Hybrid Immunity Results in Enhanced and More Sustained Antibody Responses after the Second Sinovac-CoronaVac Dose in a Brazilian Cohort: DETECTCoV-19 Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Setting
2.2. Antigen POC Test, RT-PCR, and SARS-CoV-2 Variant Identification
2.3. Case–Control Study Design
2.4. Serological Assays
2.5. Statistical Analysis
3. Results
3.1. Vaccination and Identification of Breakthrough Infections
3.2. CoronaVac Breakthrough Case and Uninfected Control Analysis
3.3. CoronaVac Vaccine Response among Naïve and Previous COVID-19
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayhan, G.I.; Guner, R. Effectiveness of CoronaVac in preventing COVID-19 in healthcare workers. Hum. Vaccines Immunother. 2022, 18, 2020017. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.M.; Vila, V.; Diones, P.C.; Valderama, M.T.; Mendez, C.; Turao-Agoncillo, M.M.M.; Chinnawirotpisan, P.; Manasatienkij, W.; Joonlasak, K.; Klungthong, C.; et al. Clinical characterization of COVID-19 breakthrough infections, Philippines. J. Clin. Virol. 2022, 150–151, 105157. [Google Scholar] [CrossRef] [PubMed]
- Suntronwong, N.; Yorsaeng, R.; Puenpa, J.; Auphimai, C.; Thongmee, T.; Vichaiwattana, P.; Kanokudom, S.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; et al. COVID-19 Breakthrough Infection after Inactivated Vaccine Induced Robust Antibody Responses and Cross-Neutralization of SARS-CoV-2 Variants, but Less Immunity against Omicron. Vaccines 2022, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Souza, W.M.; Amorim, M.R.; Sesti-Costa, R.; Coimbra, L.D.; Brunetti, N.S.; Toledo-Teixeira, D.A.; de Souza, G.F.; Muraro, S.P.; Parise, P.L.; Barbosa, P.P.; et al. Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: An immunological study. Lancet Microbe 2021, 2, e527–e535. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, P.; Salgado, B.B.; Filho, I.V.P.; da Silva, D.S.S.; de Morais, T.; Jordão, M.F.; Barbosa, A.R.C.; Cordeiro, I.B.; Neto, J.N.S.; de Assunção, E.N.; et al. SARS-CoV-2 seroprevalence and associated factors in Manaus, Brazil: Baseline results from the DETECTCoV-19 cohort study. Int. J. Infect. Dis. 2021, 110, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, P.; Araujo-Castillo, R.V.; Ganoza, C.A.; Salgado, B.B.; Pereira Filho, I.V.; da Silva, D.S.S.; de Morais, T.; Jordão, M.F.; Ortiz, J.V.; Barbosa, A.R.C.; et al. High anti-SARS-CoV-2 antibody seroconversion rates before the second wave in Manaus, Brazil, and the protective effect of social behaviour measures: Results from the prospective DETECTCoV-19 cohort. Lancet Glob. Health 2021, 9, e1508–e1516. [Google Scholar] [CrossRef] [PubMed]
- Naveca, F.G.; Nascimento, V.; de Souza, V.C.; de Corado, A.L.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Mejía, M.; et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 2021, 27, 1230–1238. [Google Scholar] [CrossRef]
- Bueno, S.M.; Abarca, K.; González, P.A.; Gálvez, N.M.S.; Soto, J.A.; Duarte, L.F.; Schultz, B.M.; Pacheco, G.A.; González, L.A.; Vázquez, Y.; et al. Safety and Immunogenicity of an Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Subgroup of Healthy Adults in Chile. Clin. Infect. Dis. 2022, 75, e792–e804. [Google Scholar] [CrossRef]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, Ş.; Erdinç, F.Ş.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Palacios, R.; Batista, A.P.; Albuquerque, C.S.N.; Patiño, E.G.; do Prado Santos, J.; Tilli Reis Pessoa Conde, M.; de Oliveira Piorelli, R.; Pereira Júnior, L.C.; Raboni, S.M.; Ramos, F.; et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- UNDP. Global Dashboard for Vaccine Equity; United Nations Development Programme (UNDP), UNDP Data Futures Platform: New York, NY, USA, 2023. [Google Scholar]
- Ranzani, O.T.; Hitchings, M.D.T.; de Melo, R.L.; de França, G.V.A.; de Fátima R Fernandes, C.; Lind, M.L.; Torres, M.S.S.; Tsuha, D.H.; David, L.C.S.; Said, R.F.C.; et al. Effectiveness of an inactivated COVID-19 vaccine with homologous and heterologous boosters against Omicron in Brazil. Nat. Commun. 2022, 13, 5536. [Google Scholar] [CrossRef] [PubMed]
- Castelli, J.M.; Rearte, A.; Olszevicki, S.; Voto, C.; Del Valle Juarez, M.; Pesce, M.; Iovane, A.N.; Paz, M.; Chaparro, M.E.; Buyayisqui, M.P.; et al. Effectiveness of mRNA-1273, BNT162b2, and BBIBP-CorV vaccines against infection and mortality in children in Argentina, during predominance of delta and omicron COVID-19 variants: Test negative, case-control study. BMJ 2022, 379, e073070. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Mutair, A.A.; Hajissa, K.; Alfaraj, A.H.; Al-Jishi, J.M.; Alhajri, M.; Alwarthan, S.; Alsuliman, S.A.; Al-Najjar, A.H.; Al Zaydani, I.A.; et al. A Comprehensive Review on the Current Vaccines and Their Efficacies to Combat SARS-CoV-2 Variants. Vaccines 2022, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zai, X.; Zhang, Z.; Xu, J.; Chen, W. Challenges and developments in universal vaccine design against SARS-CoV-2 variants. NPJ Vaccines 2022, 7, 167. [Google Scholar] [CrossRef] [PubMed]
- Altmann, D.M.; Boyton, R.J. COVID-19 vaccination: The road ahead. Science 2022, 375, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Bertoletti, A.; Le Bert, N.; Tan, A.T. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022, 55, 1764–1778. [Google Scholar] [CrossRef] [PubMed]
- Suntronwong, N.; Kanokudom, S.; Auphimai, C.; Assawakosri, S.; Thongmee, T.; Vichaiwattana, P.; Duangchinda, T.; Chantima, W.; Pakchotanon, P.; Chansaenroj, J.; et al. Effects of boosted mRNA and adenoviral-vectored vaccines on immune responses to omicron BA.1 and BA.2 following the heterologous CoronaVac/AZD1222 vaccination. J. Med. Virol. 2022, 94, 5713–5722. [Google Scholar] [CrossRef] [PubMed]
Case (n = 9) | Control (n = 45) | p Value | ||
---|---|---|---|---|
Characteristics | ||||
Female, n (%) | 5 (55.6) | 25 (55.6) | >0.9999 * | |
Age, mean | 40.2 | 40.6 | 0.9399 ‡ | |
Age, median (IQR) | 38 (28.5–54) | 36 (30–54) | ||
Age, range | 24–67 | 22–69 | ||
Income | 0–3 minimum salaries | 3 (33.3) | 7 (15.6) | 0.4403 * |
4–6 minimum salaries | 2 (22.2) | 15 (33.3) | ||
>6 minimum salaries | 4 (44.4) | 23 (51.1) | ||
Comorbidities, yes, n (%) | 6 (66.7) | 28 (62.2) | 0.801 * | |
Diabetes | 1 (11.1) | 5 (11.1) | ||
Hypertension | 3 (33.3) | 15 (33.3) | ||
Obesity | 3 (33.3) | 9 (20) | ||
Asthma | 1 (11.1) | 4 (8.9) | ||
Cardiopathy or nephropathy | 1 (11.1) | 1 (2.2) | ||
Interval from first to second dose of vaccination, days median (IQR) | 28.0 (24.0–30.5) | 25.0 (23.0–35.0) | 0.0565 ‡ | |
COVID-19-related information | ||||
COVID-19 prior to vaccination, yes, n (%) | 2 (22.2) | 10 (22.2) | >0.9999 * | |
Days of onset symptoms after full vaccination $, median (IQR) | 61 (49.3–78) | |||
Days with symptoms on day of antigen testing after fully vaccinated, median (IQR) | 4 (2–6) | |||
Antigen test after fully vaccinated $ | 7/9 positive | |||
Days with symptoms on day of RT-qPCR testing after fully vaccinated, median (IQR) | 4 (2–6) | |||
RT-qPCR testing after fully vaccinated $ | 9/9 positive | |||
Hospitalization, yes, n (%) | 2 (22.2) | |||
Oxygen requirement, yes, n (%) | 1 (11.1) | |||
Symptoms on the day of testing, yes, n (%) | 8 (88.9) | |||
Symptoms, n (%) | Fever | 6 (75.0) | ||
Dry cough | 6 (75.0) | |||
Sore throat | 3 (37.5) | |||
Nasal discharge | 7 (87.5) | |||
Chill | 3 (37.5) | |||
Headache | 7 (87.5) | |||
Myalgia | 5 (62.5) | |||
Arthralgia | 1 (12.5) | |||
Fatigue | 3 (37.5) | |||
Chest pain | 2 (25.0) | |||
Backache | 5 (62.5) | |||
Shortness of breath | 1 (12.5) | |||
Anosmia | 3 (37.5) | |||
Dysgeusia (loss of taste) | 3 (37.5) | |||
Conjunctivitis | 2 (25.0) | |||
Loss of appetite | 1 (12.5) | |||
Serological testing | ||||
Before vaccination | Anti-nucleocapsid IgG positive, n (%) | 2 (22.2) | 10 (22.2) | >0.9999 ‡ |
Anti-nucleocapsid IgG (RI), median (IQR) | 1.25 (0.75–1.6) | 1.02 (0.65–1.35) | 0.4391 ‡ | |
Anti-spike-RBD IgG positive, n (%) | 2 (22.2) | 11 (24.4) | 0.8868 ‡ | |
Anti-spike-RBD IgG (BAU/mL), median (IQR) | 11.78 (9.4–43.35) | 10.86 (9.5–32.5) | 0.4363 ‡ | |
RBD-ACE2 inhibition (%), median (95% CI) | −9.99 (−16.3–18.9) | 1.19 (−1.1–7.0) | 0.0627 ‡ | |
Peak response after fully vaccinated $ | Anti-nucleocapsid IgG positive, n (%) | 6 (66.7) | 35 (77.8) | 0.4766 ‡ |
Anti-nucleocapsid IgG (RI), median (IQR) | 5.88 (1.6–8.9) | 4.48 (1.7–8.5) | 0.9143 ‡ | |
Anti-spike-RBD IgG positive, n (%) | 9 (100.0) | 41 (91.1) | 0.3526 ‡ | |
Anti-spike-RBD IgG (BAU/mL), median (IQR) | 228.8 (197.3–422.4) | 189.9 (82.5–496.0) | 0.8714 ‡ | |
RBD-ACE2 inhibition (%), median (95% CI) | 63.8 (41.8–95.7) | 46.9 (30.8–61.5) | 0.1515 ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado, B.B.; Barbosa, A.R.C.; Arcanjo, A.R.; de Castro, D.B.; Ramos, T.C.A.; Naveca, F.; Altmann, D.M.; Boyton, R.J.; Lalwani, J.D.B.; Lalwani, P. Hybrid Immunity Results in Enhanced and More Sustained Antibody Responses after the Second Sinovac-CoronaVac Dose in a Brazilian Cohort: DETECTCoV-19 Cohort. Viruses 2023, 15, 1987. https://doi.org/10.3390/v15101987
Salgado BB, Barbosa ARC, Arcanjo AR, de Castro DB, Ramos TCA, Naveca F, Altmann DM, Boyton RJ, Lalwani JDB, Lalwani P. Hybrid Immunity Results in Enhanced and More Sustained Antibody Responses after the Second Sinovac-CoronaVac Dose in a Brazilian Cohort: DETECTCoV-19 Cohort. Viruses. 2023; 15(10):1987. https://doi.org/10.3390/v15101987
Chicago/Turabian StyleSalgado, Bárbara Batista, Aguyda Rayany Cavalcante Barbosa, Ana Ruth Arcanjo, Daniel Barros de Castro, Tatyana Costa Amorim Ramos, Felipe Naveca, Daniel M. Altmann, Rosemary J. Boyton, Jaila Dias Borges Lalwani, and Pritesh Lalwani. 2023. "Hybrid Immunity Results in Enhanced and More Sustained Antibody Responses after the Second Sinovac-CoronaVac Dose in a Brazilian Cohort: DETECTCoV-19 Cohort" Viruses 15, no. 10: 1987. https://doi.org/10.3390/v15101987
APA StyleSalgado, B. B., Barbosa, A. R. C., Arcanjo, A. R., de Castro, D. B., Ramos, T. C. A., Naveca, F., Altmann, D. M., Boyton, R. J., Lalwani, J. D. B., & Lalwani, P. (2023). Hybrid Immunity Results in Enhanced and More Sustained Antibody Responses after the Second Sinovac-CoronaVac Dose in a Brazilian Cohort: DETECTCoV-19 Cohort. Viruses, 15(10), 1987. https://doi.org/10.3390/v15101987