Women in the European Virus Bioinformatics Center
Abstract
:1. Introduction
2. The European Virus Bioinformatics Center
2.1. Stay up to Date: EVBC Newsletter, Calendar and Twitter
2.2. Meet the Experts: The International Virus Bioinformatics Meeting
2.3. Dive into Virus Bioinformatics: The EVBC Lecture Series
2.4. Learn the Basics: Virus Bioinformatics Workshops
2.5. Find What You Need: The Virus Bioinformatics Tools Collection
2.6. Achieve More Together: Collaborative, Jointly Funded Projects
2.7. Get Published: Special Issues on Virus Bioinformatics
3. Women in the EVBC
3.1. Virus Discovery
3.2. Virus Evolution
3.3. Viral Infection and Immune Response
3.4. Virus-Host Transcriptomics
3.5. Emerging Viruses and Epidemiology
3.6. Viral Ecology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mokili, J.L.; Rohwer, F.; Dutilh, B.E. Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2012, 2, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; et al. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.H.; Wolf, Y.I.; Krupovic, M.; Zhang, Y.Z.; Maes, P.; Dolja, V.V.; Koonin, E.V. Classify viruses—The gain is worth the pain. Nature 2019, 566, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cacciabue, M.; et al. Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform. 2020, 22, 642–663. [Google Scholar] [CrossRef]
- Hufsky, F.; Ibrahim, B.; Modha, S.; Clokie, M.R.J.; Deinhardt-Emmer, S.; Dutilh, B.E.; Lycett, S.; Simmonds, P.; Thiel, V.; Abroi, A.; et al. The Third Annual Meeting of the European Virus Bioinformatics Center. Viruses 2019, 11, 420. [Google Scholar] [CrossRef] [Green Version]
- Hufsky, F.; Beerenwinkel, N.; Meyer, I.M.; Roux, S.; Cook, G.M.; Kinsella, C.M.; Lamkiewicz, K.; Marquet, M.; Nieuwenhuijse, D.F.; Olendraite, I.; et al. The International Virus Bioinformatics Meeting 2020. Viruses 2020, 12, 1398. [Google Scholar] [CrossRef]
- Ibrahim, B.; Arkhipova, K.; Andeweg, A.; Posada-Céspedes, S.; Enault, F.; Gruber, A.; Koonin, E.; Kupczok, A.; Lemey, P.; McHardy, A.; et al. Bioinformatics Meets Virology: The European Virus Bioinformatics Center’s Second Annual Meeting. Viruses 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Hufsky, F.; Beslic, D.; Boeckaerts, D.; Duchene, S.; González-Tortuero, E.; Gruber, A.J.; Guo, J.; Jansen, D.; Juma, J.; Kongkitimanon, K.; et al. The International Virus Bioinformatics Meeting 2022. Viruses 2022, 14, 973. [Google Scholar] [CrossRef]
- Goettsch, W.; Beerenwinkel, N.; Deng, L.; Dölken, L.; Dutilh, B.E.; Erhard, F.; Kaderali, L.; von Kleist, M.; Marquet, R.; Matthijnssens, J.; et al. ITN—VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics. Viruses 2021, 13, 766. [Google Scholar] [CrossRef]
- Moss-Racusin, C.A.; Dovidio, J.F.; Brescoll, V.L.; Graham, M.J.; Handelsman, J. Science faculty’s subtle gender biases favor male students. Proc. Natl. Acad. Sci. USA 2012, 109, 16474–16479. [Google Scholar] [CrossRef] [Green Version]
- Noonan, R. Women in STEM: 2017 Update (ESA Issue Brief #06-17). 2017. Available online: https://www.commerce.gov/sites/default/files/migrated/reports/women-in-stem-2017-update.pdf (accessed on 8 July 2022).
- England, P.; Levine, A.; Mishel, E. Progress toward gender equality in the United States has slowed or stalled. Proc. Natl. Acad. Sci. USA 2020, 117, 6990–6997. [Google Scholar] [CrossRef]
- European Commission and Directorate-General for Research and Innovation. She Figures 2021: Gender in Research and Innovation: Statistics and Indicators; Publications Office of the European Commission: Luxembourg, 2021. [Google Scholar] [CrossRef]
- King, J. Benefits of Women in Science. Science 2005, 308, 601. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.W.; Alegria, S.; Börjeson, L.; Etzkowitz, H.; Falk-Krzesinski, H.J.; Joshi, A.; Leahey, E.; Smith-Doerr, L.; Woolley, A.W.; Schiebinger, L. Gender diversity leads to better science. Proc. Natl. Acad. Sci. USA 2017, 114, 1740–1742. [Google Scholar] [CrossRef] [Green Version]
- Zucker, I.; Beery, A.K. Males still dominate animal studies. Nature 2010, 465, 690. [Google Scholar] [CrossRef]
- Beery, A.K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci. 2018, 23, 143–149. [Google Scholar] [CrossRef]
- Shansky, R.M. Are hormones a “female problem” for animal research? Science 2019, 364, 825–826. [Google Scholar] [CrossRef]
- Quillian, L.; Pager, D.; Hexel, O.; Midtbøen, A.H. Meta-analysis of field experiments shows no change in racial discrimination in hiring over time. Proc. Natl. Acad. Sci. USA 2017, 114, 10870–10875. [Google Scholar] [CrossRef] [Green Version]
- Mishel, E. Discrimination against Queer Women in the U.S. Workforce. Socius Sociol. Res. Dyn. World 2016, 2, 237802311562131. [Google Scholar] [CrossRef]
- Gewin, V. Women can benefit from female-led networks. Nature 2018, 566, 145. [Google Scholar] [CrossRef] [Green Version]
- Malisch, J.L.; Harris, B.N.; Sherrer, S.M.; Lewis, K.A.; Shepherd, S.L.; McCarthy, P.C.; Spott, J.L.; Karam, E.P.; Moustaid-Moussa, N.; Calarco, J.M.; et al. In the wake of COVID-19, academia needs new solutions to ensure gender equity. Proc. Natl. Acad. Sci. USA 2020, 117, 15378–15381. [Google Scholar] [CrossRef]
- Ibrahim, B.; McMahon, D.P.; Hufsky, F.; Beer, M.; Deng, L.; Mercier, P.L.; Palmarini, M.; Thiel, V.; Marz, M. A new era of virus bioinformatics. Virus Res. 2018, 251, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Hufsky, F.; Ibrahim, B.; Beer, M.; Deng, L.; Mercier, P.L.; McMahon, D.P.; Palmarini, M.; Thiel, V.; Marz, M. Virologists-Heroes need weapons. PLoS Pathog. 2018, 14, e1006771. [Google Scholar] [CrossRef] [Green Version]
- Hufsky, F. Engpass Bioinformatik: Warum die Genom-Analyse im Kampf gegen Pandemien essenziell ist. Laborjournal 2021, 7–8, 62–65. [Google Scholar]
- Hufsky, F. Wissen Gegen Die Angst: Ein Blick in den Genetischen Inhalt des SARS-CoV-2 mRNA Impfstoffes. BioinfoWelten. 2021. Available online: http://bioinfowelten.uni-jena.de/2021/01/04/wissen-gegen-die-angst-ein-blick-in-den-genetischen-inhalt-des-sars-cov-2-mrna-impfstoffes/ (accessed on 8 July 2022).
- Hufsky, F. Apokalypse-Virus: Hollywood oder Realität? BioinfoWelten. 2019. Available online: http://bioinfowelten.uni-jena.de/2019/06/26/apokalypse-virus-hollywood-oder-realitaet/ (accessed on 8 July 2022).
- Hufsky, F.; Marz, M. Gib mir dein Virus und ich sag dir den Wirt. BIOSpektrum 2022, 28, 225–226. [Google Scholar] [CrossRef]
- van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.M.; Wolthers, K.C.; van Dillen, P.M.E.W.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med. 2004, 10, 368–373. [Google Scholar] [CrossRef]
- Edridge, A.W.D.; Kaczorowska, J.; Hoste, A.C.R.; Bakker, M.; Klein, M.; Loens, K.; Jebbink, M.F.; Matser, A.; Kinsella, C.M.; Rueda, P.; et al. Seasonal coronavirus protective immunity is short-lasting. Nat. Med. 2020, 26, 1691–1693. [Google Scholar] [CrossRef]
- de Groof, A.; Deijs, M.; Guelen, L.; van Grinsven, L.; van Os-Galdos, L.; Vogels, W.; Derks, C.; Cruijsen, T.; Geurts, V.; Vrijenhoek, M.; et al. Atypical Porcine Pestivirus: A Possible Cause of Congenital Tremor Type A-II in Newborn Piglets. Viruses 2016, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- de Groof, A.; Guelen, L.; Deijs, M.; van der Wal, Y.; Miyata, M.; Ng, K.S.; van Grinsven, L.; Simmelink, B.; Biermann, Y.; Grisez, L.; et al. A Novel Virus Causes Scale Drop Disease in Lates Calcarifer. PLoS Pathog. 2015, 11, e1005074. [Google Scholar] [CrossRef] [Green Version]
- Kaczorowska, J.; Deijs, M.; Klein, M.; Bakker, M.; Jebbink, M.F.; Sparreboom, M.; Kinsella, C.M.; Timmerman, A.L.; van der Hoek, L. Diversity and Long-Term Dynamics of Human Blood Anelloviruses. J. Virol. 2022, 96, e00109-22. [Google Scholar] [CrossRef]
- van der Hoek, L.; Verschoor, E.; Beer, M.; Höper, D.; Wernike, K.; Ranst, M.V.; Matthijnssens, J.; Maes, P.; Sastre, P.; Rueda, P.; et al. Host switching pathogens, infectious outbreaks and zoonosis: A Marie Skłodowska-Curie innovative training network (HONOURs). Virus Res. 2018, 257, 120–124. [Google Scholar] [CrossRef]
- Cook, G.M.; Brown, K.; Shang, P.; Li, Y.; Soday, L.; Dinan, A.M.; Tumescheit, C.; Mockett, A.A.; Fang, Y.; Firth, A.E.; et al. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022, 11, e75668. [Google Scholar] [CrossRef] [PubMed]
- Stewart, H.; Brown, K.; Dinan, A.M.; Irigoyen, N.; Snijder, E.J.; Firth, A.E.; Pfeiffer, J.K. Transcriptional and Translational Landscape of Equine Torovirus. J. Virol. 2018, 92, e00589-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumescheit, C.; Firth, A.E.; Brown, K. CIAlign: A highly customisable command line tool to clean, interpret and visualise multiple sequence alignments. PeerJ 2022, 10, e12983. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Emes, R.D.; Tarlinton, R.E. Multiple Groups of Endogenous Epsilon-Like Retroviruses Conserved across Primates. J. Virol. 2014, 88, 12464–12471. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.; Tarlinton, R.E. Is gibbon ape leukaemia virus still a threat? Mamm. Rev. 2017, 47, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Cribbs, A.; Luna-Valero, S.; George, C.; Sudbery, I.; Berlanga-Taylor, A.; Sansom, S.; Smith, T.; Ilott, N.; Johnson, J.; Scaber, J.; et al. CGAT-core: A python framework for building scalable, reproducible computational biology workflows. F1000Research 2019, 8, 581009. [Google Scholar] [CrossRef]
- Zhang, P.; Kitchen-Smith, I.; Xiong, L.; Stracquadanio, G.; Brown, K.; Richter, P.H.; Wallace, M.D.; Bond, E.; Sahgal, N.; Moore, S.; et al. Germline and Somatic Genetic Variants in the p53 Pathway Interact to Affect Cancer Risk, Progression, and Drug Response. Cancer Res. 2021, 81, 1667–1680. [Google Scholar] [CrossRef]
- Käfer, S.; Paraskevopoulou, S.; Zirkel, F.; Wieseke, N.; Donath, A.; Petersen, M.; Jones, T.C.; Liu, S.; Zhou, X.; Middendorf, M.; et al. Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathog. 2019, 15, e1008224. [Google Scholar] [CrossRef] [Green Version]
- Paraskevopoulou, S.; Käfer, S.; Zirkel, F.; Donath, A.; Petersen, M.; Liu, S.; Zhou, X.; Drosten, C.; Misof, B.; Junglen, S. Viromics of extant insect orders unveil the evolution of the flavi-like superfamily. Virus Evol. 2021, 7, veab030. [Google Scholar] [CrossRef]
- Kuhn, J.; Adkins, S.; Agwanda, B.; Kubrusli, R.; Alkhovsky, S.; Amarasinghe, G.; Avšič-Županc, T.; Ayllón, M.; Bahl, J.; Balkema-Buschmann, A.; et al. Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), Incl. Large Orders Bunyavirales Mononegavirales. Arch. Virol. 2021, 166, 3513–3566. [Google Scholar] [CrossRef]
- Paola, N.D.; Dheilly, N.M.; Junglen, S.; Paraskevopoulou, S.; Postler, T.S.; Shi, M.; Kuhn, J.H.; Buan, N.R. Jingchuvirales: A New Taxon. Framew. A Rapidly Expand. Order Unusual Monjiviricete Viruses Broadly Distrib. Arthropod Subphyla. Appl. Environ. Microbiol. 2022, 88, e01954-21. [Google Scholar] [CrossRef]
- Paraskevopoulou, S.; Pirzer, F.; Goldmann, N.; Schmid, J.; Corman, V.M.; Gottula, L.T.; Schroeder, S.; Rasche, A.; Muth, D.; Drexler, J.F.; et al. Mammalian deltavirus without hepadnavirus coinfection in the neotropical rodent Proechimys Semispinosus. Proc. Natl. Acad. Sci. USA 2020, 117, 17977–17983. [Google Scholar] [CrossRef]
- Hepojoki, J.; Hetzel, U.; Paraskevopoulou, S.; Drosten, C.; Harrach, B.; Zerbini, M.; Koonin, E.V.; Krupovic, M.; Dolja, V.; Kuhn, J.H. Create One New Realm (Ribozyviria) Including One New Family (Kolmioviridae) Including Genus Deltavirus and Seven New Genera for a Total of 15 Species; Technical Report, ICTV Taxonomic Report 2020.012D; International Committee for Taxonomy of Viruses: Moscow, Russia, 2020. [Google Scholar]
- Kühnert, D.; Wu, C.H.; Drummond, A.J. Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. Infect. Genet. Evol. 2011, 11, 1825–1841. [Google Scholar] [CrossRef] [Green Version]
- Stadler, T.; Kühnert, D.; Bonhoeffer, S.; Drummond, A.J. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. USA 2013, 110, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Kühnert, D.; Stadler, T.; Vaughan, T.G.; Drummond, A.J. Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model. J. R. Soc. Interface 2014, 11, 20131106. [Google Scholar] [CrossRef] [Green Version]
- Kühnert, D.; Stadler, T.; Vaughan, T.G.; Drummond, A.J. Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data. Mol. Biol. Evol. 2016, 33, 2102–2116. [Google Scholar] [CrossRef] [Green Version]
- Kühnert, D.; Kouyos, R.; Shirreff, G.; Pečerska, J.; Scherrer, A.U.; Böni, J.; Yerly, S.; Klimkait, T.; Aubert, V.; Günthard, H.F.; et al. Quantifying the fitness cost of HIV-1 drug resistance mutations through phylodynamics. PLoS Pathog. 2018, 14, e1006895. [Google Scholar] [CrossRef]
- Smith, M.R.; Trofimova, M.; Weber, A.; Duport, Y.; Kühnert, D.; von Kleist, M. Rapid incidence estimation from SARS-CoV-2 genomes reveals decreased case detection in Europe during summer 2020. Nat. Commun. 2021, 12, 6009. [Google Scholar] [CrossRef]
- Kocher, A.; Papac, L.; Barquera, R.; Key, F.M.; Spyrou, M.A.; Hübler, R.; Rohrlach, A.B.; Aron, F.; Stahl, R.; Wissgott, A.; et al. Ten millennia of hepatitis B virus evolution. Science 2021, 374, 182–188. [Google Scholar] [CrossRef]
- Libin, P.J.K.; Deforche, K.; Abecasis, A.B.; Theys, K. VIRULIGN: Fast codon-correct alignment and annotation of viral genomes. Bioinformatics 2018, 35, 1763–1765. [Google Scholar] [CrossRef]
- Fonseca, V.; Libin, P.J.K.; Theys, K.; Faria, N.R.; Nunes, M.R.T.; Restovic, M.I.; Freire, M.; Giovanetti, M.; Cuypers, L.; Nowé, A.; et al. A computational method for the identification of Dengue, Zoka and Chikungunya virus species and genotypes. PLoS Negl. Trop. Dis. 2019, 13, e0007231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadam, K.; Peerzada, N.; Karbhal, R.; Sawant, S.; Valadi, J.; Kulkarni-Kale, U. Antibody Class(es) Predictor for Epitopes (AbCPE): A Multi-Label Classification Algorithm. Front. Bioinform. 2021, 1, 709951. [Google Scholar] [CrossRef]
- Kolekar, P.; Kale, M.; Kulkarni-Kale, U. Alignment-free distance measure based on return time distribution for sequence analysis: Applications to clustering, molecular phylogeny and subtyping. Mol. Phylogenet. Evol. 2012, 65, 510–522. [Google Scholar] [CrossRef]
- Kolekar, P.; Hake, N.; Kale, M.; Kulkarni-Kale, U. WNV Typer: A server for genotyping of West Nile viruses using an alignment-free method based on a return time distribution. J. Virol. Methods 2014, 198, 41–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolekar, P.S.; Waman, V.P.; Kale, M.M.; Kulkarni-Kale, U. RV-Typer: A Web Server for Typing of Rhinoviruses Using Alignment-Free Approach. PLoS ONE 2016, 11, e0149350. [Google Scholar] [CrossRef] [PubMed]
- Kasibhatla, S.M.; Kinikar, M.; Limaye, S.; Kale, M.M.; Kulkarni-Kale, U. Understanding evolution of SARS-CoV-2: A perspective from analysis of genetic diversity of RdRp gene. J. Med. Virol. 2020, 92, 1932–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limaye, S.; Kasibhatla, S.M.; Ramtirthkar, M.; Kinikar, M.; Kale, M.M.; Kulkarni-Kale, U. Circulation and Evolution of SARS-CoV-2 in India: Let the Data Speak. Viruses 2021, 13, 2238. [Google Scholar] [CrossRef] [PubMed]
- González-Candelas, F.; Shaw, M.A.; Phan, T.; Kulkarni-Kale, U.; Paraskevis, D.; Luciani, F.; Kimura, H.; Sironi, M. One year into the pandemic: Short-term evolution of SARS-CoV-2 and emergence of new lineages. Infect. Genet. Evol. 2021, 92, 104869. [Google Scholar] [CrossRef]
- Walter, S.; Rasche, A.; Moreira-Soto, A.; Pfaender, S.; Bletsa, M.; Corman, V.M.; Aguilar-Setien, A.; García-Lacy, F.; Hans, A.; Todt, D.; et al. Differential infection patterns and recent evolutionary origins of equine hepaciviruses in donkeys. J. Virol. 2017, 91, e01711-16. [Google Scholar] [CrossRef] [Green Version]
- Bletsa, M.; Vrancken, B.; Gryseels, S.; Boonen, I.; Fikatas, A.; Li, Y.; Laudisoit, A.; Lequime, S.; Bryja, J.; Makundi, R.; et al. Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evol. 2021, 7, veab036. [Google Scholar] [CrossRef]
- Vanmechelen, B.; Bletsa, M.; Laenen, L.; Lopes, A.R.; Vergote, V.; Beller, L.; Deboutte, W.; Korva, M.; Avšič Županc, T.; Goüy de Bellocq, J.; et al. Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genom. 2018, 19, 617. [Google Scholar] [CrossRef] [Green Version]
- Vanmechelen, B.; Meurs, S.; Zisi, Z.; Goüy de Bellocq, J.; Bletsa, M.; Lemey, P.; Maes, P. Genome Sequence of Ruloma Virus, a Novel Paramyxovirus Clustering Basally to Members of the Genus Jeilongvirus. Microbiol. Resour. Announc. 2021, 10, e00325-21. [Google Scholar] [CrossRef]
- Vanmechelen, B.; Zisi, Z.; Gryseels, S.; Goüy de Bellocq, J.; Vrancken, B.; Lemey, P.; Maes, P.; Bletsa, M. Phylogenomic Characterization of Lopma Virus and Praja Virus, Two Novel Rodent-Borne Arteriviruses. Viruses 2021, 13, 1842. [Google Scholar] [CrossRef]
- Bletsa, M.; Suchard, M.A.; Ji, X.; Gryseels, S.; Vrancken, B.; Baele, G.; Worobey, M.; Lemey, P. Divergence dating using mixed effects clock modelling: An application to HIV-1. Virus Evol. 2019, 5, vez036. [Google Scholar] [CrossRef]
- Giallonardo, F.D.; Töpfer, A.; Rey, M.; Prabhakaran, S.; Duport, Y.; Leemann, C.; Schmutz, S.; Campbell, N.K.; Joos, B.; Lecca, M.R.; et al. Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic Acids Res. 2014, 42, e115. [Google Scholar] [CrossRef]
- Seifert, D.; Giallonardo, F.D.; Töpfer, A.; Singer, J.; Schmutz, S.; Günthard, H.F.; Beerenwinkel, N.; Metzner, K.J. A Comprehensive Analysis of Primer IDs to Study Heterogeneous HIV-1 Populations. J. Mol. Biol. 2016, 428, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Bertels, F.; Leemann, C.; Metzner, K.J.; Regoes, R.R. Parallel Evolution of HIV-1 in a Long-Term Experiment. Mol. Biol. Evol. 2019, 36, 2400–2414. [Google Scholar] [CrossRef] [Green Version]
- Posada-Céspedes, S.; Seifert, D.; Topolsky, I.; Jablonski, K.P.; Metzner, K.J.; Beerenwinkel, N. V-pipe: A computational pipeline for assessing viral genetic diversity from high-throughput data. Bioinformatics 2021, 37, 1673–1680. [Google Scholar] [CrossRef]
- de Vries, J.J.; Brown, J.R.; Couto, N.; Beer, M.; Le Mercier, P.; Sidorov, I.; Papa, A.; Fischer, N.; Oude Munnink, B.B.; Rodriquez, C.; et al. Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: Bioinformatic analysis and reporting. J. Clin. Virol. 2021, 138, 104812. [Google Scholar] [CrossRef]
- de Vries, J.J.; Brown, J.R.; Fischer, N.; Sidorov, I.A.; Morfopoulou, S.; Huang, J.; Munnink, B.B.O.; Sayiner, A.; Bulgurcu, A.; Rodriguez, C.; et al. Benchmark of thirteen bioinformatic pipelines for metagenomic virus diagnostics using datasets from clinical samples. J. Clin. Virol. 2021, 141, 104908. [Google Scholar] [CrossRef]
- Wegner, F.; Roloff, T.; Huber, M.; Cordey, S.; Ramette, A.; Gerth, Y.; Bertelli, C.; Stange, M.; Seth-Smith, H.M.B.; Mari, A.; et al. External Quality Assessment of SARS-CoV-2 Sequencing: An ESGMD-SSM Pilot Trial across 15 European Laboratories. J. Clin. Microbiol. 2022, 60, e01698-21. [Google Scholar] [CrossRef]
- Weissberg, D.; Böni, J.; Rampini, S.K.; Kufner, V.; Zaheri, M.; Schreiber, P.W.; Abela, I.A.; Huber, M.; Sax, H.; Wolfensberger, A. Does respiratory co-infection facilitate dispersal of SARS-CoV-2? Investigation of a super-spreading event in an open-space office. Antimicrob. Resist. Infect. Control. 2020, 9, 191. [Google Scholar] [CrossRef]
- Najarian, K.; Zaheri, M.; A Rad, A.; Najarian, S.; Dargahi, J. A novel Mixture Model Method for identification of differentially expressed genes from DNA microarray data. BMC Bioinform. 2004, 5, 201. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zaheri, M.; Moret, B.M. Using Phylogenetic Relationships to Improve the Inference of Transcriptional Regulatory Networks. In Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; Volume 1, pp. 186–193. [Google Scholar] [CrossRef] [Green Version]
- Zaheri, M.; Salamin, N. Shedding light on the underlying characteristics of genomes using Kronecker model families of codon evolution. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zaheri, M.; Dib, L.; Salamin, N. A Generalized Mechanistic Codon Model. Mol. Biol. Evol. 2014, 31, 2528–2541. [Google Scholar] [CrossRef] [Green Version]
- Deinhardt-Emmer, S.; Saux, C.J.L. The Aging Microenvironment in Lung Fibrosis. Curr. Tissue Microenviron. Rep. 2022. [Google Scholar] [CrossRef]
- Deinhardt-Emmer, S.; Wittschieber, D.; Sanft, J.; Kleemann, S.; Elschner, S.; Haupt, K.F.; Vau, V.; Häring, C.; Rödel, J.; Henke, A.; et al. Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage. eLife 2021, 10, e60361. [Google Scholar] [CrossRef]
- Deinhardt-Emmer, S.; Böttcher, S.; Häring, C.; Giebeler, L.; Henke, A.; Zell, R.; Jungwirth, J.; Jordan, P.M.; Werz, O.; Hornung, F.; et al. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J. Virol. 2021, 95, e00110-21. [Google Scholar] [CrossRef]
- Kitazawa, K.; Deinhardt-Emmer, S.; Inomata, T.; Deshpande, S.; Sotozono, C. The Transmission of SARS-CoV-2 Infection on the Ocular Surface and Prevention Strategies. Cells 2021, 10, 796. [Google Scholar] [CrossRef]
- Hornung, F.; Rogal, J.; Loskill, P.; Löffler, B.; Deinhardt-Emmer, S. The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections. Int. J. Mol. Sci. 2021, 22, 3456. [Google Scholar] [CrossRef]
- Deinhardt-Emmer, S.; Sachse, S.; Geraci, J.; Fischer, C.; Kwetkat, A.; Dawczynski, K.; Tuchscherr, L.; Löffler, B. Virulence patterns of Staphylococcus Aureus Strains Nasopharyngeal Colon. J. Hosp. Infect. 2018, 100, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Deinhardt-Emmer, S.; Haupt, K.F.; Garcia-Moreno, M.; Geraci, J.; Forstner, C.; Pletz, M.; Ehrhardt, C.; Löffler, B. Staphylococcus Aureus Pneumonia: Preced. Influenza Infect. Paves Way Low-Virulent Strains. Toxins 2019, 11, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deinhardt-Emmer, S.; Jäckel, L.; Häring, C.; Böttcher, S.; Wilden, J.J.; Glück, B.; Heller, R.; Schmidtke, M.; Koch, M.; Löffler, B.; et al. Inhibition of Phosphatidylinositol 3-Kinase by Pictilisib Blocks Influenza Virus Propagation in Cells and in Lungs of Infected Mice. Biomolecules 2021, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Schicke, E.; Cseresnyés, Z.; Rennert, K.; Vau, V.; Haupt, K.F.; Hornung, F.; Nietzsche, S.; Swiczak, F.; Schmidtke, M.; Glück, B.; et al. Staphylococcus Aureus Lung Infect. Results Down-Regul. Surfactant Protein-A Mainly Caused Pro-Inflamm. Macrophages. Microorganisms 2020, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Deinhardt-Emmer, S.; Rennert, K.; Schicke, E.; Cseresnyés, Z.; Windolph, M.; Nietzsche, S.; Heller, R.; Siwczak, F.; Haupt, K.F.; Carlstedt, S.; et al. Co-infection with Staphylococcus Aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication 2020, 12, 025012. [Google Scholar] [CrossRef] [Green Version]
- Bilz, N.C.; Willscher, E.; Binder, H.; Böhnke, J.; Stanifer, M.L.; Hübner, D.; Boulant, S.; Liebert, U.G.; Claus, C. Teratogenic Rubella Virus Alters the Endodermal Differentiation Capacity of Human Induced Pluripotent Stem Cells. Cells 2019, 8, 870. [Google Scholar] [CrossRef] [Green Version]
- Wald, M.E.; Sieg, M.; Schilling, E.; Binder, M.; Vahlenkamp, T.W.; Claus, C. The Interferon Response Dampens the Usutu Virus Infection-Associated Increase in Glycolysis. Front. Cell. Infect. Microbiol. 2022, 12, 823181. [Google Scholar] [CrossRef]
- Schilling, E.; Wald, M.E.; Schulz, J.; Werner, L.E.; Claus, C. Interferon Signaling-Dependent Contribution of Glycolysis to Rubella Virus Infection. Pathogens 2022, 11, 537. [Google Scholar] [CrossRef]
- Conceição-Neto, N.; Zeller, M.; Lefrère, H.; Bruyn, P.D.; Beller, L.; Deboutte, W.; Yinda, C.K.; Lavigne, R.; Maes, P.; Ranst, M.V.; et al. Modular approach to customise sample preparation procedures for viral metagenomics: A reproducible protocol for virome analysis. Sci. Rep. 2015, 5, 16532. [Google Scholar] [CrossRef] [Green Version]
- Van Espen, L.; Bak, E.G.; Beller, L.; Close, L.; Deboutte, W.; Juel, H.B.; Nielsen, T.; Sinar, D.; Coninck, L.D.; Frithioff-Bøjsøe, C.; et al. A Previously Undescribed Highly Prevalent Phage Identified in a Danish Enteric Virome Catalog. mSystems 2021, 6, e00382-21. [Google Scholar] [CrossRef]
- Elbehery, A.H.A.; Feichtmayer, J.; Singh, D.; Griebler, C.; Deng, L. The Human Virome Protein Cluster Database (HVPC): A Human Viral Metagenomic Database for Diversity and Function Annotation. Front. Microbiol. 2018, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Ru, J.; Xue, J.; Schulz, S.; Mirzaei, M.K.; Janssen, K.P.; Quante, M.; Deng, L. Differences in Gut Virome Related to Barrett Esophagus and Esophageal Adenocarcinoma. Microorganisms 2021, 9, 1701. [Google Scholar] [CrossRef]
- Unterer, M.; Mirzaei, M.K.; Deng, L. Gut Phage Database: Phage mining in the cave of wonders. Signal Transduct. Target. Ther. 2021, 6, 193. [Google Scholar] [CrossRef]
- Mirzaei, M.K.; Xue, J.; Costa, R.; Ru, J.; Schulz, S.; Taranu, Z.E.; Deng, L. Challenges of Studying the Human Virome—Relevant Emerging Technologies. Trends Microbiol. 2021, 29, 171–181. [Google Scholar] [CrossRef]
- Kaletta, J.; Pickl, C.; Griebler, C.; Klingl, A.; Kurmayer, R.; Deng, L. A rigorous assessment and comparison of enumeration methods for environmental viruses. Sci. Rep. 2020, 10, 18625. [Google Scholar] [CrossRef]
- Mirzaei, M.K.; Deng, L. New technologies for developing phage-based tools to manipulate the human microbiome. Trends Microbiol. 2022, 30, 131–142. [Google Scholar] [CrossRef]
- Mirzaei, M.K.; Deng, L. Sustainable Microbiome: A symphony orchestrated by synthetic phages. Microb. Biotechnol. 2020, 14, 45–50. [Google Scholar] [CrossRef]
- Gismondi, M.I.; Turazza, E.I.; Grinstein, S.; Galoppo, M.C.; Preciado, M.V. Hepatitis C Virus Infection in Infants and Children from Argentina. J. Clin. Microbiol. 2004, 42, 1199–1202. [Google Scholar] [CrossRef] [Green Version]
- Gismondi, M.I.; Staendner, L.H.; Grinstein, S.; Guzmán, C.A.; Preciado, M.V. Hepatitis C Virus Isolates from Argentina Disclose a Novel Genotype 1-Associated Restriction Pattern. J. Clin. Microbiol. 2004, 42, 1298–1301. [Google Scholar] [CrossRef] [Green Version]
- Gismondi, M.I.; Becker, P.D.; Valva, P.; Guzmán, C.A.; Preciado, M.V. Phylogenetic Analysis of Previously Nontypeable Hepatitis C Virus Isolates from Argentina. J. Clin. Microbiol. 2006, 44, 2229–2232. [Google Scholar] [CrossRef] [Green Version]
- Gismondi, M.I.; Becker, P.D.; Carrasco, J.M.D.; Guzmán, C.A.; Campos, R.H.; Preciado, M.V. Evolution of hepatitis C virus hypervariable region 1 in immunocompetent children born to HCV-infected mothers. J. Viral Hepat. 2009, 16, 332–339. [Google Scholar] [CrossRef]
- Valva, P.; Matteo, E.D.; Galoppo, M.C.; Gismondi, M.I.; Preciado, M.V. Apoptosis markers related to pathogenesis of pediatric chronic hepatitis C virus infection: M30 mirrors the severity of steatosis. J. Med. Virol. 2010, 82, 949–957. [Google Scholar] [CrossRef]
- Gismondi, M.I.; Carrasco, J.M.D.; Valva, P.; Becker, P.D.; Guzmán, C.A.; Campos, R.H.; Preciado, M.V. Dynamic changes in viral population structure and compartmentalization during chronic hepatitis C virus infection in children. Virology 2013, 447, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Valva, P.; Gismondi, M.; Casciato, P.; Galoppo, M.; Lezama, C.; Galdame, O.; Gadano, A.; Galoppo, M.; Mullen, E.; Matteo, E.D.; et al. Distinctive intrahepatic characteristics of paediatric and adult pathogenesis of chronic hepatitis C infection. Clin. Microbiol. Infec. 2014, 20, O998–O1009. [Google Scholar] [CrossRef] [Green Version]
- García-Nuñez, S.; Gismondi, M.I.; König, G.; Berinstein, A.; Taboga, O.; Rieder, E.; Martínez-Salas, E.; Carrillo, E. Enhanced IRES activity by the 3′UTR element determines the virulence of FMDV isolates. Virology 2014, 448, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Gismondi, M.I.; Ortiz, X.P.; Currá, A.P.; Asurmendi, S.; Taboga, O. Artificial microRNAs as antiviral strategy to FMDV: Structural implications of target selection. J. Virol. Methods 2014, 199, 1–10. [Google Scholar] [CrossRef]
- Cacciabue, M.; García-Núñez, M.S.; Delgado, F.; Currá, A.; Marrero, R.; Molinari, P.; Rieder, E.; Carrillo, E.; Gismondi, M.I. Differential replication of Foot-and-mouth disease viruses in mice determine lethality. Virology 2017, 509, 195–204. [Google Scholar] [CrossRef]
- Currá, A.; Cacciabue, M.; Gravisaco, M.J.; Asurmendi, S.; Taboga, O.; Gismondi, M.I. Antiviral efficacy of short-hairpin RNAs and artificial microRNAs targeting foot-and-mouth disease virus. PeerJ 2021, 9, e11227. [Google Scholar] [CrossRef]
- Cacciabue, M.; Currá, A.; Carrillo, E.; König, G.; Gismondi, M.I. A beginner’s guide for FMDV quasispecies analysis: Sub-consensus variant detection and haplotype reconstruction using next-generation sequencing. Brief. Bioinform. 2019, 21, 1766–1775. [Google Scholar] [CrossRef]
- Cacciabue, M.; Currá, A.; Gismondi, M.I. ViralPlaque: A Fiji macro for automated assessment of viral plaque statistics. PeerJ 2019, 7, e7729. [Google Scholar] [CrossRef]
- Cacciabue, M.; Aguilera, P.; Gismondi, M.I.; Taboga, O. Covidex: An ultrafast and accurate tool for SARS-CoV-2 subtyping. Infect. Genet. Evol. 2022, 99, 105261. [Google Scholar] [CrossRef] [PubMed]
- Pfefferle, S.; Schöpf, J.; Kögl, M.; Friedel, C.C.; Müller, M.A.; Carbajo-Lozoya, J.; Stellberger, T.; von Dall’Armi, E.; Herzog, P.; Kallies, S.; et al. The SARS-coronavirus-host interactome: Identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 2011, 7, e1002331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fossum, E.; Friedel, C.C.; Rajagopala, S.V.; Titz, B.; Baiker, A.; Schmidt, T.; Kraus, T.; Stellberger, T.; Rutenberg, C.; Suthram, S.; et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009, 5, e1000570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowski, A.J.; Erhard, F.; L’Hernault, A.; Bonfert, T.; Schilhabel, M.; Crump, C.; Rosenstiel, P.; Efstathiou, S.; Zimmer, R.; Friedel, C.C.; et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun. 2015, 6, 7126. [Google Scholar] [CrossRef] [Green Version]
- Wyler, E.; Menegatti, J.; Franke, V.; Kocks, C.; Boltengagen, A.; Hennig, T.; Theil, K.; Rutkowski, A.; Ferrai, C.; Baer, L.; et al. Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection. Genome Biol. 2017, 18, 209. [Google Scholar] [CrossRef] [Green Version]
- Hennig, T.; Michalski, M.; Rutkowski, A.J.; Djakovic, L.; Whisnant, A.W.; Friedl, M.S.; Jha, B.A.; Baptista, M.A.P.; L’Hernault, A.; Erhard, F.; et al. HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog. 2018, 14, e1006954. [Google Scholar] [CrossRef]
- Wang, X.; Hennig, T.; Whisnant, A.W.; Erhard, F.; Prusty, B.K.; Friedel, C.C.; Forouzmand, E.; Hu, W.; Erber, L.; Chen, Y.; et al. Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27. Nat. Commun. 2020, 11, 293. [Google Scholar] [CrossRef] [Green Version]
- Friedel, C.C.; Whisnant, A.W.; Djakovic, L.; Rutkowski, A.J.; Friedl, M.S.; Kluge, M.; Williamson, J.C.; Sai, S.; Vidal, R.O.; Sauer, S.; et al. Dissecting Herpes Simplex Virus 1-Induced Host Shutoff at the RNA Level. J. Virol. 2021, 95, e01399-20. [Google Scholar] [CrossRef]
- Whisnant, A.W.; Jürges, C.S.; Hennig, T.; Wyler, E.; Prusty, B.; Rutkowski, A.J.; L’hernault, A.; Djakovic, L.; Göbel, M.; Döring, K.; et al. Integrative functional genomics decodes herpes simplex virus 1. Nat. Commun. 2020, 11, 2038. [Google Scholar] [CrossRef]
- Meyer, I.M.; Miklos, I. SimulFold: Simultaneously inferring RNA structures including pseudoknots, alignments, and trees using a Bayesian MCMC framework. PLoS Comput. Biol. 2007, 3, 1441–1454. [Google Scholar] [CrossRef]
- Schoening, J.C.; Streitner, C.; Meyer, I.M.; Gao, Y.; Staiger, D. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res. 2008, 36, 6977–6987. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, N.J.P.; Meyer, I.M. TRANSAT-A Method for Detecting the Conserved Helices of Functional RNA Structures, Including Transient, Pseudo-Knotted and Alternative Structures. PLoS Comput. Biol. 2010, 6, e1000823. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Proctor, J.R.; Meyer, I.M. On the importance of cotranscriptional RNA structure formation. RNA 2013, 19, 1461–1473. [Google Scholar] [CrossRef] [Green Version]
- Proctor, J.R.; Meyer, I.M. CoFold: An RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Res. 2013, 41, e102. [Google Scholar] [CrossRef] [Green Version]
- Mazloomian, A.; Meyer, I.M. Genome-wide identification and characterization of tissue-specific RNA editing events in D. melanogaster and their potential role in regulating alternative splicing. RNA Biol. 2015, 12, 1391–1401. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Meyer, I.M. A comprehensive comparison of general RNA-RNA interaction prediction methods. Nucleic Acids Res. 2016, 44, e61. [Google Scholar] [CrossRef] [Green Version]
- Bogdanow, B.; Wang, X.; Eichelbaum, K.; Sadewasser, A.; Husic, I.; Paki, K.; Budt, M.; Hergeselle, M.; Vetter, B.; Hou, J.; et al. The dynamic proteome of influenza A virus infection identifies M segment splicing as a host range determinant. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Menzel, P.; McCorkindale, A.L.; Stefanov, S.R.; Zinzen, R.P.; Meyer, I.M. Transcriptional dynamics of microRNAs and their targets during Drosophila neurogenesis. RNA Biol. 2019, 16, 69–81. [Google Scholar] [CrossRef]
- Tsybulskyi, V.; Mounir, M.; Meyer, I.M. R-CHIE: A web server and R package for visualizing cis and trans RNA-RNA, RNA-DNA and DNA-DNA interactions. Nucleic Acids Res. 2020, 48, e105. [Google Scholar] [CrossRef]
- Martin, A.L.; Mounir, M.; Meyer, I.M. COBOLD: A method for identifying different functional classes of transient RNA structure features that can impact RNA structure formation in vivo. Nucleic Acids Res. 2021, 49, e19. [Google Scholar] [CrossRef]
- Tsybulskyi, V.; Meyer, I.M. ShapeSorter: A fully probabilistic method for detecting conserved RNA structure features supported by SHAPE evidence. Nucleic Acids Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Fricke, M.; Marz, M. Prediction of conserved long-range RNA-RNA interactions in full viral genomes. Bioinformatics 2016, 32, 2928–2935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricke, M.; Dünnes, N.; Zayas, M.; Bartenschlager, R.; Niepmann, M.; Marz, M. Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA 2015, 21, 1219–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desirò, D.; Hölzer, M.; Ibrahim, B.; Marz, M. SilentMutations (SIM): A tool for analyzing long-range RNA-RNA interactions in viral genomes and structured RNAs. Virus Res. 2019, 260, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Collatz, M.; Mock, F.; Barth, E.; Hölzer, M.; Sachse, K.; Marz, M. EpiDope: A deep neural network for linear B-cell epitope prediction. Bioinformatics 2021, 37, 448–455. [Google Scholar] [CrossRef]
- Mock, F.; Viehweger, A.; Barth, E.; Marz, M. VIDHOP, viral host prediction with deep learning. Bioinformatics 2021, 37, 318–325. [Google Scholar] [CrossRef]
- Madhugiri, R.; Fricke, M.; Marz, M.; Ziebuhr, J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res. 2014, 194, 76–89. [Google Scholar] [CrossRef]
- Madhugiri, R.; Fricke, M.; Marz, M.; Ziebuhr, J. Coronavirus cis-Acting RNA Elements. Adv. Virus Res. 2016, 96, 127–163. [Google Scholar] [CrossRef]
- Madhugiri, R.; Karl, N.; Petersen, D.; Lamkiewicz, K.; Fricke, M.; Wend, U.; Scheuer, R.; Marz, M.; Ziebuhr, J. Structural and functional conservation of cis-acting RNA elements in coronavirus 5’-terminal genome regions. Virology 2018, 517, 44–55. [Google Scholar] [CrossRef]
- Viehweger, A.; Krautwurst, S.; Lamkiewicz, K.; Madhugiri, R.; Ziebuhr, J.; Hölzer, M.; Marz, M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 2019, 29, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Kallies, R.; Hölzer, M.; Toscan, R.B.; da Rocha, U.N.; Anders, J.; Marz, M.; Chatzinotas, A. Evaluation of Sequencing Library Preparation Protocols for Viral Metagenomic Analysis from Pristine Aquifer Groundwaters. Viruses 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Overholt, W.A.; Hölzer, M.; Geesink, P.; Diezel, C.; Marz, M.; Küsel, K. Inclusion of Oxford Nanopore long reads improves all microbial and viral metagenome-assembled genomes from a complex aquifer system. Environ. Microbiol. 2020, 22, 4000–4013. [Google Scholar] [CrossRef]
- Hölzer, M.; Krähling, V.; Amman, F.; Barth, E.; Bernhart, S.H.; Carmelo, V.A.O.; Collatz, M.; Doose, G.; Eggenhofer, F.; Ewald, J.; et al. Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Sci. Rep. 2016, 6, 34589. [Google Scholar] [CrossRef] [Green Version]
- Hölzer, M.; Marz, M. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience 2019, 8, giz039. [Google Scholar] [CrossRef] [Green Version]
- Hölzer, M.; Marz, M. Software Dedicated to Virus Sequence Analysis “Bioinformatics Goes Viral”. In Loeffler’s Footsteps—Viral Genomics in the Era of High-Throughput Sequencing; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–257. [Google Scholar] [CrossRef]
- Marz, M.; Beerenwinkel, N.; Drosten, C.; Fricke, M.; Frishman, D.; Hofacker, I.L.; Hoffmann, D.; Middendorf, M.; Rattei, T.; Stadler, P.F.; et al. Challenges in RNA virus bioinformatics. Bioinformatics 2014, 30, 1793–1799. [Google Scholar] [CrossRef] [Green Version]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021, 49, D192–D200. [Google Scholar] [CrossRef]
- van Kempen, M.; Kim, S.S.; Tumescheit, C.; Mirdita, M.; Söding, J.; Steinegger, M. Foldseek: Fast and accurate protein structure search. bioRxiv 2022. [Google Scholar] [CrossRef]
- Charles, J.; Tangudu, C.S.; Hurt, S.L.; Tumescheit, C.; Firth, A.E.; Garcia-Rejon, J.E.; Machain-Williams, C.; Blitvich, B.J. Detection of Novel and Recognized RNA Viruses in Mosquitoes from the Yucatan Peninsula of Mexico Using Metagenomics and Characterization of Their in Vitro Host Ranges. J. Gen. Virol. 2018, 99, 1729–1738. [Google Scholar] [CrossRef]
- Charles, J.; Tangudu, C.S.; Hurt, S.L.; Tumescheit, C.; Firth, A.E.; Garcia-Rejon, J.E.; Machain-Williams, C.; Blitvich, B.J. Discovery of a Novel Tymoviridae-like Virus in Mosquitoes from Mexico. Arch. Virol. 2019, 164, 649–652. [Google Scholar] [CrossRef]
- Choi, H.K.; Kang, H.; Lee, C.; Kim, H.G.; Phillips, B.P.; Park, S.; Tumescheit, C.; Kim, S.A.; Lee, H.; Roh, S.H.; et al. Evolutionary Balance between Foldability and Functionality of a Glucose Transporter. Nat. Chem. Biol. 2022, 18, 713–723. [Google Scholar] [CrossRef]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Eynden, E.V.; Vandamme, A.M.; et al. Genome Detective: An automated system for virus identification from high-throughput sequencing data. Bioinformatics 2018, 35, 871–873. [Google Scholar] [CrossRef] [Green Version]
- Singer, J.B.; Thomson, E.C.; McLauchlan, J.; Hughes, J.; Gifford, R.J. GLUE: A flexible software system for virus sequence data. BMC Bioinform. 2018, 19, 532. [Google Scholar] [CrossRef] [Green Version]
- Kostaki, E.G.; Nikolopoulos, G.K.; Pavlitina, E.; Williams, L.; Magiorkinis, G.; Schneider, J.; Skaathun, B.; Morgan, E.; Psichogiou, M.; Daikos, G.L.; et al. Molecular Analysis of Human Immunodeficiency Virus Type 1 (HIV-1)–Infected Individuals in a Network-Based Intervention (Transmission Reduction Intervention Project): Phylogenetics Identify HIV-1–Infected Individuals With Social Links. J. Infect. Dis. 2018, 218, 707–715. [Google Scholar] [CrossRef]
- Paraskevis, D.; Kostaki, E.; Nikolopoulos, G.K.; Sypsa, V.; Psichogiou, M.; Amo, J.D.; Hodges-Mameletzis, I.; Paraskeva, D.; Skoutelis, A.; Malliori, M.; et al. Molecular Tracing of the Geographical Origin of Human Immunodeficiency Virus Type 1 Infection and Patterns of Epidemic Spread Among Migrants Who Inject Drugs in Athens. Clin. Infect. Dis. 2017, 65, 2078–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostaki, E.G.; Pavlopoulos, G.A.; Verrou, K.M.; Ampatziadis-Michailidis, G.; Harokopos, V.; Hatzis, P.; Moulos, P.; Siafakas, N.; Pournaras, S.; Hadjichristodoulou, C.; et al. Molecular Epidemiology of SARS-CoV-2 in Greece Reveals Low Rates of Onward Virus Transmission after Lifting of Travel Restrictions Based on Risk Assessment during Summer 2020. mSphere 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Paraskevis, D.; Kostaki, E.; Magiorkinis, G.; Panayiotakopoulos, G.; Sourvinos, G.; Tsiodras, S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol. 2020, 79, 104212. [Google Scholar] [CrossRef] [PubMed]
- Morel, B.; Barbera, P.; Czech, L.; Bettisworth, B.; Hübner, L.; Lutteropp, S.; Serdari, D.; Kostaki, E.G.; Mamais, I.; Kozlov, A.M.; et al. Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult. Mol. Biol. Evol. 2020, 38, 1777–1791. [Google Scholar] [CrossRef]
- Kostaki, E.G.; Karamitros, T.; Stefanou, G.; Mamais, I.; Angelis, K.; Hatzakis, A.; Kramvis, A.; Paraskevis, D. Unravelling the history of hepatitis B virus genotypes A and D infection using a full-genome phylogenetic and phylogeographic approach. eLife 2018, 7, 36709. [Google Scholar] [CrossRef]
- Paraskevis, D.; Angelis, K.; Magiorkinis, G.; Kostaki, E.; Ho, S.Y.; Hatzakis, A. Dating the origin of hepatitis B virus reveals higher substitution rate and adaptation on the branch leading to F/H genotypes. Mol. Phylogenet. Evol. 2015, 93, 44–54. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Cuevas-Ferrando, E.; Randazzo, W.; Sánchez, G. Bias of library preparation for virome characterization in untreated and treated wastewaters. Sci. Total Environ. 2021, 767, 144589. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Chiner-Oms, Á.; Cuevas-Ferrando, E.; Díaz-Reolid, A.; Falcó, I.; Randazzo, W.; Girón-Guzmán, I.; Allende, A.; Bracho, M.A.; Comas, I.; et al. Spatial and temporal distribution of SARS-CoV-2 diversity circulating in wastewater. Water Res. 2022, 211, 118007. [Google Scholar] [CrossRef]
- Rahlff, J.; Stolle, C.; Giebel, H.A.; Ribas-Ribas, M.; Damgaard, L.R.; Wurl, O. Oxygen Profiles Across the Sea-Surface Microlayer—Effects of Diffusion and Biological Activity. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Rahlff, J. The Virioneuston: A Review on Viral–Bacterial Associations at Air–Water Interfaces. Viruses 2019, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Rahlff, J.; Stolle, C.; Giebel, H.A.; Mustaffa, N.I.H.; Wurl, O.; Herlemann, D.P.R. Sea foams are ephemeral hotspots for distinctive bacterial communities contrasting sea-surface microlayer and underlying surface water. FEMS Microbiol. Ecol. 2021, 97, fiab035. [Google Scholar] [CrossRef]
- Rahlff, J.; Bornemann, T.L.V.; Lopatina, A.; Severinov, K.; Probst, A.J. Host-Associated Phages Disperse across the Extraterrestrial Analogue Antarctica. Appl. Environ. Microbiol. 2022, 88. [Google Scholar] [CrossRef]
- Miozzi, L.; Balestrini, R.; Bolchi, A.; Novero, M.; Ottonello, S.; Bonfante, P. Phospholipase A2 up-regulation during mycorrhiza formation in Tuber Borchii. New Phytol. 2005, 167, 229–238. [Google Scholar] [CrossRef]
- Miozzi, L.; Piro, R.M.; Rosa, F.; Ala, U.; Silengo, L.; Cunto, F.D.; Provero, P. Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data. PLoS ONE 2008, 3, e2439. [Google Scholar] [CrossRef]
- Catoni, M.; Miozzi, L.; Fiorilli, V.; Lanfranco, L.; Accotto, G.P. Comparative Analysis of Expression Profiles in Shoots and Roots of Tomato Systemically Infected by Tomato spotted wilt virus Reveals Organ-Specific Transcriptional Responses. Mol. Plant Microbe Interact. 2009, 22, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Miozzi, L.; Gambino, G.; Burgyan, J.; Pantaleo, V. Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis Vinifera. Mol. Plant Pathol. 2012, 14, 30–43. [Google Scholar] [CrossRef]
- Miozzi, L.; Pantaleo, V.; Burgyán, J.; Accotto, G.P.; Noris, E. Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction between the major viral hotspot and the plant host genome. Virus Res. 2013, 178, 287–296. [Google Scholar] [CrossRef]
- Miozzi, L.; Napoli, C.; Sardo, L.; Accotto, G.P. Transcriptomics of the Interaction between the Monopartite Phloem-Limited Geminivirus Tomato Yellow Leaf Curl Sardinia Virus and Solanum Lycopersicum Highlights A Role Plant Horm. Autophagy Plant Immune Syst. Fine Tuning Infect. PLoS ONE 2014, 9, e89951. [Google Scholar] [CrossRef] [Green Version]
- Pirovano, W.; Miozzi, L.; Boetzer, M.; Pantaleo, V. Bioinformatics approaches for viral metagenomics in plants using short RNAs: Model case of study and application to a Cicer Arietinum Popul. Front. Microbiol. 2015, 5. [Google Scholar] [CrossRef]
- Zaagueri, T.; Miozzi, L.; Mnari-Hattab, M.; Noris, E.; Accotto, G.; Vaira, A. Deep Sequencing Data and Infectivity Assays Indicate that Chickpea Chlorotic Dwarf Virus is the Etiological Agent of the “Hard Fruit Syndrome” of Watermelon. Viruses 2017, 9, 311. [Google Scholar] [CrossRef] [Green Version]
- Kutnjak, D.; Tamisier, L.; Adams, I.; Boonham, N.; Candresse, T.; Chiumenti, M.; Jonghe, K.D.; Kreuze, J.F.; Lefebvre, M.; Silva, G.; et al. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms 2021, 9, 841. [Google Scholar] [CrossRef]
- Tabein, S.; Jansen, M.; Noris, E.; Vaira, A.M.; Marian, D.; Behjatnia, S.A.A.; Accotto, G.P.; Miozzi, L. The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target Region. Front. Plant Sci. 2020, 11, 533338. [Google Scholar] [CrossRef]
- Gewin, V. What Black scientists want from colleagues and their institutions. Nature 2020, 583, 319–322. [Google Scholar] [CrossRef]
Service/Activity | See Sec. | Description | Link |
---|---|---|---|
monthly newsletter | Section 2.1 | recent research results, upcoming events, job vacancies and further announcements | https://evbc.uni-jena.de/evbc-newsletter/ |
EVBC Twitter | Section 2.1 | sharing recent publications, vacancies and event announcements | https://twitter.com/EVirusBioinfC |
publication radar | Section 2.1 | monitoring the publications of our members and highlighting all virus bioinformatics related papers in the newsletter and on Twitter | https://evbc.uni-jena.de/publications/ |
calendar | Section 2.1 | listing conferences, workshops, lectures etc. (including submission and registrations deadlines) | https://evbc.uni-jena.de/events/ |
vacancies | Section 2.1 | collection of vacancies offered by our members | https://evbc.uni-jena.de/vacancies/ |
annual conference on virus bioinformatics | Section 2.2 | exchange the latest research results and experiences with an extensive network of leading experts and aspiring young scientists | https://evbc.uni-jena.de/events/vibiom/ |
viruses in silico lecture series | Section 2.3 | keep you up to date with the latest developments in virus bioinformatics, especially new tools that might help you in your research | https://evbc.uni-jena.de/events/viruses-in-silico/ |
ECR Viromics Webinar Series | Section 2.3 | aimed at early career researchers studying viruses in complex communities | https://evbc.uni-jena.de/events/ecr-viromics-webinar-series/ |
workshops | Section 2.4 | laying the foundation for a high quality education in virus bioinformatics | https://evbc.uni-jena.de/events/workshops/ |
tool collection | Section 2.5 | curated collection of virus bioinformatics tools | http://bit.ly/evbctools |
collaborative research projects | Section 2.6 | implementing jointly funded projects that achieve more than the sum of their parts | https://viroinf.eu/ |
special issues | Section 2.7 | recurring special issue on virus bioinformatics | https://evbc.uni-jena.de/special-issues/ |
Name | Abbr. | Date | Location | # Part. | Key Outcomes | Report |
---|---|---|---|---|---|---|
1st Meeting of the European Virus Bioinformatics Center | 6–8 March 2017 | Jena, Germany | ∼100 | Discussion of the role of the EVBCFounding of the EVBCElection of the first Board of DirectorsInsights into EU policy and funding opportunities | ||
2nd Annual Meeting of the European Virus Bioinformatics Center | 9–10 April 2018 | Utrecht, The Netherlands | ∼120 | Extension of the EVBC network to include America and Asia Discussion and design of joint projects | [7] | |
3rd Annual Meeting of the European Virus Bioinformatics Center | 28–29 March 2019 | Glasgow, UK | ∼110 | Inclusion of contributed talks to the scientific programAwards for junior scientists | [5] | |
International Virus Bioinformatics Meeting 2020 | IVBM 2020 | Bern, Switzerland/virtually | ∼120 | Renaming of the conferenceOnline format due to pandemicElection of Board of DirectorsPresentation of VIROINF network (see Section 2.6) | [6] | |
International Virus Bioinformatics Meeting 2022 | ViBioM 2022 | Valencia, Spain/virtually | 100–150 (380 a) | Satellite meeting on SARS-CoV-2“Ask me anything” with the keynote speakersVirtual poster session in individual breakout rooms | [8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hufsky, F.; Abecasis, A.; Agudelo-Romero, P.; Bletsa, M.; Brown, K.; Claus, C.; Deinhardt-Emmer, S.; Deng, L.; Friedel, C.C.; Gismondi, M.I.; et al. Women in the European Virus Bioinformatics Center. Viruses 2022, 14, 1522. https://doi.org/10.3390/v14071522
Hufsky F, Abecasis A, Agudelo-Romero P, Bletsa M, Brown K, Claus C, Deinhardt-Emmer S, Deng L, Friedel CC, Gismondi MI, et al. Women in the European Virus Bioinformatics Center. Viruses. 2022; 14(7):1522. https://doi.org/10.3390/v14071522
Chicago/Turabian StyleHufsky, Franziska, Ana Abecasis, Patricia Agudelo-Romero, Magda Bletsa, Katherine Brown, Claudia Claus, Stefanie Deinhardt-Emmer, Li Deng, Caroline C. Friedel, María Inés Gismondi, and et al. 2022. "Women in the European Virus Bioinformatics Center" Viruses 14, no. 7: 1522. https://doi.org/10.3390/v14071522
APA StyleHufsky, F., Abecasis, A., Agudelo-Romero, P., Bletsa, M., Brown, K., Claus, C., Deinhardt-Emmer, S., Deng, L., Friedel, C. C., Gismondi, M. I., Kostaki, E. G., Kühnert, D., Kulkarni-Kale, U., Metzner, K. J., Meyer, I. M., Miozzi, L., Nishimura, L., Paraskevopoulou, S., Pérez-Cataluña, A., ... Marz, M. (2022). Women in the European Virus Bioinformatics Center. Viruses, 14(7), 1522. https://doi.org/10.3390/v14071522