, T.A.; et al. Database resources of the National Center for Biotechnology. Nucleic Acids Res. 2003, 31, 28–33. [Google Scholar] [CrossRef]
- Huang, X.; Miller, W. A time-efficient, linear-space local similarity algorithm. Adv. Appl. Math. 1991, 12, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Talavera, G.; Castresana, J. Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velarde, A.O.; Waisen, P.; Kong, A.T.; Wang, K.-H.; Hu, J.S.; Melzer, M.J. Characterization of taro reovirus and its status in taro (Colocasia esculenta) germplasm from the Pacific. Arch. Virol. 2021, 166, 2563–2567. [Google Scholar] [CrossRef] [PubMed]
- Karyeija, R.F.; Kreuze, J.F.; Gibson, R.W.; Valkonen, J.P.T. Synergistic Interactions of a Potyvirus and a Phloem-Limited Crinivirus in Sweet Potato Plants. Virology 2000, 269, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redinbaugh, M.G.; Stewart, L.R. Maize Lethal Necrosis: An Emerging, Synergistic Viral Disease. Annu. Rev. Virol. 2018, 5, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Kenten, R.H.; Woods, R.D. Viruses of Colocasia esculenta and Xanthosoma saggitifolium. PANS Pest Artic. News Summ. 1973, 19, 38–41. [Google Scholar] [CrossRef]
- Hull, R. Molecular biology of rice tungro viruses. Annu. Rev. Phytopathol. 1996, 34, 275–297. [Google Scholar] [CrossRef]
- Wang, Y.; Borth, W.B.; Green, J.C.; Hamim, I.; Cao, K.; Hu, J.S.; Melzer, M.J. Genome characterization and distribution of Taro bacilliform CH virus on taro in Hawaii, USA. Eur. J. Plant Pathol. 2017, 150, 1107–1111. [Google Scholar] [CrossRef]
- Macanawai, A.R.; Ebenebe, A.A.; Hunter, D.; Devitt, L.C.; Hafner, G.J.; Harding, R.M. Investigations into the seed and mealybug transmission ofTaro bacilliform virus. Australas. Plant Pathol. 2005, 34, 73–76. [Google Scholar] [CrossRef]
- Kidanemariam, D.B.; Sukal, A.C.; Crew, K.; Jackson, G.V.H.; Abraham, A.D.; Dale, J.L.; Harding, R.M.; James, A.P. Characterization of an Australian isolate of taro bacilliform virus and development of an infectious clone. Arch. Virol. 2018, 163, 1677–1681. [Google Scholar] [CrossRef]
- Zang, Y.; Fang, X.-D.; Qiao, J.-H.; Gao, Q.; Wang, X.-B. Reverse genetics systems of plant negative-strand RNA viruses are difficult to be developed but powerful for virus-host interaction studies and virus-based vector applications. Phytopathol. Res. 2020, 2, 29. [Google Scholar] [CrossRef]
- Fránová, J.; Přibylová, J.; Koloniuk, I. Molecular and Biological Characterization of a New Strawberry Cytorhabdovirus. Viruses 2019, 11, 982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidanemariam, D.B.; Sukal, A.C.; Abraham, A.D.; Stomeo, F.; Dale, J.L.; James, A.P.; Harding, R.M. Identification and molecular characterization of Taro bacilliform virus and Taro bacilliform CH virus from East Africa. Plant Pathol. 2018, 67, 1977–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wu, B.; Borth, W.B.; Hamim, I.; Green, J.C.; Melzer, M.J.; Hu, J.S. Molecular Characterization and Distribution of Two Strains of Dasheen mosaic virus on Taro in Hawaii. Plant Dis. 2017, 101, 1980–1989. [Google Scholar] [CrossRef] [PubMed]
No. Raw Reads | Non-Host Reads | Virus a | Contigs Number | Genome Length (nt) b | Mapped Reads c | Coverage (No. Reads) c | ||
---|---|---|---|---|---|---|---|---|
Min. | Mean | Max | ||||||
14,533,374 | 8,389,201 | CBDaV | 61 | 12,205 | 184,663 | 2 | 2296 | 42,272 |
TaBV | 16 | 7825 | 2,542,726 | 26 | 137,637 | 1,287,793 | ||
TaBCHV d | 37 | 7769–7770 | 2176 | 2 | 24 | 588 | ||
TaRV c | 55 | 1168–3878 | 4,780,464 | 1–4 | 10,177–59,941 | 25,379–287,699 | ||
DsMV | 18 | 10,066 | 3902 | 2 | 46 | 859 | ||
CULV | 1 | 2360 | 970 | 1 | 56 | 344 |
Sample | Location | ABVC Symptoms | CBDaV | TaBCHV | TaBV | TaRV | DsMV | CULV | TaVCV |
---|---|---|---|---|---|---|---|---|---|
1 | Kokoda | Yes | + | + | + | − | + | + | − |
2 | Popondetta | Yes | + | + | − | + | − | − | − |
3 | Popondetta | Yes | + | + | − | + | − | − | − |
4 | Girua | No | − | + | + | − | − | − | − |
5 | Girua | No | − | + | − | − | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmedo-Velarde, A.; Loristo, J.; Kong, A.; Waisen, P.; Wang, K.-H.; Hu, J.; Melzer, M. Examination of the Virome of Taro Plants Affected by a Lethal Disease, the Alomae-Bobone Virus Complex, in Papua New Guinea. Viruses 2022, 14, 1410. https://doi.org/10.3390/v14071410
Olmedo-Velarde A, Loristo J, Kong A, Waisen P, Wang K-H, Hu J, Melzer M. Examination of the Virome of Taro Plants Affected by a Lethal Disease, the Alomae-Bobone Virus Complex, in Papua New Guinea. Viruses. 2022; 14(7):1410. https://doi.org/10.3390/v14071410
Chicago/Turabian StyleOlmedo-Velarde, Alejandro, Jarin Loristo, Alexandra Kong, Philip Waisen, Koon-Hui Wang, John Hu, and Michael Melzer. 2022. "Examination of the Virome of Taro Plants Affected by a Lethal Disease, the Alomae-Bobone Virus Complex, in Papua New Guinea" Viruses 14, no. 7: 1410. https://doi.org/10.3390/v14071410
APA StyleOlmedo-Velarde, A., Loristo, J., Kong, A., Waisen, P., Wang, K. -H., Hu, J., & Melzer, M. (2022). Examination of the Virome of Taro Plants Affected by a Lethal Disease, the Alomae-Bobone Virus Complex, in Papua New Guinea. Viruses, 14(7), 1410. https://doi.org/10.3390/v14071410