Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Evidence for Spike–Spike Crosslinking by NIEAs
- NIEAs of distinct genetic origin were shown to compete with each other. This observation was supported by mutagenesis, which identified a narrow patch of residues on the NTD distal from the spike–ACE interface. The location of the epitope was further demonstrated by the Cryo-EM studies using fragment antigen-binding regions (Fabs), which revealed a binding mode in which the Fab makes an angle of approximately 30 degrees with the spike axis. The cryo-EM result agreed very well with docking models, as well as with an earlier anti-NTD monoclonal antibody cryo-EM structure, although ACE2 binding enhancement was not reported for the antibody in this structure [11]. Further support came from an independent report of a set of NIEAs whose structural and functional properties matched those described by Liu and co-workers [12]. Due to the dynamic nature of the spike itself, the side chains of interface residues were not resolved in the two published studies of spike-bound NIEAs, leaving open the question of the detailed atomic structure of this interaction. The effect of alanine substitutions on the NIEA-enhancing effect is shown in Figure 1A;
- The Fc region is dispensable for its enhancing effect. It was demonstrated that while both monovalent Fabs and divalent IgG antibodies, as well as (Fab)2 constructs, exhibited strong binding, only the divalent constructs led to an increase in ACE2 binding. This suggested that the presence of both Fabs is essential for enhancement, with the Fc region playing no significant role (Figure 1B). We further confirmed that the Fc region does not affect binding affinity to the spike using Bio-Layer Interferometry (Figure 1C);
- Two epitopes on one spike trimer are not accessible by one NIEA. The question of how one NIEA interacts with two epitopes was investigated computationally. Using full-length IgG Protein Data Bank entries or individual-particle electron tomography IgG reconstructions [44] as structural templates, we assessed the feasibility of two Fabs docking to one spike; however, no IgG structures that had both arms docked to two NTD epitopes were observed (Figure 1D). This does not rule out such a conformation, as IgG antibodies might have rarely observed structures that allow intra-spike binding. However, we have been unable to generate a model where one divalent NIEA binds with both Fab arms to one spike.
3.2. Structural Model of Spike–NIEA–Spike Crosslinking
3.3. Structural Dynamics of the NIEA Fab–NTD Interface
3.4. Change in Solvent Accessibility of the NTD Loops Consistent with MD Modeling
3.5. NIEAs Crosslink SARS-CoV-2 Spike N-Terminal Domains
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Rappazzo, C.G.; Tse, L.V.; Kaku, C.I.; Wrapp, D.; Sakharkar, M.; Huang, D.; Deveau, L.M.; Yockachonis, T.J.; Herbert, A.S.; Battles, M.B.; et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 2021, 371, 823–829. [Google Scholar] [CrossRef]
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; VanBlargan, L.A.; De Marco, A.; di Iulio, J.; et al. Broadly Neutralizing Antibodies Overcome Sars-Cov-2 Omicron Antigenic Shift. Nature 2022, 602, 664–670. [Google Scholar] [CrossRef] [PubMed]
- VanBlargan, L.A.; Errico, J.M.; Halfmann, P.J.; Zost, S.J.; Crowe, J.E.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M.S. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022, 28, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Starr, T.N.; Greaney, A.J.; Dingens, A.S.; Bloom, J.D. Complete Map of Sars-Cov-2 Rbd Mutations That Escape the Monoclonal Antibody Ly-Cov555 and Its Cocktail with Ly-Cov016. Cell Rep. Med. 2021, 2, 100255. [Google Scholar] [CrossRef]
- Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. A Neutralizing Human Antibody Binds to the N-Terminal Domain of the Spike Protein of Sars-Cov-2. Science 2020, 369, 650–655. [Google Scholar] [CrossRef]
- Tortorici, M.A.; Walls, A.C.; Lang, Y.; Wang, C.; Li, Z.; Koerhuis, D.; Boons, G.J.; Bosch, B.J.; Rey, F.A.; de Groot, R.J.; et al. Structural Basis for Human Coronavirus Attachment to Sialic Acid Receptors. Nat. Struct. Mol. Biol. 2019, 26, 481–489. [Google Scholar] [CrossRef]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. Sars-Cov-2 Infection Depends on Cellular Heparan Sulfate and Ace2. Cell 2020, 183, 1043–1057.e15. [Google Scholar] [CrossRef]
- Kearns, F.L.; Sandoval, D.R.; Casalino, L.; Clausen, T.M.; Rosenfeld, M.A.; Spliid, C.B.; Amaro, R.E.; Esko, J.D. Spike-Heparan Sulfate Interactions in Sars-Cov-2 Infection. Curr. Opin. Struct. Biol. 2022, 76, 102439. [Google Scholar] [CrossRef]
- Liu, Y.; Soh, W.T.; Kishikawa, J.I.; Hirose, M.; Nakayama, E.E.; Li, S.; Sasai, M.; Suzuki, T.; Tada, A.; Arakawa, A.; et al. An Infectivity-Enhancing Site on the Sars-Cov-2 Spike Protein Targeted by Antibodies. Cell 2021, 184, 3452–3466.e18. [Google Scholar] [CrossRef]
- Li, D.; Edwards, R.J.; Manne, K.; Martinez, D.R.; Schafer, A.; Alam, S.M.; Wiehe, K.; Lu, X.; Parks, R.; Sutherland, L.L.; et al. In Vitro and in Vivo Functions of Sars-Cov-2 Infection-Enhancing and Neutralizing Antibodies. Cell 2021, 184, 4203–4219.e32. [Google Scholar] [CrossRef]
- Shukla, R.; Ramasamy, V.; Shanmugam, R.K.; Ahuja, R.; Khanna, N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front. Cell. Infect. Microbiol. 2020, 10, 572681. [Google Scholar] [CrossRef]
- Narayan, R.; Tripathi, S. Intrinsic ADE: The Dark Side of Antibody Dependent Enhancement During Dengue Infection. Front. Cell. Infect. Microbiol. 2020, 10, 580096. [Google Scholar] [CrossRef] [PubMed]
- Fust, G. Enhancing Antibodies in Hiv Infection. Parasitology 1997, 115, S127–S140. [Google Scholar] [CrossRef] [PubMed]
- Kapikian, A.Z.; Mitchell, R.H.; Chanock, R.M.; Shvedoff, R.A.; Stewart, C.E. An epidemiologic study of altered clinical reactivity to respiratory syncytial (rs) virus infection in children previously vaccinated with an inactivated rs virus vaccine. Am. J. Epidemiol. 1969, 89, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Hoffman, S.J.; Crujeiras, G.; E Griffin, D. A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat. Med. 2003, 9, 1209–1213. [Google Scholar] [CrossRef]
- Shimizu, J.; Sasaki, T.; Koketsu, R.; Morita, R.; Yoshimura, Y.; Murakami, A.; Saito, Y.; Kusunoki, T.; Samune, Y.; Nakayama, E.E.; et al. Reevaluation of Antibody-Dependent Enhancement of Infection in Anti-Sars-Cov-2 Therapeutic Antibodies and Mrna-Vaccine Antisera Using Fcr- and Ace2-Positive Cells. Sci. Rep. 2022, 12, 15612. [Google Scholar] [CrossRef] [PubMed]
- Yip, M.S.; Leung, N.H.L.; Cheung, C.Y.; Li, P.H.; Lee, H.H.Y.; Daëron, M.; Peiris, J.S.M.; Bruzzone, R.; Jaume, M. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol. J. 2014, 11, 82. [Google Scholar] [CrossRef]
- Jaume, M.; Yip, M.S.; Cheung, C.Y.; Leung, H.L.; Li, P.H.; Kien, F.; Dutry, I.; Callendret, B.; Escriou, N.; Altmeyer, R.; et al. Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells Via a Ph- and Cysteine Protease-Independent Fcgammar Pathway. J. Virol. 2011, 85, 10582–10597. [Google Scholar] [CrossRef] [PubMed]
- Ubol, S.; Phuklia, W.; Kalayanarooj, S.; Modhiran, N. Mechanisms of Immune Evasion Induced by a Complex of Dengue Virus and Preexisting Enhancing Antibodies. J. Infect. Dis. 2010, 201, 923–935. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Yu, X.; Jiang, W.; Chen, S.; Wang, R.; Wang, M.; Jiao, S.; Yang, Y.; Wang, W.; et al. Antibody-Dependent Enhancement (Ade) of Sars-Cov-2 Pseudoviral Infection Requires Fcgammariib and Virus-Antibody Complex with Bivalent Interaction. Commun. Biol. 2022, 5, 262. [Google Scholar]
- Halstead, S.B. Is Dengue Vaccine Protection Possible? Clin. Infect Dis. 2022, 74, 156–160. [Google Scholar] [CrossRef]
- Huang, C.H.; Tsai, Y.T.; Wang, S.F.; Wang, W.H.; Chen, Y.H. Dengue Vaccine: An Update. Expert Rev. Anti Infect Ther. 2021, 19, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Ismanto, H.S.; Xu, Z.; Saputri, D.S.; Wilamowski, J.; Li, S.; Nugraha, D.K.; Horiguchi, Y.; Okada, M.; Arase, H.; Standley, D.M. Landscape of infection enhancing antibodies in COVID-19 and healthy donors. Comput. Struct. Biotechnol. J. 2022, 20, 6033–6040. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Wheatley, A.K.; Kent, S.J.; DeKosky, B.J. Antibody-Dependent Enhancement and Sars-Cov-2 Vaccines and Therapies. Nat. Microbiol. 2020, 5, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, E.E.; Shioda, T. Sars-Cov-2 Related Antibody-Dependent Enhancement Phenomena in Vitro and in Vivo. Microorganisms 2023, 11, 1015. [Google Scholar] [CrossRef] [PubMed]
- Connor, R.I.; Sakharkar, M.; Rappazzo, C.G.; Kaku, C.I.; Curtis, N.C.; Shin, S.; Wieland-Alter, W.F.; Weiner, J.A.; Ackerman, M.E.; Walker, L.M.; et al. Characteristics and Functions of Infection-Enhancing Antibodies to the N-Terminal Domain of Sars-Cov-2. bioRxiv 2023. bioRxiv:2023.09.19.558444. [Google Scholar]
- Punjani, A.; Rubinstein, J.L.; Fleet, D.J.; A Brubaker, M. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 2017, 14, 290–296. [Google Scholar] [CrossRef]
- Schritt, D.; Li, S.; Rozewicki, J.; Katoh, K.; Yamashita, K.; Volkmuth, W.; Cavet, G.; Standley, D.M. Repertoire Builder: High-throughput structural modeling of B and T cell receptors. Mol. Syst. Des. Eng. 2019, 4, 761–768. [Google Scholar] [CrossRef]
- Bangaru, S.; Ozorowski, G.; Turner, H.L.; Antanasijevic, A.; Huang, D.; Wang, X.; Torres, J.L.; Diedrich, J.K.; Tian, J.H.; Portnoff, A.D.; et al. Structural Analysis of Full-Length Sars-Cov-2 Spike Protein from an Advanced Vaccine Candidate. Science 2020, 370, 1089–1094. [Google Scholar] [CrossRef]
- Chaudhury, S.; Lyskov, S.; Gray, J.J. PyRosetta: A script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 2010, 26, 689–691. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. Lincs: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2007, 4, 116–122. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald—An N. Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. Gromacs 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Schrodinger, L.L.C. The Pymol Molecular Graphics System, Version 1.8. Am. J. Infect. Dis. Microbiology 2016, 4, 61–71. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.; Tong, H.; Peng, B.; Rames, M.J.; Zhang, S.; Ren, G. Erratum: Corrigendum: 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography. Sci. Rep. 2016, 6, 17919. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Cortese, M.; Winter, S.L.; Wachsmuth-Melm, M.; Neufeldt, C.J.; Cerikan, B.; Stanifer, M.L.; Boulant, S.; Bartenschlager, R.; Chlanda, P. Sars-Cov-2 Structure and Replication Characterized by in Situ Cryo-Electron Tomography. Nat. Commun. 2020, 11, 5885. [Google Scholar] [CrossRef]
- Klinakis, A.; Cournia, Z.; Rampias, T. N-Terminal Domain Mutations of the Spike Protein Are Structurally Implicated in Epitope Recognition in Emerging Sars-Cov-2 Strains. Comput. Struct. Biotechnol. J. 2021, 19, 5556–5567. [Google Scholar] [CrossRef]
- Cantoni, D.; Murray, M.J.; Kalemera, M.D.; Dicken, S.J.; Stejskal, L.; Brown, G.; Lytras, S.; Coey, J.D.; McKenna, J.; Bridgett, S.; et al. Evolutionary Remodelling of N-Terminal Domain Loops Fine-Tunes Sars-Cov-2 Spike. EMBO Rep. 2022, 23, e54322. [Google Scholar] [CrossRef]
- Valerio, M.; Borges-Araujo, L.; Melo, M.N.; Lousa, D.; Soares, C.M. Sars-Cov-2 Variants Impact Rbd Conformational Dynamics and Ace2 Accessibility. Front. Med. Technol. 2022, 4, 1009451. [Google Scholar] [CrossRef]
- Pang, Y.T.; Acharya, A.; Lynch, D.L.; Pavlova, A.; Gumbart, J.C. Sars-Cov-2 Spike Opening Dynamics and Energetics Reveal the Individual Roles of Glycans and Their Collective Impact. Commun. Biol. 2022, 5, 1170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lusiany, T.; Terada, T.; Kishikawa, J.-i.; Hirose, M.; Chen, D.V.; Sugihara, F.; Ismanto, H.S.; van Eerden, F.J.; Li, S.; Kato, T.; et al. Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies. Viruses 2023, 15, 2421. https://doi.org/10.3390/v15122421
Lusiany T, Terada T, Kishikawa J-i, Hirose M, Chen DV, Sugihara F, Ismanto HS, van Eerden FJ, Li S, Kato T, et al. Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies. Viruses. 2023; 15(12):2421. https://doi.org/10.3390/v15122421
Chicago/Turabian StyleLusiany, Tina, Tohru Terada, Jun-ichi Kishikawa, Mika Hirose, David Virya Chen, Fuminori Sugihara, Hendra Saputra Ismanto, Floris J. van Eerden, Songling Li, Takayuki Kato, and et al. 2023. "Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies" Viruses 15, no. 12: 2421. https://doi.org/10.3390/v15122421
APA StyleLusiany, T., Terada, T., Kishikawa, J.-i., Hirose, M., Chen, D. V., Sugihara, F., Ismanto, H. S., van Eerden, F. J., Li, S., Kato, T., Arase, H., Yoshiharu, M., Okada, M., & Standley, D. M. (2023). Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies. Viruses, 15(12), 2421. https://doi.org/10.3390/v15122421