A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis
Abstract
:1. Introduction
2. Epidemiology
3. Viral Pathogenesis
3.1. Pathogenetic or Symbiotic?
3.2. Transmission & Infection
3.3. Latency and Reactivation
3.4. Immune Response to HSV-1
4. Clinical Manifestations
5. Triggers and Risk Factors
6. Management Strategies
6.1. Conventional Therapies
6.2. Antivirals
6.2.1. Acyclovir, Valacyclovir, Penciclovir, and Famciclovir
6.2.2. Problems of Bioavailability and Resistance Leading to Novel Approaches for Newer Antivirals
6.3. Emergence of Bioactive Natural Products
6.4. The Modern, Non-medicinal Future: Laser Therapy Immunotherapies and Probiotics
7. Impacts on Quality of Life
7.1. Physical and Psychological Implications
7.2. Lifestyle Modifications (Habits, Hygienic Considerations, Dietary)
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herpes & Shingles: Symptoms & Treatments—Life Extension. Available online: https://www.lifeextension.com/protocols/infections/herpes-and-shingles (accessed on 19 September 2021).
- Birek, C.; Ficarra, G. The diagnosis and management of oral herpes simplex infection. Curr. Infect. Dis. Rep. 2006, 8, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Boes, H.; Goulioumis, V.; Wechsler, A.; Zimmer, S.; Bizhang, M. Clinical Study on the Effectiveness of Three Products in the Treatment of Herpes Simplex Labialis. Sci. Rep. 2020, 10, 6465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petti, S.; Lodi, G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis. 2019, 25, 1850–1865. [Google Scholar] [CrossRef] [PubMed]
- Billions Worldwide Living with Herpes. Available online: https://www.who.int/news/item/01-05-2020-billions-worldwide-living-with-herpes (accessed on 9 May 2022).
- Cernik, C.; Gallina, K.; Brodell, R.T. The treatment of herpes simplex infections: An evidence-based review. Arch. Intern. Med. 2008, 168, 1137–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadr, L.; Harfouche, M.; Omori, R.; Schwarzer, G.; Chemaitelly, H.; Abu-Raddad, L.J. The Epidemiology of Herpes Simplex Virus Type 1 in Asia: Systematic Review, Meta-analyses, and Meta-regressions. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 757–772. [Google Scholar] [CrossRef] [PubMed]
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef]
- Rani, S.A.; Suragimath, G.; Rajmane, V.; Rajmane, Y. Prevalence of recurrent herpes labialis in Western Maharashtr. J. Oral Maxillofac. Pathol. 2021, 25, 51. [Google Scholar]
- Löwhagen, G.B.; Bonde, E.; Eriksson, B.; Nordin, P.; Tunbäck, P.; Krantz, I. Self-reported Herpes labialis in a Swedish Population. Scand. J. Infect. Dis. 2002, 34, 664–667. [Google Scholar] [CrossRef]
- Gibson, J.J.; Hornung, C.A.; Alexander, G.R.; Lee, F.K.; Potts, W.A.; Nahmias, A.J. A Cross-Sectional Study of Herpes Simplex Virus Types 1 and 2 in College Students: Occurrence and Determinants of Infection. J. Infect. Dis. 1990, 162, 306–312. [Google Scholar] [CrossRef]
- Barton, E.S.; White, D.W.; Cathelyn, J.S.; Brett-McClellan, K.A.; Engle, M.; Diamond, M.S.; Miller, V.L.; Virgin, H.W. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007, 447, 326–329. [Google Scholar] [CrossRef]
- Rajčáni, J.; Bánáti, F.; Szenthe, K.; Szathmary, S. The potential of currently unavailable herpes virus vaccines. Expert Rev. Vaccines 2018, 17, 239–248. [Google Scholar] [CrossRef]
- Higgins, C.R.; Schofield, J.K.; Tatnall, F.M.; Leigh, I.M. Natural history, management and complications of herpes labialis. J. Med. Virol. 1993, 41 (Suppl. 1), 22–26. [Google Scholar] [CrossRef]
- Artzy-Randrup, Y.; Pascual, M. Composite temporal strategies in pathogen evolution: Balancing invasion and persistence. Theor. Ecol. 2014, 7, 325–334. [Google Scholar] [CrossRef]
- Roizman, B.; Whitley, R.J. An Inquiry into the Molecular Basis of HSV Latency and Reactivation. Annu. Rev. Microbiol. 2013, 67, 355–374. [Google Scholar] [CrossRef] [Green Version]
- Arduino, P.G.; Porter, S.R. Herpes Simplex Virus Type 1 infection: Overview on relevant clinico-pathological features. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2008, 37, 107–121. [Google Scholar] [CrossRef]
- Whitley, R.; Kimberlin, D.W.; Prober, C.G. Pathogenesis and disease. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P.S., Roizman, B., Whitley, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2007. Available online: http://www.ncbi.nlm.nih.gov/books/NBK47449/ (accessed on 28 July 2021).
- Nicoll, M.P.; Proenca, J.T.; Efstathiou, S. The molecular basis of herpes simplex virus latency. FEMS Microbiol. Rev. 2012, 36, 684–705. [Google Scholar] [CrossRef]
- Nicoll, M.P.; Hann, W.; Shivkumar, M.; Harman, L.E.; Connor, V.; Coleman, H.M.; Proença, J.T.; Efstathiou, S. The HSV-1 latency-associated transcript functions to repress latent phase lytic gene expression and suppress virus reactivation from latently infected neurons. PLoS Pathog. 2016, 12, e1005539. [Google Scholar] [CrossRef]
- Umbach, J.L.; Kramer, M.F.; Jurak, I.; Karnowski, H.W.; Coen, D.M.; Cullen, B.R. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008, 454, 780–783. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Flores, O.; Umbach, J.L.; Pesola, J.M.; Bentley, P.; Rosato, P.C.; Leib, D.A.; Cullen, B.R.; Coen, D.M. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 2014, 15, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Vanni, E.A.; Foley, J.W.; Davison, A.J.; Sommer, M.; Liu, D.; Sung, P.; Moffat, J.; Zerboni, L.; Arvin, A.M. The latency-associated transcript locus of herpes simplex virus 1 is a virulence determinant in human skin. PLoS Pathog. 2020, 16, e1009166. [Google Scholar] [CrossRef]
- Lafferty, W.E.; Coombs, R.W.; Benedetti, J.; Critchlow, C.; Corey, L. Recurrences after Oral and Genital Herpes Simplex Virus Infection. N. Engl. J. Med. 1987, 316, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.R.; Charron, A.J.; Leib, D.A. Neuronal Subtype Determines Herpes Simplex Virus 1 Latency-Associated-Transcript Promoter Activity during Latency. J. Virol. 2018, 92, e00430-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Perng, G.C.; Jones, C.; Ciacci-Zanella, J.; Stone, M.; Henderson, G.; Yukht, A.; Slanina, S.M.; Hofman, F.M.; Ghiasi, H.; Nesburn, A.B.; et al. Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 2000, 287, 1500–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafezi, W.; Lorentzen, E.U.; Eing, B.R.; Müller, M.; King, N.J.; Klupp, B.; Mettenleiter, T.C.; Kühn, J.E. Entry of herpes simplex virus type 1 (HSV-1) into the distal axons of trigeminal neurons favors the onset of nonproductive, silent infection. PLoS Pathog. 2012, 8, e1002679. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and virulence of herpes simplex virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef]
- Boutell, C.; Everett, R.D. Regulation of alpha herpes virus infections by the ICP0 family of proteins. J. Gen. Virol. 2013, 94 Pt 3, 465–481. [Google Scholar]
- Lanfranca, M.P.; Mostafa, H.H.; Davido, D.J. HSV-1 ICP0: An E3 ubiquitin ligase that counteracts host intrinsic and innate immunity. Cells 2014, 3, 438–454. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Tscharke, D.C. Herpes simplex virus latency is noisier the closer we look. J. Virol. 2020, 94, e01701-19. [Google Scholar] [CrossRef] [Green Version]
- Knipe, D.M.; Cliffe, A. Chromatin control of herpes simplex virus lytic and latent infection. Nat. Rev. Microbiol. 2008, 6, 211–222. [Google Scholar] [CrossRef]
- Cliffe, A.R.; Garber, D.A.; Knipe, D.M. Transcription of the herpes simplex virus latency-associated transcript pro-motes the formation of facultative heterochromatin on lytic promoters. J. Virol. 2009, 83, 8182–8190. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Y.; Zhou, C.; Johnson, K.E.; Colgrove, R.C.; Coen, D.M.; Knipe, D.M. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc. Natl. Acad. Sci. USA 2005, 102, 16055–16059. [Google Scholar] [CrossRef]
- Miller, C.S.; Danaher, R.J. Asymptomatic shedding of herpes simplex virus (HSV) in the oral cavity. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2008, 105, 43–50. [Google Scholar] [CrossRef]
- Ramchandani, M.S.; Jing, L.; Russell, R.M.; Tran, T.; Laing, K.J.; Magaret, A.S.; Selke, S.; Cheng, A.; Huang, M.L.; Xie, H.; et al. Viral genetics modulate orolabial herpes simplex virus type 1 shedding in humans. J. Infect. Dis. 2019, 219, 1058–1066. [Google Scholar] [CrossRef]
- Patrycy, M.; Chodkowski, M.; Krzyzowska, M. Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens 2022, 11, 809. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, D.; Li, G. The role of microglia in viral encephalitis: A review. J. Neuroinflamm. 2019, 16, 76. [Google Scholar] [CrossRef]
- Marques, C.P.; Cheeran, M.C.; Palmquist, J.M.; Hu, S.; Urban, S.L.; Lokensgard, J.R. Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes encephalitis. J. Immunol. 2008, 181, 6417–6426. [Google Scholar] [CrossRef] [Green Version]
- Schoggins, J.W. Interferon-stimulated genes: What do they all do? Annu. Rev. Virol. 2019, 6, 567–584. [Google Scholar] [CrossRef]
- Vandevenne, P.; Sadzot-Delvaux, C.; Piette, J. Innate immune response and viral interference strategies developed by human herpesviruses. Biochem. Pharmacol. 2010, 80, 1955–1972. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Casanova, J.L. Inborn errors underlying herpes simplex encephalitis: From TLR3 to IRF3. J. Exp. Med. 2015, 212, 1342–1343. [Google Scholar] [CrossRef] [Green Version]
- Pires de Mello, C.P.; Bloom, D.C.; Paixão, I.C. Herpes simplex virus type-1: Replication, latency, reactivation and its antiviral targets. Antivir. Ther. 2016, 21, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, N.J.; Magaret, A.; Laing, K.J.; Kask, A.S.; Wang, M.; Mark, K.E.; Schiffer, J.T.; Wald, A.; Koelle, D.M. Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes. J. Virol. 2012, 86, 9952–9963. [Google Scholar] [CrossRef] [PubMed]
- Zenner, H.L.; Mauricio, R.; Banting, G.; Crump, C.M. Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity. J. Virol. 2013, 87, 13115–13123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Koelle, D.M.; Cao, J.; Vazquez, J.; Huang, M.L.; Hladik, F.; Wald, A.; Corey, L. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 2007, 204, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Peng, T.; Johnston, C.; Phasouk, K.; Kask, A.S.; Klock, A.; Jin, L.; Diem, K.; Koelle, D.M.; Wald, A.; et al. Immune surveillance by CD8alphaalpha+ skin-resident T cells in human herpes virus infection. Nature 2013, 497, 494–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posavad, C.M.; Zhao, L.; Dong, L.; Jin, L.; Stevens, C.E.; Magaret, A.S.; Johnston, C.; Wald, A.; Zhu, J.; Corey, L.; et al. Enrichment of herpes simplex virus type 2 (HSV-2) reactive mucosal T cells in the human female genital tract. Mucosal Immunol. 2017, 10, 1259–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, L.; Haas, J.; Chong, T.M.; Bruckner, J.J.; Dann, G.C.; Dong, L.; Marshak, J.O.; McClurkan, C.L.; Yamamoto, T.N.; Bailer, S.M.; et al. Cross-presentation and genome-wide screening reveal candidate T cells antigens for a herpes simplex virus type 1 vaccine. J. Clin. Investig. 2012, 122, 654–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paludan, S.R.; Bowie, A.G.; Horan, K.A.; Fitzgerald, K.A. Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol. 2011, 11, 143–154. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Li, C.; Chen, R.; Liu, T.; Jiang, Y. Antiviral Effect of Polyphenolic Substances in Geranium wilfordii Maxim against HSV-2 Infection Using in vitro and in silico Approaches. Evid. Based Complement. Altern. Med. 2022, 18, 7953728. [Google Scholar] [CrossRef]
- Simmons, A. Clinical Manifestations and Treatment Considerations of Herpes Simplex Virus Infection. J. Infect. Dis. 2002, 186 (Suppl. S1), S71–S77. [Google Scholar] [CrossRef] [Green Version]
- Ramchandani, M.; Kong, M.; Tronstein, E.; Selke, S.; Mikhaylova, A.; Magaret, A.; Huang, M.L.; Johnston, C.; Corey, L.; Wald, A. Herpes Simplex Virus Type 1 Shedding in Tears, and Nasal and Oral Mucosa of Healthy Adults. Sex. Transm. Dis. 2016, 43, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.P.; Chandy, M.L.; Shanavas, M.; Khan, S.; Suresh, K.V. Pathogenesis and life cycle of herpes simplex virus infection-stages of primary, latency and recurrence. J. Oral Maxillofac. Surg. Med. Pathol. 2016, 28, 350–353. [Google Scholar] [CrossRef]
- Hobbs, M.R.; Jones, B.B.; Otterud, B.E.; Leppert, M.; Kriesel, J.D. Identification of a Herpes Simplex Labialis Susceptibility Region on Human Chromosome 21. J. Infect. Dis. 2008, 197, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Fatahzadeh, M.; Schwartz, R.A. Human herpes simplex virus infections: Epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol. 2007, 57, 737–763. [Google Scholar] [CrossRef]
- Kriesel, J.D.; Bhatia, A.; Thomas, A. Cold sore susceptibility gene-1 genotypes affect the expression of herpes labialis in unrelated human subjects. Hum. Genome Var. 2014, 1, 14024. [Google Scholar] [CrossRef] [Green Version]
- Grinde, B. Herpesviruses: Latency and reactivation—Viral strategies and host response. J. Oral Microbiol. 2013, 5, 22766. [Google Scholar] [CrossRef] [Green Version]
- Spruance, S.L.; Freeman, D.J.; Stewart, J.C.; McKeough, M.B.; Wenerstrom, L.G.; Krueger, G.G.; Piepkorn, M.W.; Stroop, W.G.; Rowe, N.H. The natural history of ultraviolet radiation-induced herpes simplex labialis and response to therapy with peroral and topical formulations of acyclovir. J. Infect. Dis. 1991, 163, 728–734. [Google Scholar] [CrossRef] [Green Version]
- Spruance, S.L.; Hamill, M.L.; Hoge, W.S.; Davis, L.G.; Mills, J. Acyclovir Prevents Reactivation of Herpes Simplex Labialis in Skiers. JAMA 1988, 260, 1597–1599. [Google Scholar] [CrossRef]
- Taylor, J.R.; Schmieder, G.J.; Shimizu, T.; Tie, C.; Streilein, J.W. Interrelationship between ultraviolet light and recurrent herpes simplex infections in man. J. Dermatol. Sci. 1994, 8, 224–232. [Google Scholar] [CrossRef]
- Ranjbar, Z.; Zahed, M.; Ranjbar, M.A.; Shirmardan, Z. Comparative study of serum zinc concentration in recurrent herpes labialis patients and healthy individuals. BMC Oral Health 2020, 20, 296. [Google Scholar] [CrossRef]
- Godfrey, H.R.; Godfrey, N.J.; Godfrey, J.C.; Riley, D. A randomized clinical trial on the treatment of oral herpes with topical zinc oxide/glycine. Altern. Ther. Health Med. 2001, 7, 49–56. [Google Scholar] [PubMed]
- Eby, G.A.; Halcomb, W.W. Use of topical zinc to prevent recurrent herpes simplex infection: Review of literature and suggested protocols. Med. Hypotheses 1985, 17, 157–165. [Google Scholar] [CrossRef]
- Barman, N.; Haque, M.A.; Uddin, M.N.; Ghosh, D.; Rahman, M.W.; Islam, M.T.; Rahman, M.Q.; Rob, M.A.; Hossain, M.A. Status of Serum Zinc in Multidrug Resistant Tuberculosis. Mymensingh Med. J. 2016, 25, 27–30. [Google Scholar] [PubMed]
- Kamakura, M.; Goshima, F.; Luo, C.; Kimura, H.; Nishiyama, Y. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0. Virol. J. 2011, 8, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztekin, A.; Öztekin, C. Vitamin D Levels in Patients with Recurrent Herpes Labialis. Viral Immunol. 2019, 32, 258–262. [Google Scholar] [CrossRef]
- Stock, C.; Guillén-Grima, F.; de Mendoza, J.H.; Marin-Fernandez, B.; Aguinaga-Ontoso, I.; Krämer, A. Risk factors of herpes simplex type 1 (HSV-1) infection and lifestyle factors associated with HSV-1 manifestations. Eur. J. Epidemiol. 2001, 17, 885–890. [Google Scholar] [CrossRef]
- Glaser, R.; Kiecolt-Glaser, J.K. Chronic stress modulates the virus-specific immune response to latent herpes simplex virus Type 1. Ann. Behav. Med. 1997, 19, 78–82. [Google Scholar] [CrossRef]
- Chida, Y.; Mao, X. Does psychosocial stress predict symptomatic herpes simplex virus recurrence? A meta-analytic investigation on prospective studies. Brain Behav. Immun. 2009, 23, 917–925. [Google Scholar] [CrossRef]
- Nassaji, M.; Ghorbani, R.; Taheri, R.; Azizzadeh, M.; Abbassyan, F. Epidemiologic, clinical findings and risk factors of recurrent herpes labialis in healthy adult patients: A case-control study. Eur. Res. J. 2018, 5, 545–549. Available online: http://dergipark.gov.tr/doi/10.18621/eurj.384806 (accessed on 24 March 2021). [CrossRef] [Green Version]
- Logan, H.; Lutgendorf, S.K.; Hartwig, A.; Lilly, J.; Berberich, S.L. Immune, stress, and mood markers related to recurrent oral herpes outbreaks. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998, 86, 48–54. [Google Scholar] [CrossRef]
- Ives, A.M.; Bertke, A.S. Stress Hormones Epinephrine and Corticosterone Selectively Modulate Herpes Simplex Virus 1 (HSV-1) and HSV-2 Productive Infections in Adult Sympathetic, but Not Sensory, Neurons. J. Virol. 2017, 91, e00582-17. [Google Scholar] [CrossRef] [Green Version]
- Oakley, C.; Epstein, J.B.; Sherlock, C.H. Reactivation of oral herpes simplex virus: Implications for clinical management of herpes simplex virus recurrence during radiotherapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1997, 84, 272–278. [Google Scholar] [CrossRef]
- Gangemi, A.C.; Choi, S.H.; Yin, Z.; Feurdean, M. Cytomegalovirus and Herpes Simplex Virus Co-Infection in an HIV-Negative Patient: A Case Report. Cureus 2021, 13, e13214. [Google Scholar] [CrossRef]
- Danziger, S. Ice-packs for cold-sores. Lancet 1978, 1, 103. [Google Scholar] [CrossRef]
- De Simone, I.I.E. Preventing lip problems. J. Mod. Pharm. 1997, 4, 24. [Google Scholar]
- Shulman, J.D.; Lewis, D.L.; Carpenter, W.M. The prevalence of chapped lips during an army hot weather exercise. Mil. Med. 1997, 162, 817–819. [Google Scholar] [CrossRef] [Green Version]
- Lundeen, R.C.; Langlais, R.P.; Terezhalmy, G.T. Sunscreen protection for lip mucosa: A review and update. J. Am. Dent. Assoc. 1985, 111, 617–621. [Google Scholar] [CrossRef]
- Rezazadeh, F.; Moshaverinia, M.; Motamedifar, M.; Alyaseri, M. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: An In Vitro Study. J. Dent. 2016, 17, 49–54. [Google Scholar]
- Zschocke, I.; Reich, C.; Zielke, A.; Reitmeier, N.; Reich, K. Silica gel is as effective as acyclovir cream in patients with recurrent herpes labialis: Results of a randomized, open-label trial. J. Dermatol. Treat. 2008, 19, 176–181. [Google Scholar] [CrossRef]
- Russell, A.S.; Brisson, E.; Grace, M. A Double-Blind, Controlled Trial of Levamisole in the Treatment of Recurrent Herpes Labialis. J. Infect. Dis. 1978, 137, 597–600. [Google Scholar] [CrossRef]
- Inglot, D. Comparisons of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J. Gen. Virol. 1969, 4, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Astani, A.; Albrecht, U.; Schnitzler, P. Piroxicam inhibits herpes simplex virus type 1 infection in vitro. Pharmazie 2015, 70, 331–336. [Google Scholar] [PubMed]
- Kaminester, L.H.; Pariser, R.J.; Pariser, D.M.; Weiss, J.S.; Shavin, J.S.; Landsman, L.; Haines, H.G.; Osborne, D.W. A double-blind, placebo-controlled study of topical tetracaine in the treatment of herpes labialis. J. Am. Acad. Dermatol. 1999, 41, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Scheibel, J.; Jessen, O. Prevention of recurrent herpes simplex labialis with lysine. Ugeskr. Laeger 1980, 142, 1202–1203. [Google Scholar] [PubMed]
- Crimi, S.; Fiorillo, L.; Bianchi, A.; D’Amico, C.; Amoroso, G.; Gorassini, F.; Mastroieni, R.; Marino, S.; Scoglio, C.; Catalano, F.; et al. Herpes Virus, Oral Clinical Signs and QoL: Systematic Review of Recent Data. Viruses 2019, 11, 463. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563194/ (accessed on 20 March 2021). [CrossRef] [Green Version]
- Thein, D.J.; Hurt, W.C. Lysine as a prophylactic agent in the treatment of recurrent herpes simplex labialis. Oral Surg. Oral Med. Oral Pathol. 1984, 58, 659–666. [Google Scholar] [CrossRef]
- Szapary, P.; Cirigliano, M. Lysine for the Prevention and Treatment of Cutaneous Herpes Simplex Infections. Available online: https://www.reliasmedia.com/articles/42145-lysine-for-the-prevention-and-treatment-of-cutaneous-herpes-simplex-infections?v=preview (accessed on 26 August 2021).
- Pedrazini, M.C.; Araújo, V.C.; Montalli, V.A.M. The effect of L-Lysine in recurrent herpes labialis: Pilot study with a 8-year follow up. RGO-Rev. Gaúcha Odontol. 2018, 66, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Femiano, F.; Gombos, F.; Scully, C. Recurrent herpes labialis: A pilot study of the efficacy of zinc therapy. J. Oral Pathol. Med. 2005, 34, 423–425. [Google Scholar] [CrossRef]
- Cunningham, A.; Griffiths, P.; Leone, P.; Mindel, A.; Patel, R.; Stanberry, L.; Whitley, R. Current management and recommendations for access to antiviral therapy of herpes labialis. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2012, 53, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Sacks, S.L.; Thisted, R.A.; Jones, T.M.; Barbarash, R.A.; Mikolich, D.J.; Ruoff, G.E.; Jorizzo, J.L.; Gunnilla, L.B.; Katz, D.H.; Khalil, M.H.; et al. Clinical efficacy of topical docosanol 10% cream for herpes simplex labialis: A multicenter, randomized, placebo-controlled trial. J. Am. Acad. Dermatol. 2001, 45, 222–230. [Google Scholar] [CrossRef]
- Treister, N.S.; Woo, S.B. Topical n-docosanol for management of recurrent herpes labialis. Expert Opin. Pharmacother. 2010, 11, 853–860. [Google Scholar] [CrossRef]
- Kleymann, G. Novel agents and strategies to treat herpes simplex virus infections. Expert Opin. Investig. Drugs 2003, 12, 165–183. [Google Scholar] [CrossRef]
- Nath, A.; Thappa, D. Newer trends in the management of genital herpes. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 566–574. [Google Scholar]
- Trevor, A.J.; Katzung, B.G.; Kruidering-Hall, M.M.; Masters, S.B. Chapter 49. Antiviral Chemotherapy & Prophylaxis|Katzung & Trevor’s Pharmacology: Examination & Board Review, 10e|AccessPharmacy|McGraw Hill Medical. Available online: https://accesspharmacy.mhmedical.com/Content.aspx?bookid=514§ionid=41817568 (accessed on 19 September 2021).
- Chen, F.; Xu, H.; Liu, J.; Cui, Y.; Luo, X.; Zhou, Y.; Chen, Q.; Jiang, L. Efficacy and safety of nucleoside antiviral drugs for treatment of recurrent herpes labialis: A systematic review and meta-analysis. J. Oral Pathol. Med. 2017, 46, 561–568. [Google Scholar] [CrossRef]
- Lawee, D.; Rosenthal, D.; Aoki, F.Y.; Portnoy, J. Efficacy and safety of foscarnet for recurrent orolabial herpes: A multicentre randomized double-blind study. CMAJ Can. Med. Assoc. J. 1988, 138, 329–333. [Google Scholar]
- Poole, C.L.; James, S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018, 40, 1282–1298. [Google Scholar] [CrossRef]
- Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antivir. Res. 2018, 154, 66–86. [Google Scholar] [CrossRef]
- Álvarez, D.M.; Castillo, E.; Duarte, L.F.; Arriagada, J.; Corrales, N.; Farías, M.A.; Henríquez, A.; Agurto-Muñoz, C.; González, P.A. Current Antivirals and Novel Botanical Molecules Interfering with Herpes Simplex Virus Infection. Front. Microbiol. 2020, 11, 139. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026011/ (accessed on 24 March 2021). [CrossRef]
- Sadowski, L.; Upadhyay, R.; Greeley, Z.; Margulies, B. Current Drugs to Treat Infections with Herpes Simplex Viruses-1 and -2. Viruses 2021, 13, 1228. [Google Scholar] [CrossRef]
- Wong, Y.J.; Veitz-Keenan, A. Systemic nucleoside antiviral agents may be effective in prevention of recurrent herpes labialis. Evid. Based Dent. 2013, 14, 54. [Google Scholar] [CrossRef]
- Mubareka, S.; Leung, V.; Aoki, F.Y.; Vinh, D.C. Famciclovir: A focus on efficacy and safety. Expert Opin. Drug Saf. 2010, 9, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Aribi Al-Zoobaee, F.W.; Yee Shen, L.; Veettil, S.K.; Gopinath, D.; Maharajan, M.K.; Kunnath Menon, R. Antiviral Agents for the Prevention and Treatment of Herpes Simplex Virus Type-1 Infection in Clinical Oncology: A Network Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8891. [Google Scholar] [CrossRef] [PubMed]
- Crumpacker, C. The pharmacological profile of famciclovir. Semin. Dermatol. 1996, 15 (Suppl. 1), 14–26. [Google Scholar] [PubMed]
- Birkmann, A.; Zimmermann, H. HSV antivirals—Current and future treatment options. Curr. Opin. Virol. 2016, 18, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, H.; Mara, T.; Costella, J.; Speechley, M.; Bohay, R. Effectiveness of antiviral agents for the prevention of recurrent herpes labialis: A systematic review and meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 618–627. [Google Scholar] [CrossRef]
- Bermek, O.; Williams, R.S. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol. 2021, 11, 210011. [Google Scholar] [CrossRef]
- Ainbinder, D.; Paolino, D.; Fresta, M.; Touitou, E. Drug Delivery Applications with Ethosomes. J. Biomed. Nanotechnol. 2010, 6, 558–568. [Google Scholar] [CrossRef]
- Horwitz, E.; Pisanty, S.; Czerninski, R.; Helser, M.; Eliav, E.; Touitou, E. A clinical evaluation of a novel liposomal carrier for acyclovir in the topical treatment of recurrent herpes labialis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 87, 700–705. [Google Scholar] [CrossRef]
- Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A. Transdermal applications of ethosomes—A detailed review. J. Liposome Res. 2019, 29, 103–113. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, A.; Ataei-Pirkooh, A.; Mm Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.J.; Moghoofei, M.; Farahmand, M.; Javanmard, D.; Monavari, S.H. Polyethylene glycol-coated zinc oxide nanoparticle: An efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine 2018, 13, 2675–2690. [Google Scholar] [CrossRef]
- Münstedt, K. Bee products and the treatment of blister-like lesions around the mouth, skin and genitalia caused by herpes viruses—A systematic review. Complement. Ther. Med. 2019, 43, 81–84. [Google Scholar] [CrossRef]
- Jautová, J.; Zelenková, H.; Drotarová, K.; Nejdková, A.; Grünwaldová, B.; Hladiková, M. Lip creams with propolis special extract GH 2002 0.5% versus aciclovir 5.0% for herpes labialis (vesicular stage): Randomized, controlled double-blind study. Wien. Med. Wochenschr. 2019, 169, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Semprini, A.; Singer, J.; Braithwaite, I.; Shortt, N.; Thayabaran, D.; McConnell, M.; Weatherall, M.; Beasley, R. Kanuka honey versus aciclovir for the topical treatment of herpes simplex labialis: A randomised controlled trial. BMJ Open 2019, 9, e026201. [Google Scholar] [CrossRef] [Green Version]
- Garber, A.; Barnard, L.; Pickrell, C. Review of Whole Plant Extracts with Activity Against Herpes Simplex Viruses In Vitro and In Vivo. J. Evid.-Based Integr. Med. 2021, 26, 2515690X20978394. [Google Scholar] [CrossRef]
- de Paula Eduardo, C.; Aranha, A.C.C.; Simões, A.; Bello-Silva, M.S.; Ramalho, K.M.; Esteves-Oliveira, M.; de Freitas, P.M.; Marotti, J.; Tunér, J. Laser treatment of recurrent herpes labialis: A literature review. Lasers Med. Sci. 2013, 29, 1517–1529. [Google Scholar] [CrossRef]
- Al-Maweri, S.A.; Kalakonda, B.; AlAizari, N.A.; Al-Soneidar, W.A.; Ashraf, S.; Abdulrab, S.; Al-Mawri, E.S. Efficacy of low-level laser therapy in management of recurrent herpes labialis: A systematic review. Lasers Med. Sci. 2018, 33, 1423–1430. [Google Scholar] [CrossRef]
- Palli, M.A.; McTavish, H.; Kimball, A.; Horn, T.D. Immunotherapy of Recurrent Herpes Labialis with Squaric Acid. JAMA Dermatol. 2017, 153, 828. [Google Scholar] [CrossRef]
- Chang, A.L.S.; Honari, G.; Guan, L.; Zhao, L.; Palli, M.A.; Horn, T.D.; Dudek, A.Z.; McTavish, H. A phase 2, multicenter, placebo-controlled study of single-dose squaric acid dibutyl ester to reduce frequency of outbreaks in patients with recurrent herpes labialis. J. Am. Acad. Dermatol. 2020, 83, 1807–1809. [Google Scholar] [CrossRef]
- Leplina, O.; Starostina, N.; Zheltova, O.; Ostanin, A.; Shevela, E.; Chernykh, E. Dendritic cell-based vaccines in treating recurrent herpes labialis: Results of pilot clinical study. Hum. Vaccines Immunother. 2016, 12, 3029–3035. [Google Scholar] [CrossRef] [Green Version]
- Janicki, M.P. Recurrent Herpes Labialis and Recurrent Aphthous Ulcerations: Psychological Components. Psychother. Psychosom. 1971, 19, 288–294. [Google Scholar] [CrossRef]
- Harper, A.; Vijayakumar, V.; Ouwehand, A.C.; Ter Haar, J.; Obis, D.; Espadaler, J.; Binda, S.; Desiraju, S.; Day, R. Viral Infections, the Microbiome, and Probiotics. Front. Cell Infect. Microbiol. 2021, 10, 596166. [Google Scholar] [CrossRef] [PubMed]
- Abt, M.C.; Osborne, L.C.; Monticelli, L.A.; Doering, T.A.; Alenghat, T.; Sonnenberg, G.F.; Paley, M.A.; Antenus, M.; Williams, K.L.; Erikson, J.; et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012, 37, 158–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erttmann, S.F.; Swacha, P.; Aung, K.M.; Brindefalk, B.; Jiang, H.; Härtlova, A.; Uhlin, B.E.; Wai, S.N.; Gekara, N.O. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 2022, 55, 847–861. [Google Scholar] [CrossRef]
- Torres, N.I.; Noll, K.S.; Xu, S.; Li, J.; Huang, Q.; Sinko, P.J.; Wachsman, M.B.; Chikindas, M.L. Safety, Formulation and In Vitro Antiviral Activity of the Antimicrobial Peptide Subtilosin Against Herpes Simplex Virus Type 1. Probiotics Antimicrob. Proteins 2013, 5, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Buske-Kirschbaum, A.; Geiben, A.; Wermke, C.; Pirke, K.M.; Hellhammer, D. Preliminary Evidence for Herpes labialis Recurrence following Experimentally Induced Disgust. Psychother. Psychosom. 2001, 70, 86–91. [Google Scholar] [CrossRef]
- Hu, S.; Anand, P.; Laughter, M.; Maymone, M.B.C.; Dellavalle, R.P. Holistic dermatology: An evidence-based review of modifiable lifestyle factor associations with dermatologic disorders. J. Am. Acad. Dermatol. 2020, 86, 868–877. Available online: https://www.sciencedirect.com/science/article/pii/S0190962220307246 (accessed on 29 August 2021). [CrossRef]
- Gompf, S.G. Cold Sores (Oral Herpes) Treatment, Remedies, Causes, Medicines, Symptoms. MedicineNet. Available online: https://www.medicinenet.com/herpes_simplex_infections_non-genital/article.htm (accessed on 20 March 2021).
- Jamgochian, M.; Alamgir, M.; Rao, B. Diet in Dermatology: Review of Diet’s Influence on the Conditions of Rosacea, Hidradenitis Suppurativa, Herpes Labialis, and Vitiligo. Am. J. Lifestyle Med. 2021, 17, 15598276211026592. [Google Scholar] [CrossRef]
• Fever | • Orofacial fracture |
• Flu | • Emotional/psychosocial stress |
• Exposure to sun/UV light | • Upper respiratory issues |
• Seasonal weather | • Immunosuppressive treatments |
• Chapped lips/trauma | • Chemotherapy |
• Fatigue | • Organ transplantations |
• Lack of sleep | • Additional viral infections |
• Ice cubes | • Anesthetics |
• Lip balms/moisturizers | • Lysine |
• Lip sunscreens | • Zinc and iron supplementations |
• Aloe vera gel | • Vitamin D supplementations |
• Silica gel | • Zinc-based creams |
• Levamisole | • Docosanol |
• Antipyretics | • Foscarnet |
• Painkillers |
Product (Brands Available) | Category | Targeted Mechanisms | Recommended Dosage/Routes | Indication/ Viral Spectrum |
---|---|---|---|---|
Acyclovir (Zovirax) | Purine analog | TK, DNA polymerase, chain termination with competitive dGTP | Oral: 5 × 200–800 mg (5–14 days) Topical: 5% ointment/cream | HSV, VZV, HCMV |
Valacyclovir (Valtrex) | Purine analog, prodrug for ACV | TK, DNA polymerase | Oral: 2 × 500 mg−1 g (5–10 days) | HSV, VZV, HCMV |
Famciclovir (Famvir) | Purine analog, prodrug for PCV | TK, DNA polymerase | Oral: 2 × 125–250 mg (5–10 days) | HSV, VZV |
Penciclovir (Denavir/Vectavir) | Purine analog | TK, DNA polymerase, no chain termination but with competitive dGTP | Topical: 1% cream | HSV, VZV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopinath, D.; Koe, K.H.; Maharajan, M.K.; Panda, S. A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses 2023, 15, 225. https://doi.org/10.3390/v15010225
Gopinath D, Koe KH, Maharajan MK, Panda S. A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses. 2023; 15(1):225. https://doi.org/10.3390/v15010225
Chicago/Turabian StyleGopinath, Divya, Kim Hoe Koe, Mari Kannan Maharajan, and Swagatika Panda. 2023. "A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis" Viruses 15, no. 1: 225. https://doi.org/10.3390/v15010225
APA StyleGopinath, D., Koe, K. H., Maharajan, M. K., & Panda, S. (2023). A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses, 15(1), 225. https://doi.org/10.3390/v15010225