Immune-Cell-Based Therapy for COVID-19: Current Status
Abstract
:1. Introduction
2. T Cell Therapy
2.1. Specific T Cell Therapy in COVID-19
2.2. CAR-T Cell Therapy in COVID-19
3. Tregs Therapy
4. NK Cell Therapy
5. DC Cell Therapy
6. Monocyte–Macrophage Cell Therapy
7. MSC Therapy
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; Robertson, D.L.; et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar]
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar]
- Singh, S.J.; Baldwin, M.M.; Daynes, E.; Evans, R.A.; Greening, N.J.; Jenkins, R.G.; Lone, N.I.; McAuley, H.; Mehta, P.; Newman, J.; et al. Respiratory sequelae of COVID-19: Pulmonary and extrapulmonary origins, and approaches to clinical care and rehabilitation. Lancet Respir. Med. 2023, 11, 709–725. [Google Scholar]
- Koutsakos, M.; Ellebedy, A.H. Immunological imprinting: Understanding COVID-19. Immunity 2023, 56, 909–913. [Google Scholar] [CrossRef]
- Altmann, D.M.; Whettlock, E.M.; Liu, S.; Arachchillage, D.J.; Boyton, R.J. The immunology of long COVID. Nat. Rev. Immunol. 2023. ahead of print. [Google Scholar]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The immunology and immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef]
- Finck, A.V.; Blanchard, T.; Roselle, C.P.; Golinelli, G.; June, C.H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 2022, 28, 678–689. [Google Scholar]
- Labanieh, L.; Mackall, C.L. CAR immune cells: Design principles, resistance and the next generation. Nature 2023, 614, 635–648. [Google Scholar]
- Ringquist, R.; Ghoshal, D.; Jain, R.; Roy, K. Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv. Drug Deliv. Rev. 2021, 179, 114003. [Google Scholar]
- Li, C.K.; Wu, H.; Yan, H.; Ma, S.; Wang, L.; Zhang, M.; Tang, X.; Temperton, N.J.; Weiss, R.A.; Brenchley, J.M.; et al. T cell responses to whole SARS coronavirus in humans. J. Immunol. 2008, 181, 5490–5500. [Google Scholar] [CrossRef]
- Keller, M.D.; Harris, K.M.; Jensen-Wachspress, M.A.; Kankate, V.V.; Lang, H.; Lazarski, C.A.; Durkee-Shock, J.; Lee, P.H.; Chaudhry, K.; Webber, K.; et al. SARS-CoV-2-specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood 2020, 136, 2905–2917. [Google Scholar] [CrossRef]
- Cooper, R.S.; Fraser, A.R.; Smith, L.; Burgoyne, P.; Imlach, S.N.; Jarvis, L.M.; Turner, D.M.; Zahra, S.; Turner, M.L.; Campbell, J.D.M. Rapid GMP-Compliant Expansion of SARS-CoV-2-Specific T Cells from Convalescent Donors for Use as an Allogeneic Cell Therapy for COVID-19. Front. Immunol. 2021, 11, 598402. [Google Scholar] [CrossRef]
- Basar, R.; Uprety, N.; Ensley, E.; Daher, M.; Klein, K.; Martinez, F.; Aung, F.; Shanley, M.; Hu, B.; Gokdemir, E.; et al. Generation of glucocorticoid-resistant SARS-CoV-2 T cells for adoptive cell therapy. Cell Rep. 2021, 20, 109432. [Google Scholar] [CrossRef]
- Caccamo, N.; Sullivan, L.C.; Brooks, A.G.; Dieli, F. Harnessing HLA-E-restricted CD8 T lymphocytes for adoptive cell therapy of patients with severe COVID-19. Br. J. Haematol. 2020, 190, e185–e187. [Google Scholar] [CrossRef]
- Bonifacius, A.; Tischer-Zimmermann, S.; Santamorena, M.M.; Mausberg, P.; Schenk, J.; Koch, S.; Barnstorf-Brandes, J.; Gödecke, N.; Martens, J.; Goudeva, L.; et al. Rapid Manufacturing of Highly Cytotoxic Clinical-Grade SARS-CoV-2-specific T Cell Products Covering SARS-CoV-2 and Its Variants for Adoptive T Cell Therapy. Front. Bioeng. Biotechnol. 2022, 10, 867042. [Google Scholar] [CrossRef] [PubMed]
- Gil-Bescós, R.; Ostiz, A.; Zalba, S.; Tamayo, I.; Bandrés, E.; Rojas-de-Miguel, E.; Redondo, M.; Zabalza, A.; Ramírez, N. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci. Alliance 2023, 6, e202201759. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Lee, J.M.; Oh, E.J.; Jekarl, D.W.; Lee, D.G.; Im, K.I.; Cho, S.G. Off-the-Shelf Partial HLA Matching SARS-CoV-2 Antigen Specific T Cell Therapy: A New Possibility for COVID-19 Treatment. Front. Immunol. 2021, 12, 751869. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, A.; Mora-Rillo, M.; Ferreras, C.; Guerra-García, P.; Pascual-Miguel, B.; Mestre-Durán, C.; Borobia, A.M.; Carcas, A.J.; Queiruga-Parada, J.; García, I.; et al. Phase I dose-escalation single centre clinical trial to evaluate the safety of infusion of memory T cells as adoptive therapy in COVID-19 (RELEASE). EClinicalMedicine 2021, 39, 101086. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Karavalakis, G.; Papadopoulou, E.; Xochelli, A.; Bousiou, Z.; Vogiatzoglou, A.; Papayanni, P.G.; Georgakopoulou, A.; Giannaki, M.; Stavridou, F.; et al. SARS-CoV-2-specific T cell therapy for severe COVID-19: A randomized phase 1/2 trial. Nat. Med. 2023. ahead of print. [Google Scholar]
- Zavvar, M.; Yahyapoor, A.; Baghdadi, H.; Zargaran, S.; Assadiasl, S.; Abdolmohammadi, K.; Hossein Abooei, A.; Reza Sattarian, M.; JalaliFarahani, M.; Zarei, N.; et al. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches. Int. Immunopharmacol. 2022, 107, 108655. [Google Scholar] [CrossRef]
- Meckiff, B.J.; Ramírez-Suástegui, C.; Fajardo, V.; Chee, S.J.; Kusnadi, A.; Simon, H.; Eschweiler, S.; Grifoni, A.; Pelosi, E.; Weiskopf, D.; et al. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4(+) T Cells in COVID-19. Cell 2020, 183, 1340–1353. [Google Scholar] [CrossRef]
- Liu, K.; Yang, T.; Peng, X.F.; Lv, S.M.; Ye, X.L.; Zhao, T.S.; Li, J.C.; Shao, Z.J.; Lu, Q.B.; Li, J.Y.; et al. A systematic meta-analysis of immune signatures in patients with COVID-19. Rev. Med. Virol. 2021, 31, e2195. [Google Scholar] [CrossRef]
- Gonçalves-Pereira, M.H.; Santiago, L.; Ravetti, C.G.; Vassallo, P.F.; de Andrade, M.V.M.; Vieira, M.S.; de Oliveira, F.d.F.S.; Carobin, N.V.; Li, G.; de Paula Sabino, A.; et al. Dysfunctional phenotype of systemic and pulmonary regulatory T cells associate with lethal COVID-19 cases. Immunology 2023, 168, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud Salehi Khesht, A.; Karpisheh, V.; Qubais Saeed, B.; Olegovna Zekiy, A.; Yapanto, L.M.; Nabi Afjadi, M.; Aksoun, M.; Nasr Esfahani, M.; Aghakhani, F.; Movahed, M.; et al. Different T cell related immunological profiles in COVID-19 patients compared to healthy controls. Int. Immunopharmacol. 2021, 97, 107828. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, H.; Talepoor, A.G.; Saleh, Z.; Eshkevar Vakili, M.; Heydarinezhad, P.; Karami, N.; Noroozi, M.; Meri, S.; Kalantar, K. Immune responses in mildly versus critically ill COVID-19 patients. Front. Immunol. 2023, 14, 1077236. [Google Scholar]
- Seepathomnarong, P.; Ongarj, J.; Sophonmanee, R.; Seeyankem, B.; Chusri, S.; Surasombatpattana, S.; Pinpathomrat, N. Regulatory T Cells Decreased during Recovery from Mild COVID-19. Viruses 2022, 14, 1688. [Google Scholar] [CrossRef] [PubMed]
- Vick, S.C.; Frutoso, M.; Mair, F.; Konecny, A.J.; Greene, E.; Wolf, C.R.; Logue, J.K.; Franko, N.M.; Boonyaratanakornkit, J.; Gottardo, R.; et al. A regulatory T cell signature distinguishes the immune landscape of COVID-19 patients from those with other respiratory infections. Sci. Adv. 2021, 7, eabj0274. [Google Scholar] [CrossRef]
- Galván-Peña, S.; Leon, J.; Chowdhary, K.; Michelson, D.A.; Vijaykumar, B.; Yang, L.; Magnuson, A.M.; Chen, F.; Manickas-Hill, Z.; Piechocka-Trocha, A.; et al. Profound Treg perturbations correlate with COVID-19 severity. Proc. Natl. Acad. Sci. USA 2021, 118, e2111315118. [Google Scholar]
- Xu, Z.; Jiang, X.; Dai, X.; Li, B. The Dynamic Role of FOXP3(+) Tregs and Their Potential Therapeutic Applications During SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 916411. [Google Scholar]
- De Candia, P.; Prattichizzo, F.; Garavelli, S.; Matarese, G. T Cells: Warriors of SARS-CoV-2 Infection. Trends Immunol. 2021, 42, 18–30. [Google Scholar]
- Gladstone, D.E.; Kim, B.S.; Mooney, K.; Karaba, A.H.; D’Alessio, F.R. Regulatory T Cells for treating patients with COVID-19 and acute respiratory distress syndrome: Two case reports. Ann. Intern. Med. 2020, 173, 852–853. [Google Scholar] [CrossRef]
- Harb, H.; Benamar, M.; Lai, P.S.; Contini, P.; Griffith, J.W.; Crestani, E.; Schmitz-Abe, K.; Chen, Q.; Fong, J.; Marri, L.; et al. Notch4 signaling limits regulatory T-cell-mediated tissue repair and promotes severe lung inflammation in viral infections. Immunity 2021, 54, 1186–1199. [Google Scholar] [CrossRef]
- Langers, I.; Renoux, V.M.; Thiry, M.; Delvenne, P.; Jacobs, N. Natural killer cells: Role in local tumor growth and metastasis. Biologics 2012, 6, 73–82. [Google Scholar] [PubMed]
- Iannello, A.; Debbeche, O.; Samarani, S.; Ahmad, A. Antiviral NK cell responses in HIV infection: I. NK cell receptor genes as determinants of HIV resistance and progression to AIDS. J. Leukoc. Biol. 2008, 84, 1–26. [Google Scholar] [PubMed]
- Biron, C.A.; Nguyen, K.B.; Pien, G.C.; Cousens, L.P.; Salazar-Mather, T.P. Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annu. Rev. Immunol. 1999, 17, 189–220. [Google Scholar] [CrossRef]
- Guidotti, L.G.; Chisari, F.V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 2001, 19, 65–91. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Manickam, C.; Shah, S.V.; Nohara, J.; Ferrari, G.; Reeves, R.K. Monkeying Around: Using Non-human Primate Models to Study NK Cell Biology in HIV Infections. Front. Immunol. 2019, 10, 1124. [Google Scholar]
- Jegaskanda, S.; Vanderven, H.A.; Tan, H.X.; Alcantara, S.; Wragg, K.M.; Parsons, M.S.; Chung, A.W.; Juno, J.A.; Kent, S.J. Influenza Virus Infection Enhances Antibody-Mediated NK Cell Functions via Type I Interferon-Dependent Pathways. J. Virol. 2019, 93, e02090-18. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.; Ghasemzadeh, A.; Hosseini, E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum. Immunol. 2022, 83, 86–98. [Google Scholar]
- Lu, T.; Ma, R.; Dong, W.; Teng, K.Y.; Kollath, D.S.; Li, Z.; Yi, J.; Bustillos, C.; Ma, S.; Tian, L.; et al. Off-the-shelf CAR natural killer cells secreting IL-15 target spike in treating COVID-19. Nat. Commun. 2022, 13, 2576. [Google Scholar] [CrossRef]
- Gang, M.; Marin, N.D.; Wong, P.; Neal, C.C.; Marsala, L.; Foster, M.; Schappe, T.; Meng, W.; Tran, J.; Schaettler, M.; et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 2020, 136, 2308–2318. [Google Scholar] [CrossRef]
- Bonam, S.R.; Kaveri, S.V.; Sakuntabhai, A.; Gilardin, L.; Bayry, J. Adjunct immunotherapies for the management of severely ill COVID-19 patients. Cell Rep. Med. 2020, 1, 100016. [Google Scholar] [CrossRef]
- Spanholtz, J.; Tordoir, M.; Eissens, D.; Preijers, F.; van der Meer, A.; Joosten, I.; Schaap, N.; de Witte, T.M.; Dolstra, H. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS ONE 2010, 5, e9221. [Google Scholar]
- Gleason, J.; Zhao, Y.; Raitman, I.; Kang, L.; He, S.; Hariri, R. Human placental hematopoietic stem cell derived natural killer cells (CYNK-001) mediate protection against influenza a viral infection. Hum. Vaccines Immunother. 2022, 18, 2055945. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, Q.; Zhang, R.; Xie, L.; Shu, Y.; Gao, S.; Wang, P.; Su, X.; Qin, Y.; Wang, Y.; et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal. Transduct. Target Ther. 2021, 6, 26. [Google Scholar]
- Wang, X.; Guan, F.; Miller, H.; Byazrova, M.G.; Cndotti, F.; Benlagha, K.; Camara, N.O.S.; Lei, J.; Filatov, A.; Liu, C. The role of dendritic cells in COVID-19 infection. Emerg. Microbes Infect. 2023, 12, 2195019. [Google Scholar]
- Winheim, E.; Rinke, L.; Lutz, K.; Reischer, A.; Leutbecher, A.; Wolfram, L.; Rausch, L.; Kranich, J.; Wratil, P.R.; Huber, J.E.; et al. Impaired function and delayed regeneration of dendritic cells in COVID-19. PLoS Pathog. 2021, 17, e1009742. [Google Scholar]
- Soilleux, E.J.; Morris, L.S.; Leslie, G.; Chehimi, J.; Luo, Q.; Levroney, E.; Trowsdale, J.; Montaner, L.J.; Doms, R.W.; Weissman, D.; et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 2002, 71, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.X.; Gong, L.; et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283. [Google Scholar]
- Pérez-Gómez, A.; Vitallé, J.; Gasca-Capote, C.; Gutierrez-Valencia, A.; Trujillo-Rodriguez, M.; Serna-Gallego, A.; Muñoz-Muela, E.; Jiménez-Leon, M.L.R.; Rafii-El-Idrissi Benhnia, M.; Rivas-Jeremias, I.; et al. Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. Cell Mol. Immunol. 2021, 18, 2128–2139. [Google Scholar]
- Park, A.; Iwasaki, A. Type I and Type III Interferons—Induction, Signaling, Evasion, and Application to Combat COVID-19. Cell Host Microbe 2020, 27, 870–878. [Google Scholar]
- Zhou, R.; To, K.K.; Wong, Y.C.; Liu, L.; Zhou, B.; Li, X.; Huang, H.; Mo, Y.; Luk, T.Y.; Lau, T.T.; et al. Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity 2020, 53, 864–877. [Google Scholar] [CrossRef] [PubMed]
- Young Chung, J.; Thone, M.N.; Davies, J.E.; Gach, J.S.; Huw Davies, D.; Forthal, D.N.; Kwon, Y.J. Vaccination against SARS-CoV-2 using extracellular blebs derived from spike protein-expressing dendritic cells. Cell Immunol. 2023, 386, 104691. [Google Scholar] [CrossRef] [PubMed]
- Galati, D.; Zanotta, S.; Capitelli, L.; Bocchino, M. A bird’s eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy 2022, 77, 100–110. [Google Scholar] [CrossRef]
- Maison, D.P.; Deng, Y.; Gerschenson, M. SARS-CoV-2 and the host-immune response. Front. Immunol. 2023, 14, 1195871. [Google Scholar]
- Merad, M.; Martin, J. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Savan, R.; Gale, M., Jr. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity 2023, 56, 1443–1450. [Google Scholar] [CrossRef]
- Lee, J.S.; Koh, J.Y.; Yi, K.; Kim, Y.I.; Park, S.J.; Kim, E.H.; Kim, S.M.; Park, S.H.; Ju, Y.S.; Choi, Y.K.; et al. Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets. Nat. Commun. 2021, 12, 4567. [Google Scholar]
- George, P.M.; Wells, A.U.; Jenkins, R.G. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir. Med. 2020, 8, 807–815. [Google Scholar]
- Henderson, N.C.; Rieder, F.; Wynn, T.A. Fibrosis: From mechanisms to medicines. Nature 2020, 587, 555–566. [Google Scholar]
- Ghahremani Piraghaj, M.; Soudi, S.; Ghanbarian, H.; Bolandi, Z.; Namaki, S.; Hashemi, S.M. Effect of efferocytosis of apoptotic mesenchymal stem cells (MSCs) on C57BL/6 peritoneal macrophages function. Life Sci. 2018, 212, 203–212. [Google Scholar] [CrossRef]
- Juárez-Navarro, K.J.; Padilla-Camberos, E.; Díaz, N.F.; Miranda-Altamirano, A.; Díaz-Martínez, N.E. Human mesenchymal stem cells: The present alternative for high-incidence diseases, even SARS-Cov-2. Stem Cells Int. 2020, 2020, 8892189. [Google Scholar] [CrossRef]
- Krasnodembskaya, A.; Samarani, G.; Song, Y.; Zhuo, H.; Su, X.; Lee, J.W.; Gupta, N.; Petrini, M.; Matthay, M.A. Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Li, L.; Li, Z.; Jin, Y.; Liu, W. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease. Stem Cells Transl. Med. 2020, 9, 813–814. [Google Scholar] [CrossRef]
- Atluri, S.; Manchikanti, L.; Hirsch, J.A. Expanded Umbilical Cord Mesenchymal Stem Cells (UCMSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician 2020, 23, e71–e83. [Google Scholar] [PubMed]
- Shetty, A.K. Mesenchymal Stem Cell Infusion Shows Promise for Combating Coronavirus (COVID-19)-Induced Pneumonia. Aging Dis. 2020, 11, 462–464. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin defnition. JAMA 2012, 301, 2526–2533. [Google Scholar]
- Sadeghi, B.; Roshandel, E.; Pirsalehi, A.; Kazemi, S.; Sankanian, G.; Majidi, M.; Salimi, M.; Aghdami, N.; Sadrosadat, H.; Samadi Kochaksaraei, S.; et al. Conquering the cytokine storm in COVID-19–induced ARDS using placenta-derived decidua stromal cells. J. Cell Mol. Med. 2021, 25, 10554–10564. [Google Scholar] [CrossRef]
- Adas, G.; Cukurova, Z.; Yasar, K.K.; Yilmaz, R.; Isiksacan, N.; Kasapoglu, P.; Yesilbag, Z.; Koyuncu, I.D.; Karaoz, E. The Systematic Effect of Mesenchymal Stem Cell Therapy in Critical COVID-19 Patients: A Prospective Double Controlled Trial. Cell Transplant. 2021, 30, 9636897211024942. [Google Scholar] [CrossRef]
- Dilogo, I.H.; Aditianingsih, D.; Sugiarto, A.; Burhan, E.; Damayanti, T.; Sitompul, P.A.; Mariana, N.; Antarianto, R.D.; Liem, I.K.; Kispa, T.; et al. Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: A randomized controlled trial. Stem Cells Transl. Med. 2021, 10, 1279–1287. [Google Scholar] [CrossRef]
- Lanzoni, G.; Linetsky, E.; Correa, D.; Messinger Cayetano, S.; Alvarez, R.A.; Kouroupis, D.; Alvarez Gil, A.; Poggioli, R.; Ruiz, P.; Marttos, A.C.; et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl. Med. 2021, 10, 660–673. [Google Scholar]
- Meng, F.; Xu, R.; Wang, S.; Xu, Z.; Zhang, C.; Li, Y.; Yang, T.; Shi, L.; Fu, J.; Jiang, T.; et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct. Target Ther. 2020, 5, 172. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Huang, H.; Lu, X.; Yan, X.; Jiang, X.; Xu, R.; Wang, S.; Zhang, C.; Yuan, X.; Xu, Z.; et al. Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: A randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduct. Target Ther. 2021, 6, 58. [Google Scholar]
- Shi, L.; Yuan, X.; Yao, W.; Wang, S.; Zhang, C.; Zhang, B.; Song, J.; Huang, L.; Xu, Z.; Fu, J.L.; et al. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine 2022, 75, 103789. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Niu, C.; Li, R.; Huang, T.; Wang, Y.; Huang, M.; Ji, N.; Zheng, Y.; Chen, X.; Shi, L.; et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 2020, 11, 361. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jiang, W.; Chen, L.; Xu, Z.; Zhang, Q.; Zhu, M.; Ye, P.; Li, H.; Yu, L.; Zhou, X.; et al. Evaluation of the safety and effcacy of using human menstrual bloodderived mesenchymal stromal cells in treating severe and critically ill COVID-19 patients: An exploratory clinical trial. Clin. Transl. Med. 2021, 11, e297. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Jeyaraman, M.; Kotner, M.B.; Jeyaraman, N.; Rajendran, R.L.; Sharma, S.; Khanna, M.; Rajendran, S.N.S.; Oh, J.M.; Gangadaran, P.; et al. Evolution of Mesenchymal Stem Cell Therapy as an Advanced Therapeutic Medicinal Product (ATMP)—An Indian Perspective. Bioengineering 2022, 9, 111. [Google Scholar] [CrossRef]
- Pereira Chilima, T.D.; Moncaubeig, F.; Farid, F.F. Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochem. Eng. J. 2018, 137, 132–151. [Google Scholar]
- Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; et al. Transplantation of ACE2-mesenchymal stem cells improve the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020, 11, 216–228. [Google Scholar] [CrossRef]
- Barkama, R.; Mayo, A.; Paz, A.; Solopov, A.; Mann, T.; Vadasz, Z.; Appel, T.; Ofir, R.; Shani, L.; Sheleg, M.; et al. Placenta-Derived Cell Therapy to Treat Patients with Respiratory Failure Due to Coronavirus Disease 2019. Crit. Care Explor. 2020, 2, e0207. [Google Scholar] [CrossRef]
- Yudintceva, N.; Mikhailova, N.; Fedorov, V.; Samochernych, K.; Vinogradova, T.; Muraviov, A.; Shevtsov, M. Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles in Infectious Diseases: From Basic Research to Clinical Practice. Bioengineering 2022, 9, 662. [Google Scholar]
- Couto, P.S.; Al-Arawe, N.; Filgueiras, I.S.; Fonseca, D.L.M.; Hinterseher, I.; Catar, R.A.; Chinnadurai, R.; Bersenev, A.; Cabral-Marques, O.; Moll, G.; et al. Systematic review and meta-analysis of cell therapy for COVID-19: Global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery. Front Immunol. 2023, 14, 1200180. [Google Scholar]
- Moll, G.; Drzeniek, N.; Kamhieh-Milz, J.; Geissler, S.; Volk, H.D.; Reinke, P. MSC Therapies for COVID-19: Importance of Patient Coagulopathy, Thromboprophylaxis, Cell Product Quality and Mode of Delivery for Treatment Safety and Efficacy. Front Immunol. 2020, 11, 1091. [Google Scholar]
- Cottle, C.; Porter, A.P.; Lipat, A.; Turner-Lyles, C.; Nguyen, J.; Moll, G.; Chinnadurai, R. Impact of Cryopreservation and Freeze-Thawing on Therapeutic Properties of Mesenchymal Stromal/Stem Cells and Other Common Cellular Therapeutics. Curr. Stem Cell Rep. 2022, 8, 72–92. [Google Scholar] [PubMed]
- Tripathi, H.; Domingues, A.; Donahue, R.; Cras, A.; Guerin, C.L.; Gao, E.; Levitan, B.; Ratajczak, M.Z.; Smadja, D.M.; Abdel-Latif, A.; et al. Combined Transplantation of Human MSCs and ECFCs Improves Cardiac Function and Decrease Cardiomyocyte Apoptosis After Acute Myocardial Infarction. Stem Cell Rev. Rep. 2023, 19, 573–577. [Google Scholar] [CrossRef]
Strategy | Study Title | Phase | NCT Number | Status |
---|---|---|---|---|
Specific T cell | Safety Infusion of Natural Killer cells or Memory T Cells as Adoptive Therapy in COVID-19 pneumonia or Lymphopenia | 1 and 2 | NCT04578210 | Completed |
Generation of SARS-CoV-2-specific T Lymphocytes from Recovered Donors and Administration to High-risk COVID-19 Patients | 1 and 2 | NCT05447013 | Recruiting | |
Novel Adoptive Cellular Therapy With SARS-CoV-2 Specific T Cells in Patients with Severe COVID-19 | 1 | NCT04351659 | Recruiting | |
Part Two of Novel Adoptive Cellular Therapy With SARS-CoV-2 Specific T Cells in Patients with Severe COVID-19 | 1 and 2 | NCT04457726 | Unknown status | |
Viral Specific T Cell Therapy for COVID-19 Related Pneumonia | 1 | NCT04742595 | Recruiting | |
Treg | REgulatory T Cell infuSion fOr Lung Injury Due to COVID-19 PnEumonia (RESOLVE) | 1 | NCT04468971 | Completed |
RAPA-501-Allo Therapy of COVID-19-ARDS | 1 and 2 | NCT04482699 | Terminated | |
NLow Dose of IL-2 In Acute Respiratory DistrEss Syndrome Related to COVID-19 (LILIADE-COVID) | 2 | NCT04357444 | Completed | |
Tregs for the Treatment of Acute Respiratory Distress Syndrome (ARDS) Associated With COVID-19 (regARDS) | 1 | NCT05027815 | Terminated | |
NK cells | A Phase I/II Study of Universal Off-the-shelf NKG2D-ACE2 CAR-NK Cells for Therapy of COVID-19 | 1 and 2 | NCT04324996 | Unknown status |
Fase I Clinical Trial on NK Cells for COVID-19 | 1 | NCT04634370 | Unknown status | |
Natural Killer Cell (CYNK-001) Infusions in Adults With COVID-19 | 1 and 2 | NCT04365101 | Active, not recruiting | |
Off-the-shelf NK Cells (KDS-1000) as Immunotherapy for COVID-19 | 1 and 2 | NCT04797975 | Withdrawn | |
NK Cells Treatment for COVID-19 | 1 | NCT04280224 | Recruiting | |
Dendritic cells | Injection and infusion of LV-SMENP DC vaccine and antigen-specific CTLs | 3 | NCT04276896 | Recruiting |
Phase I-II Trial of Dendritic Cell Vaccine to Prevent COVID-19 in Adults | 1 and 2 | NCT04386252 | Withdrawn | |
A Study to Evaluate the Efficacy, Immune Response, and Safety of a COVID-19 Vaccine in Adults ≥ 18 Years with a Pediatric Expansion in Adolescents (12 to <18 Years) at Risk for SARS-CoV-2 | 3 | NCT04611802 | Active, not recruiting | |
Study to Describe the Safety, Tolerability, Immunogenicity, and Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Individuals | 3 | NCT04368728 | Completed | |
A Study to Evaluate Efficacy, Safety, and Immunogenicity of mRNA-1273 Vaccine in Adults Aged 18 Years and Older to Prevent COVID-19 | 3 | NCT04470427 | Completed | |
Dendritic Cell Vaccine to Prevent COVID-19 | 1 | NCT04685603 | Unknown status | |
Dendritic Cell Vaccine, AV-COVID-19, to Prevent COVID-19 Infection | 1 | NCT04690387 | Completed | |
Phase I-II Trial of Dendritic Cell Vaccine to Prevent COVID-19 in Adults | 1 and 2 | NCT04386252 | Withdrawn | |
Preventive Dendritic Cell Vaccine, AV-COVID-19, in Subjects Not Actively Infected with COVID-19 | 2 | NCT05007496 | Completed | |
Training the Innate Immune System Against SARS-CoV-2 (COVID-19) Using the Shingrix Vaccine in Nursing Home Residents (NH-Shingrix) | 1 | NCT04523246 | Active, not recruiting | |
Monocytes | The MONACO Cell Therapy Study: Monocytes as an Anti-fibrotic Treatment After COVID-19 (MONACO) | 1 and 2 | NCT04805086 | Unknown status |
Mesenchymal stem cells | Mesenchymal Stem Cells Therapy in Patients With COVID-19 Pneumonia | Not applicable | NCT04713878 | Completed |
A Proof of Concept Study for the DNA Repair Driven by the Mesenchymal Stem Cells in Critical COVID-19 Patients (REPAIR) | Not applicable | NCT04898088 | Completed | |
NestaCell® Mesenchymal Stem Cell to Treat Patients with Severe COVID-19 Pneumonia (HOPE) | 2 | NCT04315987 | Completed | |
An Exploratory Study of ADR-001 in Patients with Severe Pneumonia Caused by SARS-CoV-2 Infection (COVID-19) | 1 | NCT04522986 | Completed | |
Therapeutic Study to Evaluate the Safety and Efficacy of DW-MSC in COVID-19 Patients (DW-MSC) | 1 | NCT04535856 | Completed | |
Mesenchymal Stromal Cells for the Treatment of SARS-CoV-2 Induced Acute Respiratory Failure (COVID-19 Disease) | 1 and 2 | NCT04345601 | Completed | |
Efficacy of Infusions of MSC from Wharton Jelly in the SARS-CoV-2 (COVID-19) Related Acute Respiratory Distress Syndrome (MSC-COVID19) | 2 | NCT04625738 | Completed | |
Mesenchymal Stem Cells for the Treatment of COVID-19 | 1 | NCT04573270 | Completed | |
A Randomized, Double-Blind, Single Center, Efficacy and Safety Study of Allogeneic HB-adMSCs Against COVID-19. | 2 | NCT04348435 | Completed | |
A Clinical Trial to Determine the Safety and Efficacy of HB-adMSCs to Provide Protection Against COVID-19 | 2 | NCT04349631 | Completed | |
A First-In-Human Phase 1b Study of AmnioPul-02 in COVID-19/Other LRTI | 1 | NCT05348772 | Completed | |
Menstrual Blood Stem Cells in Severe Covid-19 | 1 and 2 | NCT05019287 | Completed | |
Treatment With Human Umbilical Cord-derived Mesenchymal Stem Cells for Severe Corona Virus Disease 2019 (COVID-19) | 2 | NCT04288102 | Completed | |
Use of UC-MSCs for COVID-19 Patients | 1 and 2 | NCT04355728 | Completed | |
Clinical Trial to Assess the Safety and Efficacy of Intravenous Administration of Allogeneic Adult Mesenchymal Stem Cells of Expanded Adipose Tissue in Patients with Severe Pneumonia Due to COVID-19 | 1 and 2 | NCT04366323 | Completed | |
Treatment of COVID-19 Associated Pneumonia with Allogenic Pooled Olfactory Mucosa-derived Mesenchymal Stem Cells | 1 and 2 | NCT04382547 | Completed | |
The MEseNchymal coviD-19 Trial: MSCs in Adults with Respiratory Failure Due to COVID-19 or Another Underlying Cause (MEND) | 1 and 2 | NCT04537351 | Completed | |
Clinical Use of Stem Cells for the Treatment of Covid-19 | 1 and 2 | NCT04392778 | Completed | |
Efficacy and Safety Evaluation of Mesenchymal Stem Cells for the Treatment of Patients with Respiratory Distress Due to COVID-19 (COVIDMES) | 1 and 2 | NCT04390139 | Completed | |
Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With COVID-19 (UMSC01) | 1 and 2 | NCT05501418 | Active, not recruiting | |
Regenerative Medicine for COVID-19 and Flu-Elicited ARDS Using Lomecel-B (RECOVER) (RECOVER) | 1 | NCT04629105 | Active, not recruiting | |
Use of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome Caused by COVID-19 | Early phase 1 | NCT04456361 | Active, not recruiting | |
Multiple Dosing of Mesenchymal Stromal Cells in Patients with ARDS (COVID-19) | 2 | NCT04466098 | Active, not recruiting | |
Umbilical Cord Lining Stem Cells (ULSC) in Patients With COVID-19 ARDS (ULSC) | 1 and 2 | NCT04494386 | Active, not recruiting | |
Study of the Safety of Therapeutic Tx with Immunomodulatory MSC in Adults With COVID-19 Infection Requiring Mechanical Ventilation | 1 | NCT04397796 | Active, not recruiting | |
Efficacy and Safety Study of Allogeneic HB-adMSCs for the Treatment of COVID-19 | 2 | NCT04362189 | Terminated | |
Study of Intravenous COVI-MSC for Treatment of COVID-19-Induced Acute Respiratory Distress | 2 | NCT04903327 | Terminated | |
hCT-MSCs for COVID19 ARDS | 1 and 2 | NCT04399889 | Terminated | |
MSCs in COVID-19 ARDS | 3 | NCT04371393 | Terminated | |
Mesenchymal Stem Cell Infusion for COVID-19 Infection | 2 | NCT04444271 | Unknown status | |
Mesenchymal Stem Cell for Acute Respiratory Distress Syndrome Due for COVID-19 (COVID-19) | 2 | NCT04416139 | Unknown status | |
Novel Coronavirus Induced Severe Pneumonia Treated by Dental Pulp Mesenchymal Stem Cells | Early phase 1 | NCT04302519 | Unknown status | |
Safety and Efficacy of Mesenchymal Stem Cells in the Management of Severe COVID-19 Pneumonia (CELMA) | 2 | NCT04429763 | Unknown status | |
Safety and Effectiveness of Mesenchymal Stem Cells in the Treatment of Pneumonia of Coronavirus Disease 2019 | Early phase 1 | NCT04371601 | Unknown status | |
Mesenchymal Stem Cells in Patients Diagnosed With COVID-19 | 1 | NCT04611256 | Unknown status | |
Bone Marrow-Derived Mesenchymal Stem Cell Treatment for Severe Patients with Coronavirus Disease 2019 (COVID-19) | 1 and 2 | NCT04346368 | Unknown status | |
Administration of Allogenic UC-MSCs as Adjuvant Therapy for Critically-Ill COVID-19 Patients | 1 | NCT04457609 | Unknown status | |
Mesenchymal Stem Cell Treatment for Pneumonia Patients Infected With COVID-19 | 1 | NCT04252118 | Unknown status | |
Clinical Research of Human Mesenchymal Stem Cells in the Treatment of COVID-19 Pneumonia | 1 and 2 | NCT04339660 | Unknown status | |
Mesenchymal Stem Cell Therapy for SARS-CoV-2-related Acute Respiratory Distress Syndrome | 2 and 3 | NCT04366063 | Unknown status | |
Safety and Efficacy Study of Allogeneic Human Dental Pulp Mesenchymal Stem Cells to Treat Severe COVID-19 Patients | 1 and 2 | NCT04336254 | Unknown status | |
Treatment of COVID-19 Patients Using Wharton’s Jelly-Mesenchymal Stem Cells | 1 | NCT04313322 | Unknown status | |
Study of Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Severe COVID-19 | Not applicable | NCT04273646 | Unknown status | |
Treatment of Coronavirus COVID-19 Pneumonia (Pathogen SARS-CoV-2) With Cryopreserved Allogeneic P_MMSCs and UC-MMSCs | 1 and 2 | NCT04461925 | Unknown status | |
Treatment of Severe COVID-19 Patients Using Secretome of Hypoxia-Mesenchymal Stem Cells in Indonesia | 2 | NCT04753476 | Unknown status | |
A Study of Cell Therapy in COVID-19 Subjects with Acute Kidney Injury Who Are Receiving Renal Replacement Therapy | 1 and 2 | NCT04445220 | Unknown status | |
A Study to Collect Bone Marrow for Process Development and Production of BM-MSC to Treat Severe COVID19 Pneumonitis (COMET20d) | Observational | NCT04397471 | Unknown status | |
Safety and Efficacy of Intravenous Wharton’s Jelly Derived Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome Due to COVID 19 | 1 and 2 | NCT04390152 | Unknown status | |
Umbilical Cord (UC)-Derived Mesenchymal Stem Cells (MSCs) Treatment for the 2019-novel Coronavirus(nCOV) Pneumonia | 2 | NCT04269525 | Unknown status | |
Mesenchymal Stromal Cells for the Treatment of Patients With COVID-19. | 1 and 2 | NCT05433298 | Withdrawn | |
ASC Therapy for Patients with Severe Respiratory COVID-19 (ASC COVID-19) | 1 and 2 | NCT04341610 | Withdrawn | |
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells to Treat Post COVID-19 “Long Haul” Pulmonary Compromise | 2 | NCT04909892 | Withdrawn | |
Study of Intravenous Administration of Allogeneic Adipose-Derived Mesenchymal Stem Cells for COVID-19-Induced Acute Respiratory Distress | 2 | NCT04728698 | Withdrawn | |
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome | 2 | NCT04909879 | Withdrawn | |
Umbilical Cord Tissue (UC) Derived Mesenchymal Stem Cells (MSCs) Versus Placebo to Treat Acute Pulmonary Inflammation Due to COVID-19 (COVID-19) | 1 | NCT04490486 | Withdrawn | |
BAttLe Against COVID-19 Using MesenchYmal Stromal Cells | 2 | NCT04348461 | Suspended | |
A Study of ADR-001 in Patients with Severe Pneumonia Caused by SARS-CoV-2 Infection (COVID-19) | 2 | NCT04888949 | Recruiting | |
A Clinical Study on Safety and Effectiveness of Mesenchymal Stem Cell Exosomes for the Treatment of COVID-19. | Early phase 1 | NCT05787288 | Recruiting | |
Cord Blood-Derived Mesenchymal Stem Cells for the Treatment of COVID-19 Related Acute Respiratory Distress Syndrome | 1 and 2 | NCT04565665 | Recruiting | |
Application and Research of Mesenchymal Stem Cells in Alleviating Severe Development of COVID-19 Infection | 1 and 2 | NCT05741099 | Recruiting | |
UC-MSCs in the Treatment of Severe and Critical COVID-19 Patients | 3 | NCT05682586 | Recruiting | |
Allogenic UCMSCs as Adjuvant Therapy for Severe COVID-19 Patients (UCMSC) | 2 and 3 | NCT05132972 | Recruiting | |
A Phase II Study in Patients with Moderate to Severe ARDS Due to COVID-19 | 2 | NCT04780685 | Recruiting | |
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Treatment of COVID-19 Acute Respiratory Distress | 2 | NCT04905836 | Recruiting | |
Randomized Double-Blind Phase 2 Study of Allogeneic HB-adMSCs for the Treatment of Chronic Post-COVID-19 Syndrome (HBPCOVID02) | 2 | NCT05126563 | Recruiting | |
Study to Evaluate the Efficacy and Safety of AstroStem-V in Treatment of COVID-19 Pneumonia | 1 and 2 | NCT04527224 | Recruiting | |
Safety and Efficacy of Umbilical Cord Mesenchymal Stem Cell Exosomes in Treating Chronic Cough After COVID-19 | Early phase 1 | NCT05808400 | Recruiting | |
UC-MSCs in the Treatment of Severe and Critical COVID-19 Patients with Refractory Hypoxia | 3 | NCT05689008 | Recruiting | |
Study of Descartes-30 in Acute Respiratory Distress Syndrome | 1 and 2 | NCT04524962 | Recruiting | |
Mesenchymal Stem Cells for the Treatment of Various Chronic and Acute Conditions | 1 and 2 | NCT04684602 | Recruiting | |
Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration (REALIST) (REALIST | 1 and 2 | NCT03042143 | Recruiting | |
Autologous Adipose-derived Stem Cells (AdMSCs) for COVID-19 | 2 | NCT04428801 | Not yet recruiting | |
Mesenchymal Stromal Cells for COVID-19 and Viral Pneumonias (SAMPSON-1) | 1 | NCT05286255 | Not yet recruiting | |
Clinical Study for Subjects With COVID-19 Using Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells (AdMSCs) | 2 | NCT05017298 | Not yet recruiting | |
Treatment of Long COVID Symptoms Utilizing Autologous Stem Cells Following COVID-19 Infection | 1 | NCT05669261 | Not yet recruiting | |
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells to Treat Post COVID-19 “Long Haul” Pulmonary Compromise (BR) | 2 | NCT04992247 | Not yet recruiting | |
Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cells in the Treatment of Long COVID-19 | 2 | NCT05719012 | Not yet recruiting | |
Mesenchymal Stem Cells (MSCs) in Inflammation-Resolution Programs of Coronavirus Disease 2019 (COVID-19) Induced Acute Respiratory Distress Syndrome (ARDS) | 2 | NCT04377334 | Not yet recruiting | |
Use of hUC-MSC Product (BX-U001) for the Treatment of COVID-19 With ARDS | 1 and 2 | NCT04452097 | Not yet recruiting | |
AllogeneiC Expanded Human MSC Therapy in Patients Recovering From COVID-19 Acute Respiratory Distress Trial (ACE_CARD) | 1 | NCT05491681 | Not yet recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liang, Q.; Chen, F.; Zheng, J.; Chen, Y.; Chen, Z.; Li, R.; Li, X. Immune-Cell-Based Therapy for COVID-19: Current Status. Viruses 2023, 15, 2148. https://doi.org/10.3390/v15112148
Wang Y, Liang Q, Chen F, Zheng J, Chen Y, Chen Z, Li R, Li X. Immune-Cell-Based Therapy for COVID-19: Current Status. Viruses. 2023; 15(11):2148. https://doi.org/10.3390/v15112148
Chicago/Turabian StyleWang, Yiyuan, Qinghe Liang, Fengsheng Chen, Jiehuang Zheng, Yan Chen, Ziye Chen, Ruopeng Li, and Xiaojuan Li. 2023. "Immune-Cell-Based Therapy for COVID-19: Current Status" Viruses 15, no. 11: 2148. https://doi.org/10.3390/v15112148
APA StyleWang, Y., Liang, Q., Chen, F., Zheng, J., Chen, Y., Chen, Z., Li, R., & Li, X. (2023). Immune-Cell-Based Therapy for COVID-19: Current Status. Viruses, 15(11), 2148. https://doi.org/10.3390/v15112148