Comparative Evaluation of the Foot-and-Mouth Disease Virus Permissive LF-BK αVβ6 Cell Line for Senecavirus A Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of SVA Positive Sample and Initial Propagation on Porcine-Derived Cell Lines
2.2. Polyethylene Glycol Precipitation
2.3. Sucrose Density Gradient Centrifugation
2.4. Western Blotting
2.5. Electron Microscopy
2.6. SVA Plaque Purification and Propagation on LF-BK αVβ6 Cells
2.7. Determination of Plaque Forming Units Per mL (PFU/mL)
2.8. Determination of 50% Tissue Culture Infectious Dose (TCID50)
2.9. Sequencing of the Isolated SVA Strain
2.10. Equilibrium Cesium Chloride Density Gradient Centrifugation
2.11. SVA-LP8 Propagation and Titration in Four Cell Lines
2.12. Determining Sensitivity of SVA-LP8 and FMDV to Type I Porcine Interferons
2.13. Determination of Virus Neutralizing Antibody Titers in Swine Serum Samples
3. Results and Discussion
3.1. Cultivation of Submitted Field Sample in Porcine Derived Cell Lines
3.2. SVA Purification Using LF-BK αVβ6 Cells
3.3. SVA-LP8 Characterization
3.4. SVA-LP8 Propagation in Four Cell Lines
3.5. Sensitivity to Type I Porcine Interferons
3.6. SVA Neutralizing Test Antibody Titers in Serum from Swine Used in FMDV Vaccination Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hales, L.M.; Knowles, N.J.; Reddy, P.S.; Xu, L.; Hay, C.; Hallenbeck, P.L. Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. J. Gen. Virol. 2008, 89, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Houston, E.; Gimenez-Lirola, L.G.; Magtoto, R.; Mora-Diaz, J.C.; Baum, D.; Pineyro, P.E. Seroprevalence of Senecavirus A in sows and grower-finisher pigs in major swine producing-states in the United States. Prev. Vet. Med. 2019, 165, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Leme, R.A.; Zotti, E.; Alcântara, B.K.; Oliveira, M.V.; Freitas, L.A.; Alfieri, A.F. Senecavirus A: An Emerging Vesicular Infection in Brazilian Pig Herds. Transbound. Emerg. Dis. 2015, 62, 603–611. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, F.; Chen, P.; Liu, H.; Cao, W.; Zhang, K.; Liu, X.; Zheng, H. Emergence of novel Seneca Valley virus strains in China, 2017. Transbound. Emerg. Dis. 2017, 64, 1024–1029. [Google Scholar] [CrossRef]
- Baker, K.L.; Mowrer, C.; Canon, A.; Linhares, D.C.L.; Rademacher, C.; Karriker, L.A.; Holtkamp, D.J. Systematic Epidemiological Investigations of Cases of Senecavirus A in US Swine Breeding Herds. Transbound. Emerg. Dis. 2017, 64, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Vannucci, F.A.; Linhares, D.C.; Barcellos, D.E.; Lam, H.C.; Collins, J.; Marthaler, D. Identification and Complete Genome of Seneca Valley Virus in Vesicular Fluid and Sera of Pigs Affected with Idiopathic Vesicular Disease, Brazil. Transbound. Emerg. Dis. 2015, 62, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhao, X.; Bai, Y.; Sun, B.; Xie, Q.; Ma, J. The First Identification and Complete Genome of Senecavirus A Affecting Pig with Idiopathic Vesicular Disease in China. Transbound. Emerg. Dis. 2017, 64, 1633–1640. [Google Scholar] [CrossRef]
- Zhang, J.; Pineyro, P.; Chen, Q.; Zheng, Y.; Li, G.; Rademacher, C.; Derscheid, R.; Guo, B.; Yoon, K.-J.; Madson, D.; et al. Full-Length Genome Sequences of Senecavirus A from Recent Idiopathic Vesicular Disease Outbreaks in, U.S. Swine. Genome Announc. 2015, 3, e01270-15. [Google Scholar] [CrossRef] [PubMed]
- Joshi, L.; Mohr, K.A.; Clement, T.; Hain, K.S.; Myers, B.; Yaros, J.; Nelson, E.A.; Christopher-Hennings, J.; Gava, D.; Schaefer, R.; et al. Detection of the Emerging Picornavirus Senecavirus A in Pigs, Mice, and Houseflies. J. Clin. Microbiol. 2016, 54, 1536–1545. [Google Scholar] [CrossRef]
- Joshi, L.; Fernandes, M.H.V.; Clement, T.; Lawson, S.; Pillatzki, A.; Resende, T.P.; Vannucci, F.A.; Kutish, G.F.; Nelson, E.A.; Diel, D.G. Pathogenesis of Senecavirus A infection in finishing pigs. J. Gen. Virol. 2016, 97, 3267–3279. [Google Scholar] [CrossRef]
- Buckley, A.C.; Michael, D.D.; Faaberg, K.S.; Guo, B.; Yoon, K.J.; Lager, K.M. Comparison of historical and contemporary isolates of Senecavirus A. Vet. Microbiol. 2021, 253, 108946. [Google Scholar] [CrossRef] [PubMed]
- Pasma, T.; Davidson, S.; Shaw, S.L. Idiopathic vesicular disease in swine in Manitoba. Can. Vet. J. 2008, 49, 84–85. [Google Scholar] [PubMed]
- LaRocco, M.; Krug, P.W.; Kramer, E.; Ahmed, Z.; Pacheco, J.M.; Duque, H.; Baxt, B.; Rodriguez, L. A continuous bovine kidney cell line constitutively expressing bovine alphavbeta6 integrin has increased susceptibility to foot-and-mouth disease virus. J. Clin. Microbiol. 2013, 51, 1714–1720, Correction in J. Clin. Microbiol. 2015, 53, 755. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.; Sheppard, D.; Denyer, M.; Blakemore, W.; King, A.M. The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J. Virol. 2000, 74, 4949–4956. [Google Scholar] [CrossRef] [PubMed]
- Fukai, K.; Morioka, K.; Yamada, M.; Nishi, T.; Yoshida, K.; Kitano, R.; Yamazoe, R.; Kanno, T. Comparative performance of fetal goat tongue cell line ZZ-R 127 and fetal porcine kidney cell line LFBK-alphavbeta6 for Foot-and-mouth disease virus isolation. J. Vet. Diagn. Investig. 2015, 27, 516–521. [Google Scholar] [CrossRef]
- Gray, A.R.; Wood, B.A.; Henry, E.; Azhar, M.; King, D.P.; Mioulet, V. Evaluation of Cell Lines for the Isolation of Foot-and-Mouth Disease Virus and Other Viruses Causing Vesicular Disease. Front. Vet. Sci. 2020, 7, 426. [Google Scholar] [CrossRef]
- Borca, M.V.; Rai, A.; Ramirez-Medina, E.; Silva, E.; Velazquez-Salinas, L.; Vuono, E.; Pruitt, S.; Espinoza, N.; Gladue, D.P. A Cell Culture-Adapted Vaccine Virus against the Current African Swine Fever Virus Pandemic Strain. J. Virol. 2021, 95, e0012321. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Spearman, C. The Method of ‘Right and Wrong Cases’ (‘Constant Stimuli’) without Gauss’s Formulae. Br. J. Psychol. 1908, 2, 227–242. [Google Scholar] [CrossRef]
- Bracht, A.J.; O’Hearn, E.S.; Fabian, A.W.; Barrette, R.W.; Sayed, A. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens. PLoS ONE 2016, 11, e0146211. [Google Scholar] [CrossRef] [PubMed]
- Puckette, M.; Barrera, J.; Schwarz, M.; Rasmussen, M. Method for quantification of porcine type I interferon activity using luminescence, by direct and indirect means. BMC Biotechnol. 2022, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, C.; Tulman, E.R.; Delhon, G.; Lu, Z.; Carreno, A.; Vagnozzi, A.; Kutish, G.F.; Rock, D.L. Comparative genomics of foot-and-mouth disease virus. J. Virol. 2005, 79, 6487–6504. [Google Scholar] [CrossRef] [PubMed]
- Strauss, M.; Jayawardena, N.; Sun, E.; Easingwood, R.A.; Burga, L.N.; Bostina, M. Cryo-Electron Microscopy Structure of Seneca Valley Virus Procapsid. J. Virol. 2018, 92, e01927-17. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.S.; Burroughs, K.D.; Hales, L.M.; Ganesh, S.; Jones, B.; Idamakanti, N.; Hay, C.; Li, S.S.; Skele, K.L.; Vasko, A.-J.; et al. Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J. Natl. Cancer Inst. 2007, 99, 1623–1633. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, Z.; Cao, W.; Liu, H.; Zhang, K.; Tian, H.; Liu, X.; Zheng, H. Immunogenicity and protective efficacy of an inactivated cell culture-derived Seneca Valley virus vaccine in pigs. Vaccine 2018, 36, 841–846. [Google Scholar] [CrossRef]
- Qian, S.; Fan, W.; Liu, T.; Wu, M.; Zhang, H.; Cui, X.; Zhou, Y.; Hu, J.; Wei, S.; Chen, H.; et al. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage. J. Virol. 2017, 91, e00823-17. [Google Scholar] [CrossRef]
- Chinsangaram, J.; Koster, M.; Grubman, M.J. Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase. J. Virol. 2001, 75, 5498–5503. [Google Scholar] [CrossRef]
- Chinsangaram, J.; Moraes, M.P.; Koster, M.; Grubman, M.J. Novel viral disease control strategy: Adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease. J. Virol. 2003, 77, 1621–1625. [Google Scholar] [CrossRef]
- Puckette, M.; Primavera, V.; Martel, E.; Barrera, J.; Hurtle, W.; Clark, B.; Kamicker, B.; Zurita, M.; Brake, D.; Neilan, J. Transiently Transfected Mammalian Cell Cultures: An Adaptable and Effective Platform for Virus-like Particle-Based Vaccines against Foot-and-Mouth Disease Virus. Viruses 2022, 14, 989. [Google Scholar] [CrossRef]
Forward Primer | Reverse Primer | |||
---|---|---|---|---|
Primer ID | Sequence | Primer ID | Sequence | |
Amplification | SVF1 | GAAGGACTGGGCATGAGGG | SVR550 | AGTTCCCGCTGTAGCTCGC |
SVF450 | GTGATTGCTACCACCATGAGTACA | SVR1650 | CGATAGTATGTACCAAGAGACTGC | |
SVF1550 | CGAAACCACCCTTGATGTCAAAC | SVR2750 | TTAGAGCCAGGAGCCGCCA | |
SVF2650 | GATTACACCCTCCGTCTCCC | SVR3850 | TCCAGTCTTTGACTGTATCCATGG | |
SVF3050 | GTCACGGTGGTCTCACTGGA | SVR4250 | GGCGGAGCTCTGCTTGGC | |
SVF4100 | ACGACCAGATTGAATACCTCCAGA | SVR5300 | TCACCACGGATTGTGAAGCT | |
SVF5200 | GAGCGAGAATGCTTATGACGG | SVR6400 | CGATAGCGGAGCCAAGGAGAA | |
SVF6300 | GTCTGACCCTGATGTCTTCTGG | SVR7300 | TTCTGTTCCGACTGAGTTCTCCCA | |
Sequencing | SVF1 | GAAGGACTGGGCATGAGGG | SVR-SEQ1 | ATCCAAGGCACGCTAAGGC |
SVF-SEQ1 | CCACCATGAGTACATGGTTCTCC | SVR-SEQ2 | TCCGGTAGTCGTCAGACATTTCC | |
SVF-SEQ2 | CAGTCTCTTGGTACATACTATCGGC | SVR-SEQ3 | AGTCTCGGCGTTGTCGGTG | |
SVF-SEQ3 | ATTGAGGCAGGTAACACTGACAC | SVR-SEQ4 | CTGGTGGAGGAGGCGGTTCTA | |
SVF-SEQ4 | GGCAGTGAGTACCAGGCTTCT | SVR-SEQ5 | CTCTGAGGACCACCACAACGG | |
SVF-SEQ5 | CCAGATTGAATACCTCCAGAACCTC | SVR5300 | TCACCACGGATTGTGAAGCT | |
SVF-SEQ6 | GCGAGAATGCTTATGACGG | SVR-SEQ6 | CTATGACGGTCCAGAAGACATC | |
SVF-SEQ7 | GCCGCCAAGTTTCAATCC | SVR7300 | TTCTGTTCCGACTGAGTTCTCCCA |
Cytokine | Virus | Titer (log10) TCID50/mL | Time (h) | IFNAA50 (log10) Units/mL |
---|---|---|---|---|
IFNα | FMDV | 3.3 | 24 | 5.14 |
48 | 4.88 | |||
SVA | 2.9 | 24 | 5.63 | |
48 | 4.84 | |||
IFNβ | FMDV | 3.3 | 24 | 5.48 |
48 | 5.4 | |||
SVA | 2.9 | 24 | 5.96 | |
48 | 5.21 |
Neutralizing Antibody Titers (log10) | SVA | FMDV | ||
---|---|---|---|---|
Day 0 | Day 35 | Day 0 | Day 35 | |
0.6 | 32 | 25 | 85 | 17 |
0.9 | 21 | 19 | 0 | 4 |
1.2 | 29 | 28 | 0 | 7 |
1.5 | 0 | 4 | 0 | 8 |
1.8 | 2 | 3 | 0 | 11 |
2.1 | 0 | 1 | 0 | 10 |
2.4 | 1 | 0 | 0 | 12 |
2.7 | 0 | 0 | 0 | 6 |
3.0 | 0 | 0 | 0 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mason, J.; Primavera, V.; Martignette, L.; Clark, B.; Barrera, J.; Simmons, J.; Hurtle, W.; Neilan, J.G.; Puckette, M. Comparative Evaluation of the Foot-and-Mouth Disease Virus Permissive LF-BK αVβ6 Cell Line for Senecavirus A Research. Viruses 2022, 14, 1875. https://doi.org/10.3390/v14091875
Mason J, Primavera V, Martignette L, Clark B, Barrera J, Simmons J, Hurtle W, Neilan JG, Puckette M. Comparative Evaluation of the Foot-and-Mouth Disease Virus Permissive LF-BK αVβ6 Cell Line for Senecavirus A Research. Viruses. 2022; 14(9):1875. https://doi.org/10.3390/v14091875
Chicago/Turabian StyleMason, Jessica, Victoria Primavera, Lauren Martignette, Benjamin Clark, Jose Barrera, Janine Simmons, William Hurtle, John G. Neilan, and Michael Puckette. 2022. "Comparative Evaluation of the Foot-and-Mouth Disease Virus Permissive LF-BK αVβ6 Cell Line for Senecavirus A Research" Viruses 14, no. 9: 1875. https://doi.org/10.3390/v14091875
APA StyleMason, J., Primavera, V., Martignette, L., Clark, B., Barrera, J., Simmons, J., Hurtle, W., Neilan, J. G., & Puckette, M. (2022). Comparative Evaluation of the Foot-and-Mouth Disease Virus Permissive LF-BK αVβ6 Cell Line for Senecavirus A Research. Viruses, 14(9), 1875. https://doi.org/10.3390/v14091875