COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures, Transfection, and Infection
2.2. JCPyV DNA Extraction from COS-7 and SVGp12 Cells
2.3. Quantitative Real-Time PCR (qPCR) for JCPyV LTAg DNA
2.4. Western Blot (WB) Analysis to Study VP1 Expression
2.5. Viral miRNAs Detection and Quantification
2.6. Exosome Extraction from Cell Cultures and Addition of JCPyV miRNA-Containing Exosomes to Uninfected Cell Lines
2.7. Statistical Tests
3. Results
3.1. JCPyV Replication Rates in the COS-7 and SVGp12 Cell Lines
3.2. miR-J1-5p Expression in the COS-7 and SVGp12 Cell Lines
3.3. Evaluation of JCPyV miRNA Expression in the Exosomes, and Study of Replication Following Post-Infection Addition of JCPyV-miRNA-Containing Exosomes to Uninfected Cell Lines
3.4. VP1 Expression by WB Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, H.H.; Kardas, P.; Kranz, D.; Leboeuf, C. The Human JC Polyomavirus (JCPyV): Virological Background and Clinical Implications. APMIS 2013, 121, 685–727. [Google Scholar] [CrossRef]
- Atkinson, A.L.; Atwood, W.J. Fifty Years of JC Polyomavirus: A Brief Overview and Remaining Questions. Viruses 2020, 12, 969. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.N.; Khalili, K. The Transcriptional Enhancer Element, Kappa B, Regulates Promoter Activity of the Human Neurotropic Virus, JCV, in Cells Derived from the CNS. Nucleic Acids Res. 1993, 21, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, L.; Wollebo, H.S.; Deshmane, S.L.; Mukerjee, R.; Del Valle, L.; Safak, M.; Khalili, K.; White, M.K. Modulation of JC Virus Transcription by C/EBPbeta. Virus Res. 2009, 146, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Wollebo, H.S.; Melis, S.; Khalili, K.; Safak, M.; White, M.K. Cooperative Roles of NF-κB and NFAT4 in Polyomavirus JC Regulation at the KB Control Element. Virology 2012, 432, 146–154. [Google Scholar] [CrossRef] [PubMed]
- White, M.K.; Kaminski, R.; Khalili, K.; Wollebo, H.S. Rad51 Activates Polyomavirus JC Early Transcription. PLoS ONE 2014, 9, e110122. [Google Scholar] [CrossRef]
- White, M.K.; Khalili, K. Pathogenesis of Progressive Multifocal Leukoencephalopathy—Revisited. J. Infect. Dis. 2011, 203, 578–586. [Google Scholar] [CrossRef]
- Greenlee, J.E.; Hirsch, H.H. Polyomaviruses. In Clinical Virology, 4th ed.; Richman, D.R., Whitley, R.J., Hayden, F.J., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 599–623. [Google Scholar]
- Ault, G.S.; Stoner, G.L. Human Polyomavirus JC Promoter/Enhancer Rearrangement Patterns from Progressive Multifocal Leukoencephalopathy Brain Are Unique Derivatives of a Single Archetypal Structure. J. Gen. Virol. 1993, 74, 1499–1507. [Google Scholar] [CrossRef]
- Martin, J.D.; King, D.M.; Slauch, J.M.; Frisque, R.J. Differences in Regulatory Sequences of Naturally Occurring JC Virus Variants. J. Virol. 1985, 53, 306–311. [Google Scholar] [CrossRef]
- Kenney, S.; Natarajan, V.; Strike, D.; Khoury, G.; Salzman, N.P. JC Virus Enhancer-Promoter Active in Human Brain Cells. Science 1984, 226, 1337–1339. [Google Scholar] [CrossRef]
- Kim, H.S.; Henson, J.W.; Frisque, R.J. Transcription and replication in the human polyomaviruses. In Human Polyomaviruses—Molecular and Clinical Perspectives; Khalili, K., Stoner, G.L., Eds.; Wiley-Liss, Inc.: New York, NY, USA, 2001; pp. 73–126. [Google Scholar]
- Pietropaolo, V.; Prezioso, C.; Bagnato, F.; Antonelli, G. John Cunningham Virus: An Overview on Biology and Disease of the Etiological Agent of the Progressive Multifocal Leukoencephalopathy. New Microbiol. 2018, 41, 179–186. [Google Scholar]
- Ferenczy, M.W.; Marshall, L.J.; Nelson, C.D.; Atwood, W.J.; Nath, A.; Khalili, K.; Major, E.O. Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy, the JC Virus-Induced Demyelinating Disease of the Human Brain. Clin. Microbiol. Rev. 2012, 25, 471–506. [Google Scholar] [CrossRef]
- Frisque, R.J.; Bream, G.L.; Cannella, M.T. Human Polyomavirus JC Virus Genome. J. Virol. 1984, 51, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Frisque, R.J. Nucleotide Sequence of the Region Encompassing the JC Virus Origin of DNA Replication. J. Virol. 1983, 46, 170–176. [Google Scholar] [CrossRef]
- Daniel, A.M.; Swenson, J.J.; Mayreddy, R.P.; Khalili, K.; Frisque, R.J. Sequences within the Early and Late Promoters of Archetype JC Virus Restrict Viral DNA Replication and Infectivity. Virology 1996, 216, 90–101. [Google Scholar] [CrossRef]
- Chen, N.N.; Khalili, K. Transcriptional Regulation of Human JC Polyomavirus Promoters by Cellular Proteins YB-1 and Pur Alpha in Glial Cells. J. Virol. 1995, 69, 5843–5848. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.U.; Devireddy, L.R.; Tang, S.C.; Pater, A.; Pater, M.M. Human JC Virus Nuclear Factor 1 Binding Motifs and Large Tumor Antigen Region Required for Transactivation of Late Promoter. J. Neurochem. 1996, 67, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Safak, M.; Gallia, G.L.; Khalili, K. Reciprocal Interaction between Two Cellular Proteins, Puralpha and YB-1, Modulates Transcriptional Activity of JCVCY in Glial Cells. Mol. Cell. Biol. 1999, 19, 2712–2723. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.J.; Dunham, L.; Major, E.O. Transcription Factor Spi-B Binds Unique Sequences Present in the Tandem Repeat Promoter/Enhancer of JC Virus and Supports Viral Activity. J. Gen. Virol. 2010, 91, 3042–3052. [Google Scholar] [CrossRef] [PubMed]
- Vaz, B.; Cinque, P.; Pickhardt, M.; Weber, T. Analysis of the Transcriptional Control Region in Progressive Multifocal Leukoencephalopathy. J. Neurovirol. 2000, 6, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Sunden, Y.; Semba, S.; Suzuki, T.; Okada, Y.; Orba, Y.; Nagashima, K.; Umemura, T.; Sawa, H. Identification of DDX1 as a JC Virus Transcriptional Control Region-Binding Protein. Microbiol. Immunol. 2007, 51, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Sunden, Y.; Semba, S.; Suzuki, T.; Okada, Y.; Orba, Y.; Nagashima, K.; Umemura, T.; Sawa, H. DDX1 Promotes Proliferation of the JC Virus through Transactivation of Its Promoter. Microbiol. Immunol. 2007, 51, 339–347. [Google Scholar] [CrossRef]
- Gosert, R.; Kardas, P.; Major, E.O.; Hirsch, H.H. Rearranged JC Virus Noncoding Control Regions Found in Progressive Multifocal Leukoencephalopathy Patient Samples Increase Virus Early Gene Expression and Replication Rate. J. Virol. 2010, 84, 10448–10456. [Google Scholar] [CrossRef] [PubMed]
- Iannetta, M.; Bellizzi, A.; Lo Menzo, S.; Anzivino, E.; D’Abramo, A.; Oliva, A.; D’Agostino, C.; d’Ettorre, G.; Pietropaolo, V.; Vullo, V.; et al. HIV-Associated Progressive Multifocal Leukoencephalopathy: Longitudinal Study of JC Virus Non-Coding Control Region Rearrangements and Host Immunity. J. Neurovirol. 2013, 19, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Assetta, B.; Atwood, W.J. The biology of JC polyomavirus. Biol. Chem. 2017, 398, 839–855. [Google Scholar] [CrossRef]
- Imperiale, M.J. Polyomavirus miRNAs: The Beginning. Curr. Opin. Virol. 2014, 7, 29–32. [Google Scholar] [CrossRef]
- Lagatie, O.; Tritsmans, L.; Stuyver, L.J. The miRNA World of Polyomaviruses. Virol. J. 2013, 10, 268. [Google Scholar] [CrossRef] [PubMed]
- Seo, G.J.; Fink, L.H.; O’Hara, B.; Atwood, W.J.; Sullivan, C.S. Evolutionarily Conserved Function of a Viral microRNA. J. Virol. 2008, 82, 9823–9828. [Google Scholar] [CrossRef] [PubMed]
- Broekema, N.M.; Imperiale, M.J. miRNA Regulation of BK Polyomavirus Replication During Early Infection. Proc. Natl. Acad. Sci. USA 2013, 110, 8200–8205. [Google Scholar] [CrossRef] [PubMed]
- Fanning, E.; Zhao, K. SV40 DNA Replication: From the A gene to a Nanomachine. Virology 2009, 384, 352–359. [Google Scholar] [CrossRef]
- An, P.; Sáenz Robles, M.T.; Pipas, J.M. Large T Antigens of Polyomaviruses: Amazing Molecular Machines. Annu. Rev. Microbiol. 2012, 66, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Lashgari, M.S.; Tada, H.; Amini, S.; Khalili, K. Regulation of JCVL Promoter Function: Transactivation of JCVL Promoter by JCV and SV40 Early Proteins. Virology 1989, 170, 292–295. [Google Scholar] [CrossRef]
- Khalili, K.; Feigenbaum, L.; Khoury, G. Evidence for a Shift in 5′-Termini of Early Viral RNA During the Lytic Cycle of JC Virus. Virology 1987, 158, 469–472. [Google Scholar] [CrossRef]
- Waga, S.; Bauer, G.; Stillman, B. Reconstitution of Complete SV40 DNA Replication with Purified Replication Factors. J. Biol. Chem. 1994, 269, 10923–10934. [Google Scholar] [CrossRef]
- Gjørup, O.V.; Rose, P.E.; Holman, P.S.; Bockus, B.J.; Schaffhausen, B.S. Protein Domains Connect Cell Cycle Stimulation Directly to Initiation of DNA Replication. Proc. Natl. Acad. Sci. USA 1994, 91, 12125–12129. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.S.; Grundhoff, A.T.; Tevethia, S.; Pipas, J.M.; Ganem, D. SV40-encoded microRNAs Regulate Viral Gene Expression and Reduce Susceptibility to Cytotoxic T Cells. Nature 2005, 435, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Martelli, F.; Wu, Z.; Delbue, S.; Weissbach, F.H.; Giulioli, M.C.; Ferrante, P.; Hirsch, H.H.; Giannecchini, S. BK Polyomavirus MicroRNA Levels in Exosomes Are Modulated by Non-Coding Control Region Activity and Down-Regulate Viral Replication When Delivered to Non-Infected Cells Prior to Infection. Viruses 2018, 10, 466. [Google Scholar] [CrossRef]
- Bello-Morales, R.; López-Guerrero, J.A. Extracellular Vesicles in Herpes Viral Spread and Immune Evasion. Front. Microbiol. 2018, 9, 2572. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Nanbo, A.; Sun, L.; Lin, Z. Extracellular Vesicles in Epstein-Barr Virus’ Life Cycle and Pathogenesis. Microorganisms 2019, 7, 48. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Li, R.; Chen, H.; Chen, D.; Li, W. Exosomes in HIV infection. Curr. Opin. HIV AIDS 2021, 16, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Gluzman, Y. SV40-Transformed Simian Cells Support the Replication of Early SV40 Mutants. Cell 1981, 23, 175–182. [Google Scholar] [CrossRef]
- Major, E.O.; Miller, A.E.; Mourrain, P.; Traub, R.G.; de Widt, E.; Sever, J. Establishment of a Line of Human Fetal Glial Cells That Supports JC Virus Multiplication. Proc. Natl. Acad. Sci. USA 1985, 82, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Delbue, S.; Branchetti, E.; Boldorini, R.; Vago, L.; Zerbi, P.; Veggiani, C.; Tremolada, S.; Ferrante, P. Presence and Expression of JCV Early Gene Large T Antigen in the Brains of Immunocompromised and Immunocompetent Individuals. J. Med. Virol. 2008, 80, 2147–2152. [Google Scholar] [CrossRef] [PubMed]
- Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnheim, N. Enzymatic Amplification of Beta-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef]
- Rasband, W.S.; ImageJ. National Institutes of Health, Bethesda, Maryland, USA, 1997–2016. Available online: https://imagej.nih.gov/ij/ (accessed on 25 July 2022).
- Link, A.; Balaguer, F.; Nagasaka, T.; Boland, C.R.; Goel, A. MicroRNA miR-J1-5p as a Potential Biomarker for JC Virus Infection in the Gastrointestinal Tract. PLoS ONE 2014, 9, e100036. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Sato, Y.; Sekizuka, T.; Kuroda, M.; Suzuki, T.; Hasegawa, H.; Katano, H. High Expression of JC Polyomavirus-Encoded microRNAs in Progressive Multifocal Leukoencephalopathy Tissues and Its Repressive Role in Virus Replication. PLoS Pathog. 2020, 16, e1008523. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, M.J.; Jiang, M. Polyomavirus Persistence. Annu. Rev. Virol. 2016, 3, 517–532. [Google Scholar] [CrossRef]
- Padgett, B.L.; Walker, D.L.; ZuRhein, G.M.; Eckroade, R.J.; Dessel, B.H. Cultivation of Papova-like Virus from Human Brain with Progressive Multifocal Leucoencephalopathy. Lancet 1971, 1, 1257–1260. [Google Scholar] [CrossRef]
- Bloomgren, G.; Richman, S.; Hotermans, C.; Subramanyam, M.; Goelz, S.; Natarajan, A.; Lee, S.; Plavina, T.; Scanlon, J.V.; Sandrock, A.; et al. Risk of Natalizumab-Associated Progressive Multifocal Leukoencephalopathy. N. Engl. J. Med. 2012, 366, 1870–1880. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.J.; Major, E.O. Molecular Regulation of JC Virus Tropism: Insights into Potential Therapeutic Targets for Progressive Multifocal Leukoencephalopathy. J. Neuroimmune Pharmacol. 2010, 5, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Mischitelli, M.; Fioriti, D.; Videtta, M.; Degener, A.M.; Antinori, A.; Cinque, P.; Giordano, A.; Pietropaolo, V. Investigation on the Role of Cell Transcriptional Factor Sp1 and HIV-1 TAT Protein in PML Onset or Development. J. Cell. Physiol. 2005, 204, 913–918. [Google Scholar] [CrossRef]
- Moens, U.; Prezioso, C.; Pietropaolo, V. Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Bauman, Y.; Mandelboim, O. MicroRNA Based Immunoevasion Mechanism of Human Polyomaviruses. RNA Biol. 2011, 8, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Bauman, Y.; Nachmani, D.; Vitenshtein, A.; Tsukerman, P.; Drayman, N.; Stern-Ginossar, N.; Lankry, D.; Gruda, R.; Mandelboim, O. An Identical miRNA of the Human JC and BK Polyoma Viruses Targets the Stress-Induced Ligand ULBP3 to Escape Immune Elimination. Cell Host Microbe 2011, 9, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Prezioso, C.; Scribano, D.; Bellizzi, A.; Anzivino, E.; Rodio, D.M.; Trancassini, M.; Palamara, A.T.; Pietropaolo, V. Efficient Propagation of Archetype JC Polyomavirus in COS-7 Cells: Evaluation of Rearrangements within the NCCR Structural Organization after Transfection. Arch. Virol. 2017, 162, 3745–3752. [Google Scholar] [CrossRef]
- Prezioso, C.; Scribano, D.; Rodio, D.M.; Ambrosi, C.; Trancassini, M.; Palamara, A.T.; Pietropaolo, V. COS-7-Based Model: Methodological Approach to Study John Cunningham Virus Replication Cycle. Virol. J. 2018, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Carmichael, G.G. Polyoma Virus Early-Late Switch: Regulation of Late RNA Accumulation by DNA Replication. Proc. Natl. Acad. Sci. USA 1993, 90, 8494–8498. [Google Scholar] [CrossRef] [PubMed]
- Cahill, K.B.; Roome, A.J.; Carmichael, G.G. Replication-Dependent Transactivation of the Polyomavirus Late Promoter. J. Virol. 1990, 64, 992–1001. [Google Scholar] [CrossRef]
- Giovannelli, I.; Clausi, V.; Nukuzuma, S.; Della Malva, N.; Nosi, D.; Giannecchini, S. Polyomavirus JC microRNA Expression after Infection In Vitro. Virus Res. 2016, 213, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Sugimoto, C.; Kitamura, T.; Aoki, N.; Taguchi, F.; Yogo, Y. Archetype JC Virus Efficiently Replicates in COS-7 Cells, Simian Cells Constitutively Expressing Simian Virus 40 T Antigen. J. Virol. 1998, 72, 5335–5342. [Google Scholar] [CrossRef] [PubMed]
- Pegtel, D.M.; Cosmopoulos, K.; Thorley-Lawson, D.A.; van Eijndhoven, M.A.; Hopmans, E.S.; Lindenberg, J.L.; de Gruijl, T.D.; Würdinger, T.; Middeldorp, J.M. Functional Delivery of Viral miRNAs via Exosomes. Proc. Natl. Acad. Sci. USA 2010, 107, 6328–6333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannelli, I.; Martelli, F.; Repice, A.; Massacesi, L.; Azzi, A.; Giannecchini, S. Detection of JCPyV microRNA in Blood and Urine Samples of Multiple Sclerosis Patients under Natalizumab Therapy. J. Neurovirol. 2015, 21, 666–670. [Google Scholar] [CrossRef] [PubMed]
CY in COS-7 | ||||||
3 | 7 | 14 | 21 | 28 | 35 | |
Without exosomes | 2 × 103 | 9 × 103 | 104 | 7 × 104 | 5 × 105 | 8 × 105 |
With exosomes | 8 × 102 | 103 | 5 × 103 | 8 × 103 | 4 × 104 | 9 × 104 |
% inhibition | 60% | 89% | 50% | 89% | 82% | 89% |
MAD-1 in COS-7 | ||||||
3 | 7 | 14 | 21 | 28 | 35 | |
Without exosomes | 104 | 8.5 × 104 | 6 × 105 | 9 × 106 | 7 × 107 | 9 × 108 |
With exosomes | 7 × 102 | 9 × 102 | 3 × 103 | 6 × 103 | 104 | 5 × 104 |
% inhibition | 93% | 99% | 99.5% | 99.9% | >99.9% | >99.9% |
CY in SVG12p | ||||||
3 | 7 | 14 | 21 | 28 | 35 | |
Without exosomes | 9 × 102 | 2 × 103 | 9 × 103 | 5 × 104 | 105 | 5 × 105 |
With exosomes | 102 | 7.5 × 102 | 103 | 9.5 × 103 | 7 × 104 | 105 |
% inhibition | 89% | 63% | 89% | 81% | 30% | 80% |
MAD-1 in SVG12p | ||||||
3 | 7 | 14 | 21 | 28 | 35 | |
Without exosomes | 9 × 104 | 3 × 105 | 7.5 × 105 | 6 × 106 | 8.5 × 107 | 8.5 × 108 |
With exosomes | 102 | 5.5 × 102 | 9 × 102 | 5.5 × 103 | 5 × 103 | 9 × 104 |
% inhibition | 99.9% | 99.8% | 99.9% | 99.9% | >99.9% | >99.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prezioso, C.; Passerini, S.; Limongi, D.; Palamara, A.T.; Moens, U.; Pietropaolo, V. COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains. Viruses 2022, 14, 2070. https://doi.org/10.3390/v14092070
Prezioso C, Passerini S, Limongi D, Palamara AT, Moens U, Pietropaolo V. COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains. Viruses. 2022; 14(9):2070. https://doi.org/10.3390/v14092070
Chicago/Turabian StylePrezioso, Carla, Sara Passerini, Dolores Limongi, Anna Teresa Palamara, Ugo Moens, and Valeria Pietropaolo. 2022. "COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains" Viruses 14, no. 9: 2070. https://doi.org/10.3390/v14092070
APA StylePrezioso, C., Passerini, S., Limongi, D., Palamara, A. T., Moens, U., & Pietropaolo, V. (2022). COS-7 and SVGp12 Cellular Models to Study JCPyV Replication and MicroRNA Expression after Infection with Archetypal and Rearranged-NCCR Viral Strains. Viruses, 14(9), 2070. https://doi.org/10.3390/v14092070