Concerning the Etiology of Syrah Decline: A Fresh Perspective on an Old and Complex Issue Facing the Global Grape and Wine Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Isolation of Total Nucleic Acids
2.3. PCR and RT-PCR
2.4. High-Throughput Sequencing
2.5. Genetic Diversity Analysis of GRSPaV
3. Results
3.1. Syrah Decline in Ontario Vineyards
3.2. Several Viruses Were Detected in Declining Syrah Vines through RT-PCR/PCR
3.3. Detection of Viruses in Declining Syrah Vines through HTS Analysis
3.4. GAMaV and GRFVF in Declining Syrah Vines
3.5. Analysis of GRSPaV Genetic Variants in Declining Syrah Vines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agriculture and Agri-Food Canada. Satellite Soil Moisture. 2016. Available online: http://www.agr.gc.ca/eng/programs-and-services/drought-watch/satellite-soil-moisture/?id=1471964796573 (accessed on 27 June 2019).
- Al Rwahnih, M.; Dave, A.; Anderson, M.M.; Rowhani, A.; Uyemoto, J.K.; Sudarshana, M.R. Association of a DNA virus with grapevines affected by red blotch disease in California. Phytopathology 2013, 103, 1069–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Rwahnih, M.; Daubert, S.; Golino, D.; Rowhani, A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 2009, 387, 395–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battany, M.; Rowhani, A.; Golino, D. Syrah in California: Decline or Disorder? Pract. Winery Vineyard 2004, 26, 20–35. [Google Scholar]
- Beuve, M.; Moury, B.; Spilmont, A.-S.; Sempé-Ignatovic, L.; Hemmer, C.; Lemaire, O. Viral sanitary status of declining grapevine Syrah clones and genetic diversity of Grapevine Rupestris stem pitting-associated virus. Eur. J. Plant Pathol. 2012, 135, 439–452. [Google Scholar] [CrossRef]
- Bota, J.; Tomás, M.; Flexas, J.; Medrano, H.; Escalona, J.M. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agric. Water Manag. 2016, 164, 91–99. [Google Scholar] [CrossRef]
- Boubals, D. The decline of syrah. Wines Vines 2022, 83, 45. [Google Scholar]
- Coetzee, B.; Freeborough, M.J.; Maree, H.J.; Celton, J.M.; Rees, D.J.; GBurger, J.T. Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology 2010, 400, 157–163. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Soil Moisture. 2016. Available online: https://www.eea.europa.eu/data-and-maps/indicators/water-retention-4/assessment (accessed on 27 June 2019).
- Goff, S.A.; Vaughn, M.; McKay, S.; Lyons, E.; Stapleton, A.E.; Gessler, D.; Matasci, N.; Wang, L.; Hanlon, M.; Lenards, A.; et al. The iPlant collaborative: Cyberinfrastructure for plant biology. Front. Plant Sci. 2011, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Goszczynski, D.E. Rugose wood-associated viruses do not appear to be involved in Shiraz (Syrah) decline in South Africa. Arch. Virol. 2010, 155, 1463–1469. [Google Scholar] [CrossRef]
- Goszczynski, D.E. Single-strand conformation polymorphism (SSCP), cloning and sequencing reveal a close association between related molecular variants of Grapevine virus A (GVA) and Shiraz disease in South Africa. Plant Pathol. 2007, 56, 755–762. [Google Scholar] [CrossRef]
- Gramaje, D.; Muñoz, R.M.; Lerma, M.L.; García-Jiménez, J.; Armengol, J. Fungal grapevine trunk pathogens associated with Syrah decline in Spain. Phytopathol. Mediterr. 2009, 48, 396–402. [Google Scholar]
- Granda, E.; Camarero, J.J. Drought reduces growth and stimulates sugar accumulation: New evidence of environmentally driven non-structural carbohydrate use. Tree Physiol. 2017, 37, 997–1000. [Google Scholar] [CrossRef] [PubMed]
- Habili, N.; Farrokhi, N.; Lima, M.F.; Nicholas, P.; Randles, J.W. Distribution of Rupestris stem-pitting-associated virus variants in two Australian vineyards showing different symptoms. Ann. Appl. Biol. 2006, 148, 91–96. [Google Scholar] [CrossRef]
- Krenz, B.; Thompson, J.R.; Fuchs, M.; Perry, K.L. Grapevine red blotch associated virus from grapevine. J. Virol. 2012, 86, 7715. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.; Guenoune-Gelbart, D.; Epel, B.L. β-1,3-Glucanases: Plasmodesmal gate keepers for intercellular communication. Plant Signal. Behav. 2007, 2, 404–407. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.F.; Alkowni, R.; Uyemoto, J.K.; Rowhani, A. Genomic study and detection of a new variant of Grapevine rupestris stempitting-associated virus in declining California Pinot noir grapevines. J. Plant Pathol. 2009, 91, 155–162. [Google Scholar]
- Lima, M.F.; Alkowni, R.; Uyemoto, J.K.; Golino, D.; Osman, F.; Rowhani, A. Molecular analysis of a California strain of Rupestris stem pitting-associated virus isolated from declining Syrah grapevines. Arch. Virol. 2006, 151, 1889–1894. [Google Scholar] [CrossRef]
- Liu, H.W.; Wu, L.P.; Nikolaeva, E.; Peter, K.; Liu, Z.R.; Mollov, D.; Cao, M.J.; Li, R.H. Characterization of a new apple luteovirus identified by high-throughput sequencing. Virol. J. 2018, 15, 85. [Google Scholar] [CrossRef] [Green Version]
- Martelli, G.P. Directory of virus and virus-like diseases of the grapevine and their agents. J. Plant Physiol. 2014, 96, 1–136. [Google Scholar]
- Meng, B.; Rebelo, A.R.; Fisher, H. Genetic diversity analysis of Grapevine rupestris stem pitting-associated virus: Revelation of distinct population structures in scion versus rootstock varieties. J. Gen. Virol. 2006, 87, 1725–1733. [Google Scholar] [CrossRef]
- Montoro, A.; Sadras, V. Elevated Temperature Increased Stomata Size and Leaf Photosynthesis in Shiraz Grapevine. In Proceedings of the VIIth International Symposium on Irrigation of Horticultural Crops, Geisenheim, Germany, 16–20 July 2012; pp. 443–447. [Google Scholar]
- Murakami, P.F.; Schaberg, P.G.; Shane, J.B. Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn. Tree Physiol. 2008, 28, 1467–1473. [Google Scholar] [CrossRef]
- Nakaune, R.; Inoue, K.; Sasu, H.; Kakogawa, K.; Nitta, H.; Imada, J.; Nakano, M. Detection of viruses associated with rugose woody in Japanese grapevines and analysis of genomic variability of Rupestris stem pitting-associated virus. J. Gen Plant Pathol. 2008, 74, 156–163. [Google Scholar] [CrossRef]
- Nicolai-Shaw, N.; Zscheischler, J.; Hirschi, M.; Gudmundsson, L.; Seneviratne, S.I. A drought event composite analysis using satellite remote-sensing based soil moisture. Remote Sens. Environ. 2017, 2013, 216–225. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. Distribution of the World’s Grapevine Varieties; OIV: Paris, France, 2017. [Google Scholar]
- Prieto, J.A.; Lebon, É.; Ojeda, H. Stomatal behavior of different grapevine cultivars in response to soil water status and air water vapor pressure deficit. J. Int. Des Sci. De La Vigne Et Du Vin 2010, 44, 9–20. [Google Scholar] [CrossRef]
- Prosser, J.C. Role of Viral Infections in Rapid Prunus Decline in the Niagara Region. Master’s Thesis, Brock University, St. Catharines, ON, Canada, 2022. [Google Scholar]
- Puckett, J.M.; Dangl, G.; Golino, D.; Al Rwahnih, M. Evidence to support Syrah Decline is a non-infectious genetic syndrome in several Syrah selections. In Proceeding of the 19th Congress of ICVG, Santiago, Chile, 9–12 April 2018; pp. 78–79. [Google Scholar]
- Renault-Spilmont, A.S.; Bernard, L.; Serra, P.; Duran-Vila, N. Syrah Decline: No Evidence for Viroid Etiology; Institut Français de la Vigne et du Vin: Le Grau-du-Roi, France, 2009. [Google Scholar]
- Renault-Spilmont, A.S.; Boursiquot, J.M. Syrah Decline in French Vineyards; FPMS Grape Program Newsletter: Davis, CA, USA, 2002. [Google Scholar]
- Renault-Spilmont, A.S.; Grenan, S.; Boursiquot, J.M. Syrah Decline. In Progrès Agricole et Viticole—Report on the Meeting of the National Working Group; Agro: Montpellier, France, 2005; pp. 1–12. [Google Scholar]
- Renault-Spilmont, A.S.; Moreno, Y.; Audeguin, L. Syrah Decline: Similar symptoms on own-rooted plants. PAV Revue de l’Académie de la Vigne et du Vin 2010, 127, 63–67. [Google Scholar]
- Rowhani, A.; Uyemoto, J.K.; Golino, D.A.; Daubert, S.D.; Al Rwahnih, M. Viruses involved in graft incompatibility and decline. In Grapevine Viruses: Molecular Biology, Diagnostics and Management; Chapter 13; Meng, B., Martelli, G.P., Golino, D.A., Fuchs, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees; Center for Demographic and Population Genetics, The University of Texas Health Science Center at Houston: Houston, TX, USA, 1987. [Google Scholar]
- Spilmont, A.S.; Verdeil, J.L. Functioning Scenario of Successful Omega Bench Grafting of Grapevine; Institut Français de la Vigne et du Vin (IFV): Le Grau-du-Roi, France, 2005. [Google Scholar]
- Stokstad, E. Rapid apple decline has researchers stumped. Science 2019, 363, 1259. [Google Scholar] [CrossRef] [PubMed]
- Tomás, M.; Medrano, H.; Escalona, J.M.; Martorell, S.; Pou, A.; Ribas-Carbó, M.; Flexas, J. Variability of water use efficiency in grapevines. Environ. Exp. Bot. 2014, 103, 148–157. [Google Scholar] [CrossRef]
- Walker, L. Syrah decline increasing? Wines Vines 2005, 86, 40. [Google Scholar]
- Wolf, F.T. Effects of chemical agents in inhibition of chlorophyll synthesis and chloroplast development in higher plants. Bot. Rev. 1977, 43, 395–424. [Google Scholar] [CrossRef]
- Xiao, H.; Kim, W.-S.; Meng, B. A highly effective and versatile technology for the isolation of RNAs from grapevines and other woody perennials for use in virus diagnostics. Virol. J. 2015, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.; Hooker, J.; Li, C.; Meng, B. Syrah decline in Ontario vineyards. In Proceedings of the 18th Meeting of ICVG, Ankara, Turkey, 7–11 September 2015. [Google Scholar]
- Xiao, H.; Shabanian, M.; Moore, C.; Li, C.; Meng, B. Survey for major viruses in commercial Vitis vinifera wine grapes in Ontario. Virol. J. 2018, 15, 127. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Hao, W.; Storoschuk, G.; MacDonald, J.L.; Sanfaçon, H. Characterizing the virome of apple orchards affected by rapid decline in the Okanagan and Similkameen Valleys of British Columbia (Canada). Pathogens 2022, 11, 1231. [Google Scholar] [CrossRef] [PubMed]
Target | Primer | Sequence | Size (bp) | Gene |
---|---|---|---|---|
GRSPaV | RSP35 | AGRYTTAGRGTRGCTAARGC | 477 | Replicase |
RSP36 | CACATRTCATCVCCYGCAAA | |||
GRSPaV-SY | SY1659F | TAAGATGGCCTTGGGTGTGG | 469 | Replicase |
SY2127R | ATTTATGGGATGGGCACATG | |||
GRSPaV-PN | PN1701F | CTTCTTGGTGAACAGCGCC | 487 | Replicase |
PN2187R | AACAAATTGCCTCACAAGCC | |||
GLRaV-1 | LR1-580F | CCAGAYACNGARAGYAAAGAAG | 201 | CP |
LR1-780R | CTCGTTCGGCYTYAACTTTCC | |||
GLRaV-2 | LR2-14568F | RCDATGGAGYTRATGTCYGA | 525 | CP |
LR2-15092R | AGCGTACATRCTYGCRAACA | |||
GLRaV-3 | LR3CP107F | TCTTAAARTAYGTTAAGGACGG | 301 | CP |
LR3-CP407R | GGCTCGTTAATAACTTTCGG | |||
GLRaV-4 | LR4-13269F | GGACAATTTAGGTAATGTWGTRGCTAC | 490 | P23 |
LR4-13758R | TATCCTCAGWGAGGAARCGG | |||
GLRaV-7 | LR7-12163F | CTAGTGAATTACACCGAGAAGTC | 550 | CP |
LR7-12712R | GTGACTTGGCACGCATGTATC | |||
GRBV | GRBV1097F | ACGAGGAATCGTTTGAATCG | 235 | CP |
GRBV1331R | TAAACGTATGTCCACTTGCAG | |||
GRBV-147 | RB147F2422 | AGGTTTCGTTGTGCTGAGCT | 303 | C1 |
RB147R2724 | CGTCGAGCACGGTACAAAG | |||
GRBV-701 | RB701F133 | GGTGGCCGAATATATGCTTAA | 505 | V2 |
RB701R638 | CAACGCGTCTAGTCAGTTGA | |||
GSyV-1 | GSyV5725F | ATGATGCAACCGACCCTTCC | 671 | CP |
GSyV6395R | TGGAGGCTTTATTCAGAGAG | |||
GPGV | GPGV6586F | GAYATGTCGATTCGTCAGGAG | 436 | CP |
GPGV7021R | CAACGCGTCTAGTCAGTTGA | |||
GVA | GVA6538F | TCTTCGGGTACATCGCCTTG | 325 | CP |
GVA6862R | TCRAACATAACCTGTGGYTC | |||
GVB | GVB6411F | GTGTAYGARACAATAAGCAAGC | 721 | CP |
GVB7131R | TAGCCCTYCGTTTAGCCGCA | |||
GFLV | GFLV3135F | TTGAGATTGGWTCYCGTTTC | 558 | CP |
GFLV3692R | CTGTCGCCACTAAAAGCATG | |||
ArMV | ArMV2291F | CRGGTATTACGTGGGTTATGAG | 340 | CP |
ArMV2582R | GCTGCCTCAAACTCAGCATA | |||
GRVFV | GRVFV5646F | GTYGAARTCTCTCTCTTCTCCC | 389 | Replicase |
GRVFV6034R | ATTATGAGAGCAACCCACTGGAAG | |||
GAMaV | GAMaV6165F | CTCGCGCTCCTCGCATTGTT | 467 | Replicase |
GAMaV6631R | CGTGACGAGGTTGGTCCCA |
Year | Total No. of Vines Surveyed | No. of Vines with Red Canopy | No. of Dead Vines | No. of Replanted Vines |
---|---|---|---|---|
2014 | 510 | 127 | NA | NA |
2015 | 209 | 29 | 47 | 133 |
2017 | 229 | 5 | 31 | 193 |
Sample | Clone | Symptoms | GPGV | GSyV | GRSPaV | GLRaV-3 | GRBV | |
---|---|---|---|---|---|---|---|---|
All Strains | SY | |||||||
93-1 | Clone 1 | Red canopy | - | - | + | + | + | - |
93-2 | Red canopy | - | - | + | + | + | - | |
93-3 | Red canopy | - | - | + | + | + | + | |
93-4 | Red canopy | - | - | + | + | + | - | |
93-5 | Red canopy | - | - | + | + | + | + | |
93-6 | Red canopy | - | - | + | + | + | + | |
93-7 | Red canopy | - | - | + | + | + | - | |
93-8 | - | - | - | + | + | + | + | |
93-9 | - | + | - | + | + | + | + | |
93-10 | - | + | - | + | + | + | + | |
93-21 | Clone 100 | Red canopy | - | - | + | + | + | + |
93-27 | Red canopy | - | - | + | + | + | + | |
93-32 | Red canopy | + | - | + | + | + | + | |
93-22 | - | - | - | + | + | + | + | |
93-25 | - | - | - | + | + | + | + | |
93-26 | - | - | - | + | + | + | + | |
93-28 | - | - | - | + | + | + | + | |
93-29 | - | - | - | + | + | + | + | |
93-30 | - | - | + | + | + | + | + | |
93-31 | - | - | - | + | + | + | + |
No. of Reads | % of Viral Reads | |||
---|---|---|---|---|
93-21 | 93-26 | 93-21 | 93-26 | |
Reads mapping to V. vinifera genome | 51,118,440 | 61,175,450 | 89.86 | 89.26 |
Reads not mapping to V. vinifera genome | 5,767,366 | 7,363,547 | 10.14 | 10.74 |
GRSPaV | 12,795 | 14,432 | 0.022 | 0.021 |
GRBV GLRaV-3 | 3285 1649 | 24,557 3033 | 0.006 0.003 | 0.036 0.004 |
GAMaV GRVFV | 365 701 | 319 0 | 0.001 0.001 | 0.004 ― |
GYSVd1 | 3968 | 6087 | 0.007 | 0.009 |
GYSVd2 | 724 | 1013 | 0.001 | 0.001 |
HSVd | 7019 | 10,819 | 0.012 | 0.016 |
Total # of reads | 56,885,806 | 68,538,997 | ― | ― |
Total # of reads related to viruses and viroids | 30,506 | 60,260 | 0.054 | 0.088 |
Virus | Variant/Accession | 93-21 (With Red Canopy) | 93-26 (Without Red Canopy) | ||||
---|---|---|---|---|---|---|---|
Number of Contigs | Nucleotide Identity | Genome Coverage | Number of Contigs | Nucleotide Identity | Genome Coverage | ||
GRSPaV | MG/FR691076 | 2 | 98 | 90.0 | 7 | 94–98 | 36 |
BS/1Y881627 | 1 | 94 | 88.4 | 1 | 98 | 38 | |
JF/KR054734 | 8 | 98 | 65 | 4 | 97–98 | 43 | |
SK704A/KX274274 | 10 | 97–99 | 85 | 7 | 98–99 | 89 | |
SY/AY368599 | 3 | 95 | 94–97 | 3 | 17 | 12 | |
GRBV | NY-701 | - | - | - | 1 | 99 | 100 |
NY-149 | 4 | 99 | 100 | - | - | - | |
GLRaV-3 | 623/GQ352632 | 5 | 99 | 14 | 7 | 99 | 23 |
GAMaV | USA9/AJ249357 | 3 | 92–93 | 61 | 3 | 93–94 | 62 |
GRVFV | NA/AF706994 | 4 | 69–84 | 88 | - | - | - |
5 | 80–88 | 73 | - | - | - |
Vines with Red Canopy | GAMaV | GRVFV | Vines without Red Canopy | GAMaV | GRVFV |
---|---|---|---|---|---|
93-1 | + | + | 93-8 | - | - |
93-2 | + | - | 93-9 | - | + |
93-3 | - | - | 93-10 | + | - |
93-4 | + | - | 93-22 | - | + |
93-5 | + | - | 93-25 | - | - |
93-6 | + | - | 93-26 | + | - |
93-7 | - | - | 93-28 | + | - |
93-21 | + | + | 93-29 | + | - |
93-27 | - | - | 93-30 | - | + |
93-32 | + | - | 93-31 | - | + |
210-3 | + | + | 210-4 | + | - |
210-5 | + | - | 210-6 | - | + |
ON427 | + | - | ON417 | - | - |
ON428 | + | + | ON418 | - | - |
ON429 | + | - | ON419 | - | + |
ON430 | + | - | ON420 | - | + |
ON431 | + | - | ON421 | - | - |
ON432 | + | - | ON422 | - | + |
ON433 | + | - | ON423 | - | - |
ON434 | - | - | ON424 | - | + |
ON435 | + | - | ON425 | + | - |
ON436 | + | + | ON426 | + | - |
# of positive samples | 18 | 5 | # of positive samples | 7 | 9 |
Total # of samples tested | 22 | 22 | Total # of samples tested | 22 | 22 |
Percentage of positives | 82% | 23% | Percentage of positives | 32% | 41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Roscow, O.; Hooker, J.; Li, C.; Maree, H.J.; Meng, B. Concerning the Etiology of Syrah Decline: A Fresh Perspective on an Old and Complex Issue Facing the Global Grape and Wine Industry. Viruses 2023, 15, 23. https://doi.org/10.3390/v15010023
Xiao H, Roscow O, Hooker J, Li C, Maree HJ, Meng B. Concerning the Etiology of Syrah Decline: A Fresh Perspective on an Old and Complex Issue Facing the Global Grape and Wine Industry. Viruses. 2023; 15(1):23. https://doi.org/10.3390/v15010023
Chicago/Turabian StyleXiao, Huogen, Olivia Roscow, Julia Hooker, Caihong Li, Hans J. Maree, and Baozhong Meng. 2023. "Concerning the Etiology of Syrah Decline: A Fresh Perspective on an Old and Complex Issue Facing the Global Grape and Wine Industry" Viruses 15, no. 1: 23. https://doi.org/10.3390/v15010023
APA StyleXiao, H., Roscow, O., Hooker, J., Li, C., Maree, H. J., & Meng, B. (2023). Concerning the Etiology of Syrah Decline: A Fresh Perspective on an Old and Complex Issue Facing the Global Grape and Wine Industry. Viruses, 15(1), 23. https://doi.org/10.3390/v15010023