Seroprevalence of Natural and Acquired Immunity against the SARS-CoV-2 Virus in a Population Cohort from Two Chilean Cities, 2020–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedures
2.2. Variables and Sources of Information
2.3. Field Work
2.4. Laboratory Methods
2.5. Statistical Methods
2.6. Ethical Considerations
3. Results
3.1. Characteristics of the Participants
3.2. Vaccine
3.3. Seroprevalence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus Dashboard. WHO Web Page COVID-19 Data. Available online: https://covid19.who.int/ (accessed on 19 October 2022).
- Metcalf, C.J.E.; Farrar, J.; Cutts, P.F.T.; Basta, N.; Graham, A.; Lessler, J.; Ferguson, N.; Burke and, D.; Grenfell, B. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet 2016, 388, 728–730. [Google Scholar] [CrossRef]
- Marín, N.C. Estudios seroepidemiológicos. Rev. Esp. Salud Pública 2009, 83, 607–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayne, E.S.; Scott, L.; Semete, B.; Julsing, A.; Jugwanth, S.; Mampeule, N.; David, A.; Gededzha, M.P.; Goga, A.; Hardie, D.; et al. The role of serological testing in the SARS-CoV-2 outbreak. S. Afr. Med. J. 2020, 110, 842–845. [Google Scholar] [CrossRef]
- Vial, P.; González, C.; Icaza, G.; Ramírez-Santana, M.; Quezada-Gaete, R.; Núñez-Franz, L.; Apablaza, M.; Vial, C.; Rubilar, P.; Correa, J.; et al. Seroprevalence, spatial distribution, and social determinants of SARS-CoV-2 in three urban centers of Chile. BMC Infect. Dis. 2022, 22, 99. [Google Scholar] [CrossRef]
- Van Riel, D.; de Wit, E. Next-generation vaccine platforms for COVID-19. Nat. Mater. 2020, 19, 810–812. [Google Scholar] [CrossRef] [PubMed]
- Johnson & Johnson. COVID-19 Vaccine, Viral Vector-Janssen (Investigational). Medscape. Available online: https://reference.medscape.com/drug/ad26cov2s-johnson-johnson-covid-19-vaccine-viral-vector-janssen-4000143?&src=WNL_infoc_210304_MSCPEDIT_J&J&uac=&spon=3&impID=2947343&faf=1#0 (accessed on 1 March 2021).
- Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.; Pollard, P. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef] [PubMed]
- Pellini, R.; Venuti, A.; Pimpinelli, F.; Abril, E.; Blandino, G.; Campo, F.; Conti, L.; De Virgilio, A.; De Marco, F.; Di Domenico, E.; et al. Obesity may hamper SARS-CoV-2 vaccine immunogenicity strategies for COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Busch, M.P.; Stramer, S.L.; Stone, M.; Yu, E.A.; Grebe, E.; Notari, E.; Saa, P.; Ferg, R.; Molina, I.; Weil, N.; et al. Population-weighted seroprevalence from SARS-CoV-2 infection, vaccination, and hybrid immunity among U.S. blood donations from January–December 2021. Clin. Infect. Dis. 2022, 75, S254–S263. [Google Scholar] [CrossRef]
- Aguilera, X.; González, C.; Apablaza, M.; Rubilar, P.; Icaza, G.; Ramírez-Santana, M.; Pérez, C.; Cortés, L.J.; Núñez Franz, L.; Quezada-Gaete, R.; et al. Immunization and SARS-CoV-2 Antibody Seroprevalence in a Country with High Vaccination Coverage: Lessons from Chile. Vaccines 2022, 10, 1002. [Google Scholar] [CrossRef]
- Aguilera, X.; Hormazábal, J.; Vial, C.; Cortés, L.J.; González, C.; Rubilar, P.; Apablaza, M.; Ramírez-Santana, M.; Icaza, G.; Núñez-Franz, L.; et al. SARS-CoV-2 Neutralizing Antibodies in Chile after a Vaccination Campaign with five Different Shemes. Vaccines 2022, 10, 1051. [Google Scholar] [CrossRef]
- Carlo, A.D.; Caputo, S.L.; Paolillo, C.; Rosa, A.M.; Dórsi, U.; De Palma, M.; Reveglia, P.; Lacedonia, D.; Cinella, G.; Fioshino, P.P.; et al. SARS-CoV-2 serological profile in healthcare professionals of a Southern Italy hospital. Int. J. Environ. Res. Public Health 2020, 17, 9324. [Google Scholar] [CrossRef] [PubMed]
- Wiggen, T.D.; Bohn, B.; Ulrich, A.K.; Stovitz, S.; Strickland, A.J.; Naumchik, B.M.; Walsh, S.; Smith, S.; Braumgartner, B.; Kline, S.; et al. SARS-CoV-2 seroprevalence among healthcare workers. PLoS ONE 2022, e0266410. [Google Scholar] [CrossRef] [PubMed]
- Ebinger, J.E.; Botwin, G.J.; Albert, C.M.; Alotaibi, M.; Arditi, M.; Berg, A.H.; Botting, P.; Fert-Bober, J.; Figuereido, J.C.; Grein, J.D.; et al. Seroprevalence of antibodies to SARS-CoV-2 in healthcare workers: A cross-sectional study. BMJ Open 2021, 11, e043584. [Google Scholar] [CrossRef] [PubMed]
- Pollán, M.; Pérez-Gómez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.A.; Pérz-Olmeda, M.; Sanmartín, J.L.; Fernández-García, A.; Cruz, I.; Fernández de Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Campos, P.; Blankenhaus, B.; Mota, C.; Gomez, A.; Serrano, M.; Ariotti, S.; Costo, C.; Nunez-Cabaco, H.; Mendez, A.M.; Gaspar, P.; et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur. J. Immunol. 2020, 50, 2025–2040. [Google Scholar] [CrossRef]
- Sauré, D.; O’Ryan, M.; Torres, J.P.; Zuñiga, M.; Santelices, E.; Basso, L.J. Dynamic IgG seropositivity after rollout of CoronaVac and BNT162b2 COVID-19 vaccines in Chile: A sentinel surveillance study. Lancet Infect. Dis. 2022, 22, 56–63. [Google Scholar] [CrossRef]
- Duarte, N.; Yanes-Lane, M.; Arora, R.K.; Brobovitz, N.; Liu, M.; Bego, M.G.; Yan, T.; Cao, C.; Gurry, C.; Hankins, C.A.; et al. Adapting Serosurveys for the SARS-CoV-2 Vaccine Era. Open Forum Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Bellizzi, S.; Alsawalha, L.; Sheikh Ali, S.; Sharkas, G.; Muthu, N.; Ghazo, M.; Aly, E.; Rashidian, A.; Al Ariqi, L.; Hayajneh, W.; et al. A three-phase population based sero-epidemiological study: Assessing the trend in prevalence of SARS-CoV-2 during COVID-19 pandemic in Jordan. One Health 2021. [Google Scholar] [CrossRef]
- Nisar, M.I.; Ansari, N.; Khalid, F.; Amina, M.; Shahbaza, H.; Hotwania, A.; Rehmana, N.; Pughb, S.; Mehmooda, U.; Rizvi, A.; et al. Serial population-based serosurveys for COVID-19 in two neighbourhoods of Karachi, Pakistan. Int. J. Infect. Dis. 2021, 106, 176–182. [Google Scholar] [CrossRef]
- Poljak, M.; Oštrbenk Valenčak, A.; Štrumbelj, E.; Maver Vodičar, P.; Vehovar, V.; Resman Rus, K.; Korva, M.; Knap, N.; Seme, K.; Petrovec, M.; et al. Seroprevalence of severe acute respiratory syndrome coronavirus 2 in Slovenia: Results of two rounds of a nationwide population study on a probability-based sample, challenges and lessons learned. Clin. Microbiol. Infec. 2021, 27, 1039.e1–1039.e7. [Google Scholar] [CrossRef]
- Grant, R.; Dub, T.; Andrianou, X.; Nohynek, H.; Wilder-Smith, A.; Pezzotti, P.; Fontanet, A. SARS-CoV-2 population-based seroprevalence studies in Europe: A scoping review. BMJ Open 2021. [Google Scholar] [CrossRef]
- Nair, D.; Raju, R.; Roy, S.; Shailendra, D.; Girish, C.P.; Yuvaraj, J.; Boopathi, K.; Rahul, S.; Kumar, A.N.; Winsley, R.; et al. Sero-Surveillance to Monitor the Trend of SARS-CoV-2 Infection Transmission in India: Study Protocol for a Multi-Site, Community Based Longitudinal Cohort Study. Front. Public Health 2022. [Google Scholar] [CrossRef] [PubMed]
- Gornyk, D.; Harries, M.; Glöckner, S.; Strengert, M.; Kerrinnes, T.; Heise, J.K.; Maaß, H.; Ortmann, J.; Kessel, B.; Kemmling, Y.; et al. SARS-CoV-2 Seroprevalence in Germany. Dtsch. Arztebl. Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hall, V.; Foulkes, S.; Insalata, F.; Kirwan, P.; Saei, A.; Atti, A.; Wellington, E.; Khawam, J.; Munro, K.; Cole, M.; et al. Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection. N. Engl. J. Med. 2022, 386, 1207–1220. [Google Scholar] [CrossRef]
- Gebrecherkos, T.; Kiros, Y.K.; Challa, F.; Abdella, S.; Gebreegzabher, A.; Leta, D.; Desta, A.; Hailu, A.; Tasew, G.; Abdulkader, M.; et al. Longitudinal profile of antibody response to SARS-CoV-2 in patients with COVID-19 in a setting from Sub-Saharan Africa: A prospective longitudional study. PLoS ONE 2022, 17, e0263627. [Google Scholar] [CrossRef]
- Rey-Jurado, E.; Espinosa, Y.; Astudillo, C.; Cortés, L.J.; Hormazabal, J.; Noguera, L.P.; Cofré, F.; Piñera, C.; González, R.; Bataszew, A.; et al. Deep immunophenotyping reveals biomarkers of multisystemic inflammatory syndrome in children in a Latin American cohort. J. Allergy Clin. Immunol. 2022, 150, 1074–1085.e11. [Google Scholar] [CrossRef]
- Rogan, W.J.; Gladen, B. Estimating prevalence from the results of a screening test. Am. J. Epidemiol. 1978, 107, 71–76. [Google Scholar] [CrossRef]
- Sergeant. Epitools Epidemiological Calculators. Sergeant, ESG. Available online: https://epitools.ausvet.com.au/trueprevalence (accessed on 12 December 2022).
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Giattino, C.h.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; Roser, M. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 19 October 2022).
- Mena, G.E.; Martinez, P.P.; Mahmud, A.S.; Marquet, P.A.; Buckee, C.O.; Santillana, M. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. Science 2021, 372, eabg5298. [Google Scholar] [CrossRef]
- De Oliveira, E.C.; Terças-Trettel, A.C.P.; de Andrade, A.C.S.; Muraro, A.P.; Santos, E.S.D.; Espinosa, M.M.; Musis, C.R. Prevalence of SARS-CoV-2 antibodies in the State of Mato Grosso, Brazil: A population-based survey. Cad. Saude Publica 2022. [Google Scholar] [CrossRef] [PubMed]
- Bastos, L.S.L.; Aguilar, S.; Rache, B.; Macaira, P.; Baiao, F.; Cerbino-Neto, J.; Rocha, R.; Hamacher, S.; Ranzani, O.T.; Bozza, F.A. Primary healthcare protects vulnerable populations from inequity in COVID-19 vaccination: An ecological analysis of nationwide data from Brazil. Lancet Reg. Health Am. 2022, 14, 100335. [Google Scholar] [CrossRef]
- Clarke, K.E.N.; Jones, J.M.; Deng, Y.; Nycz, E.; Lee, A.; Iachan, R.; Gundlapalli, A.V.; Hall, A.J.; MacNeil, A. Morbidity and Mortality Weekly Report Seroprevalence of Infection-Induced SARS-CoV-2 Antibodies-United States, September 2021–February 2022. MMWR Morb. Mortal Wkly. Rep. 2022, 71, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Castilla, J.; Lecea, Ó.; Salas, C.M.; Quílez, D.; Miqueleiz, A.; Trobajo-Sanmartín, C.; Navascués, A.; Martínez-Baz, I.; Casado, I.; Burgui, C.; et al. Seroprevalence of antibodies against SARS-CoV-2 and risk of COVID-19 in Navarre, Spain, May to July 2022. Eurosurveillance 2022, 27, 2200619. [Google Scholar] [CrossRef]
- Departamento de Epidemiología. INFORME EPIDEMIOLÓGICO No161 ENFERMEDAD POR SARS-CoV-2. Santiago de Chile. Available online: https://www.minsal.cl/nuevo-coronavirus-2019-ncov/informe-epidemiologico-covid-19/ (accessed on 27 November 2022).
- Departamento de Epidemiología. INFORME EPIDEMIOLÓGICO No184 ENFERMEDAD POR SARS-CoV-2 (COVID-19) CHILE. Santiago de Chile. Available online: https://www.minsal.cl/nuevo-coronavirus-2019-ncov/informe-epidemiologico-covid-19/ (accessed on 27 November 2022).
- Sendi, P.; Thierstein, M.; Widmer, N.; Babongo Bosombo, F.; Büchi, A.E.; Güntensperger, D.; Blum, M.R.; Baldan, R.; Tinguely, C.; Gahl, B.; et al. Serosurveillance after a COVID-19 vaccine campaign in a Swiss police cohort. Immun. Inflamm. Dis. 2022, 10, e640. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zou, J.; Kurhade, C.; Yang, Q.; Cutler, M.; Cooper, D.; Muik, A.; Jansen, K.U.; Xie, X.; Swanson, K.A.; et al. Neutralization and durability of 2 or 3 doses of the BNT162b2 vaccine against Omicron SARS-CoV-2. Cell Host Microbe 2022, 30, 485–488.e3. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Theiler-Schwetz, V.; Trummer, C.; Krause, R.; Ioannidis, J.P.A. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. Environ. Res. 2022. [Google Scholar] [CrossRef]
Variable | Categories | n | % |
---|---|---|---|
City | Coquimbo-La Serena | 184 | 47.7 |
Talca | 202 | 52.3 | |
Sex | Male | 126 | 32.6 |
(n = 386) | Female | 260 | 67.4 |
Age at the third round | Under 10 | 4 | 1.0 |
(n = 386) | 10–19 | 36 | 9.3 |
20–29 | 41 | 10.6 | |
30–39 | 39 | 10.1 | |
40–49 | 65 | 16.8 | |
50–59 | 74 | 19.2 | |
60–69 | 66 | 17.1 | |
70 and over | 61 | 15.8 | |
Nationality | Chilean | 384 | 99.5 |
(n = 386) | Foreign | 2 | 0.5 |
Native Chilean ethnicity | No | 360 | 93.3 |
(n = 386) | Yes | 26 | 6.7 |
Education (n = 386) | Primary education or no formal education | 68 | 17.6 |
Secondary education | 206 | 53.4 | |
High-level technical | 34 | 8.8 | |
Professional | 78 | 20.2 | |
Education for participants over 18 years old | Primary education or no formal education | 52 | 14.8 |
(n = 351) | Secondary education | 187 | 53.3 |
High-level technical | 34 | 9.7 | |
Professional | 78 | 22.2 | |
Healthcare prevision | Social security (FONASA) | 313 | 85.8 |
(n = 365) | Private | 52 | 14.3 |
Face-to-face work | No | 155 | 44.8 |
(n = 346) | Yes | 191 | 55.2 |
Health worker | No | 179 | 93.7 |
(n = 191) | Yes | 12 | 6.3 |
Upper respiratory episodes | No | 209 | 54.2 |
(n = 386) | Yes | 177 | 45.9 |
Number of upper respiratory episodes | 1 episode | 84 | 47.5 |
(n = 177) | 2 or more episodes | 93 | 52.5 |
COVID-19 diagnosis | No | 298 | 77.2 |
(n = 386) | Yes | 88 | 22.8 |
Number of COVID-19 diagnoses | Once | 86 | 97.3 |
(n = 88) | Twice | 2 | 2.3 |
Symptomatology | None | 211 | 54.7 |
(n = 386) | Yes | 175 | 45.3 |
Nutritional status (body | Underweight | 18 | 5.0 |
mass index) | Normal | 95 | 26.5 |
(n = 359) | Overweight | 135 | 37.6 |
Obese | 111 | 30.9 | |
Comorbidities | No | 153 | 39.6 |
(n = 386) | Yes | 233 | 60.4 |
Tobacco smoker | No | 283 | 73.3 |
(n = 386) | Yes | 103 | 26.7 |
Vaccinated | No | 6 | 1.6 |
(n = 386) | Yes | 380 | 98.5 |
Vaccine doses | No | 6 | 1.6 |
(n = 386) | 1 dose | 1 | 0.3 |
2 doses or full baseline | 27 | 7.0 | |
Baseline + 1 booster | 213 | 55.2 | |
Baseline + 2 booster | 139 | 36 | |
Vaccine scheme | S | 1 | 0.2 |
(n = 380) | P-P | 7 | 1.8 |
S-S | 19 | 5.0 | |
Another baseline | 1 | 0.3 | |
P-P-P | 93 | 24.5 | |
S-S-P | 82 | 21.6 | |
S-S-A | 20 | 5.3 | |
Another baseline and 1 booster | 18 | 4.8 | |
P-P-P-P | 15 | 4.0 | |
P-P-P-M | 10 | 2.6 | |
S-S-P-P | 35 | 9.2 | |
S-S-A-P | 58 | 15.0 | |
Another baseline and 2 boosters | 21 | 5.5 |
Variable | Categories (n of Participants) | Round 1 | Round 2 | Round 3 | |||
---|---|---|---|---|---|---|---|
September–November 2020 | October–November 2021 | April–May 2022 | |||||
n | % | n | % | n | % | ||
Global seroprevalence | (n = 386) | 14 | 3.6 | 374 | 96.9 | 381 | 98.7 |
Global seroprevalence adjusted for test characteristics * | (n = 386) | 14 | 3.7 | 374 | - | 381 | 98.7 |
Urban centre | Coquimbo—La Serena (n = 184) | 9 | 4.9 | 174 | 94.6 | 183 | 99.5 |
Talca (n = 202) | 5 | 2.5 | 200 | 99.0 | 198 | 98.0 | |
One COVID-19 infection | (n = 386) | 8 | 47.1 | 34 | 100 | 87 | 98.9 |
Age | Under 10-years-old (n = 4) | 0 | 0 | 2 | 50 | 4 | 100 |
10–19 y. (n = 36) | 0 | 0 | 33 | 91.7 | 36 | 100 | |
20–29 y. (n = 41) | 1 | 2.5 | 41 | 100 | 40 | 97.6 | |
30–39 y. (n = 39) | 1 | 2.6 | 39 | 100 | 38 | 97.4 | |
40–49 y. (n = 65) | 5 | 7.7 | 63 | 96.9 | 65 | 100 | |
50–59 y. (n = 74) | 3 | 4.1 | 73 | 98.7 | 74 | 100 | |
60–69 y. (n = 66) | 4 | 6.1 | 64 | 97 | 66 | 100 | |
70 and over (n = 61) | 0 | 0 | 59 | 96.7 | 58 | 95.1 | |
Sex | Male (n = 126) | 5 | 4.0 | 123 | 97.6 | 125 | 99.2 |
Female (260) | 9 | 3.5 | 251 | 96.5 | 256 | 98.5 | |
Education among participants aged 18 years or older | Primary or no formal education (n = 52) | 0 | 0 | 51 | 98.1 | 50 | 96.2 |
High school (n = 187) | 7 | 3.7 | 182 | 97.3 | 186 | 99.5 | |
Technical education (n = 34) | 3 | 8.8 | 34 | 100 | 33 | 97.1 | |
Professional (n = 78) | 4 | 5.1 | 77 | 98.7 | 77 | 98.7 | |
Ethnic minority | Yes (n = 26) | 2 | 7.7 | 26 | 100 | 26 | 100 |
Comorbidities | Yes (n = 233) | 9 | 3.9 | 228 | 97.9 | 230 | 98.7 |
Vaccination scheme | No vaccine | - | - | 6 | 46.2 | 5 | 83.3 |
1 dose | - | - | 7 | 77.8 | 1 | 100 | |
Full baseline | - | - | 180 | 98.9 | 24 | 88.9 | |
Baseline + 1 booster | - | - | 181 | 99.5 | 212 | 99.5 | |
Baseline + 2 booster | - | - | - | - | 139 | 100 |
Round 2 (October–November 2021) | Round 3 (April–May 2022) | ||||||
---|---|---|---|---|---|---|---|
Vaccination Scheme | Time between Last Vaccine and Sample Collection According to Round | N (%) Samples | Seropositive (n) | % | N (%) Samples | Seropositive (n) | % |
Not vaccinated | 13 (3.4%) | 6 | 46.2 | 6 (1.6%) | 5 | 83.3 | |
1 dose | 9 (2.3%) | 7 | 77.8 | 1 (0.3%) | 1 | 100 | |
Less than 15 days | 4 | 2 | 50 | - | - | - | |
15 to 179 days | 5 | 5 | 100 | 1 | 1 | 100 | |
180 days and more | - | - | - | - | - | - | |
Full baseline | 182 (47.2%) | 180 | 98.9 | 26 (6.7%) | 23 | 88.5 | |
Less than 15 days | 3 | 3 | 100 | ||||
15 to 179 days | 131 | 129 | 98.5 | 14 | 14 | 100 | |
180 days and more | 48 | 48 | 100 | 12 | 9 | 75 | |
Baseline + 1 booster | 182 (47.2%) | 181 | 99.5 | 213 (55.2%) | 212 | 99.5 | |
Less than 15 days | 37 | 37 | 100 | 4 | 4 | 100 | |
15 to 179 days | 145 | 144 | 99.3 | 147 | 147 | 100 | |
180 days and more | - | - | - | 62 | 61 | 98.4 | |
Baseline + 2 boosters | - | - | - | 139 (36.0%) | 139 | 100 | |
Less than 15 days | - | - | - | 42 | 42 | 100 | |
15 to 179 days | - | - | - | 96 | 96 | 100 | |
180 days and more | - | - | - | 1 | 1 | 100 |
Scheme (n) | N–P–P (%) | Average Days (Delta Round 2–Delta Round 3) | P–P–P (%) | Average Days (Delta Round 2–Delta Round 3) | N–P–N (%) | Average Days (Delta Round 2–Delta Round 3) | N–N–P (%) | Average Days (Delta Round 2–Delta Round 3) | N–N–N (%) |
---|---|---|---|---|---|---|---|---|---|
No vaccine (6) | 3 (50) | - | - | - | - | - | 2 (33.3) | - | 1 (16.6) |
Corona Vac (1) | 1 (100) | (NV-179) | - | - | - | - | - | - | - |
Pfizer-Pfizer (7) | 6 (85.7) | (42.8–215.3) | - | - | - | - | 1 (14.3) | (NV-44) | - |
Corona Vac–Corona Vac (19) | 12 (63.2) | (67.5–209.9) | - | - | 2 (10.5) | (52.5–224) | 5 (26.3) | (4.5–122) | - |
AstraZeneca–AstraZeneca (1) | - | - | - | - | 1 (100) | (130–303) | - | - | - |
Pfizer–Pfizer–Pfizer (93) | 89 (95.7) | (120.5–143.7) | 3 (3.2) | (125.7–131) | 1 (1.1) | (19–190) | - | - | - |
Corona Vac–Corona Vac–Pfizer (82) | 78 (95.1) | (104.2–156.6) | 2 (2.4) | (57–166) | - | - | 2 (2.4) | (75–96) | - |
Corona Vac–Corona Vac–AstraZeneca (20) | 18 (90) | (56.3–215.3) | 2 (10) | (30–228) | - | - | - | - | - |
Another baseline + 1 booster (18) | 18 (100) | (108.8–131.8) | - | - | - | - | - | - | - |
Pfizer–Pfizer–Pfizer–Pfizer (15) | 15 (100) | (117.1–19.5) | - | - | - | - | - | - | - |
Pfizer–Pfizer–Pfizer–Moderna (10) | 8 (80) | (37.8–7.6) | 2 (20) | (11.5–0) | - | - | - | - | - |
Corona Vac–Corona Vac–AstraZeneca–Pfizer (58) | 57 (98.3) | (67.3–57.1) | 1 (1.7) | (70–13) | - | - | - | - | - |
Corona Vac–Corona Vac–Pfizer–Pfizer (35) | 32 (91.4) | (55.7–54.6) | 3 (8.6) | (99.3–25) | - | - | - | - | |
Another baseline + 2 booster (21) | 19 (90.5) | (51.6–39.6) | 1 (4.8) | (23–15) | - | - | 1 (4.8) | (73–55) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Franz, L.; Ramírez-Santana, M.; Rubilar, P.; Vial, C.; Apablaza, M.; González, C.; Said, M.; Olivares, K.; Cortés, L.J.; Hormazábal, J.; et al. Seroprevalence of Natural and Acquired Immunity against the SARS-CoV-2 Virus in a Population Cohort from Two Chilean Cities, 2020–2022. Viruses 2023, 15, 201. https://doi.org/10.3390/v15010201
Núñez-Franz L, Ramírez-Santana M, Rubilar P, Vial C, Apablaza M, González C, Said M, Olivares K, Cortés LJ, Hormazábal J, et al. Seroprevalence of Natural and Acquired Immunity against the SARS-CoV-2 Virus in a Population Cohort from Two Chilean Cities, 2020–2022. Viruses. 2023; 15(1):201. https://doi.org/10.3390/v15010201
Chicago/Turabian StyleNúñez-Franz, Loreto, Muriel Ramírez-Santana, Paola Rubilar, Cecilia Vial, Mauricio Apablaza, Claudia González, Macarena Said, Kathya Olivares, Lina Jimena Cortés, Juan Hormazábal, and et al. 2023. "Seroprevalence of Natural and Acquired Immunity against the SARS-CoV-2 Virus in a Population Cohort from Two Chilean Cities, 2020–2022" Viruses 15, no. 1: 201. https://doi.org/10.3390/v15010201
APA StyleNúñez-Franz, L., Ramírez-Santana, M., Rubilar, P., Vial, C., Apablaza, M., González, C., Said, M., Olivares, K., Cortés, L. J., Hormazábal, J., Canales, L., Vial, P., Icaza, G., Quezada-Gaete, R., & Aguilera, X. (2023). Seroprevalence of Natural and Acquired Immunity against the SARS-CoV-2 Virus in a Population Cohort from Two Chilean Cities, 2020–2022. Viruses, 15(1), 201. https://doi.org/10.3390/v15010201