Comparison between Sampling Techniques for Virological Molecular Analyses: Dolphin Morbillivirus and Herpesvirus Detection from FTA® Card and Frozen Tissue
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gales, N.J.; Bowen, W.D.; Johnston, D.W.; Kovacs, K.M.; Littnan, C.L.; Perrin, W.F.; Reynolds, J.E.; Thompson, P.M. Guidelines for the treatment of marine mammals in field research. Mar. Mammal Sci. 2009, 25, 725–736. [Google Scholar] [CrossRef]
- De Mello, D.M.D.; de Oliveira, C.A. Biological matrices for sampling free-ranging cetaceans and the implications of their use for reproductive endocrine monitoring. Mammal Rev. 2016, 46, 77–91. [Google Scholar] [CrossRef]
- Noren, D.P.; Mocklin, J.A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mammal Sci. 2012, 28, 154–199. [Google Scholar] [CrossRef]
- Raudino, H.C.; Tyne, J.A.; Smith, A.; Ottewell, K.; McArthur, S.; Kopps, A.M.; Chabanne, D.; Harcourt, R.G.; Pirotta, V.; Waples, K. Challenges of collecting blow from small cetaceans. Ecosphere 2019, 10, e02901. [Google Scholar] [CrossRef]
- Centelleghe, C.; Carraro, L.; Gonzalvo, J.; Rosso, M.; Esposti, E.; Gili, C.; Bonato, M.; Pedrotti, D.; Cardazzo, B.; Povinelli, M.; et al. The use of Unmanned Aerial Vehicles (UAVs) to sample the blow microbiome of small cetaceans. PLoS ONE 2020, 15, e0235537. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Pirotta, V.; Harvey, E.; Smith, A.; Buchmann, J.P.; Ostrowski, M.; Eden, J.S.; Harcourt, R.; Holmes, E.C. Virological Sampling of Inaccessible Wildlife with Drones. Viruses 2018, 10, 300. [Google Scholar] [CrossRef]
- Parsons, K.; Durban, J.; Claridge, D. Comparing two alternative methods for sampling small cetaceans for molecular analysis. Mar. Mammal Sci. 2003, 19, 224–231. [Google Scholar] [CrossRef]
- Baird, R.W.; Lerma, J.K.; Cornforth, C.J.; Wood, K.A. An Unexpected Benefit from Drone-Assisted Fecal Sample Collection: Picking Up Subsurface Poop After It Floats to the Surface. Aquat. Mamm. 2022, 48, 565–567. [Google Scholar] [CrossRef]
- Ijsseldijk, L.L.; Brownlow, A.C.; Mazzariol, S. European Best Practice on Cetacean Post-Mortem Investigation and Tissue Sampling; ACCOBAMS/ASCOBANS: Les Terrasses de Fontvieille, Monaco, 2019. [Google Scholar]
- Oyler-McCance, S.J.; Leberger, P. Conservatión genetics and molecular ecology in wildlife management. In The Wildlife Techniques Manual Research; Silvy, N., Ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2012. [Google Scholar]
- Edson, J.; Brown, J.; Miller, W.L.; Walter, W.D. Comparison of sample types from white-tailed deer (Odocoileus virginianus) for DNA extraction and analyses. Sci. Rep. 2021, 11, 10003. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.H.; Sokeechand, B.S.H.; Garver, K.A.; Jones, G.; Lumsden, J.S.; Bols, N.C. Fish viruses stored in RNAlater can remain infectious and even be temporarily protected from inactivation by heat or by tissue homogenates. J. Virol. Methods 2018, 253, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef]
- Cuvertoret-Sanz, M.; López-Figueroa, C.; O’Byrne, A.; Canturri, A.; Martí-Garcia, B.; Pintado, E.; Pérez, L.; Ganges, L.; Cobos, A.; Abarca, M.L.; et al. Causes of cetacean stranding and death on the Catalonian coast (western Mediterranean Sea), 2012–2019. Dis. Aquat. Organ. 2020, 142, 239–253. [Google Scholar] [CrossRef]
- Arbelo, M.; De Los Monteros, A.E.; Herráez, P.; Andrada, M.; Sierra, E.; Rodríguez, F.; Jepson, P.D.; Fernández, A. Pathology and causes of death of stranded cetaceans in the Canary Islands (1999–2005). Dis. Aquat. Organ. 2013, 103, 87–99. [Google Scholar] [CrossRef]
- Casalone, C.; Mazzariol, S.; Pautasso, A.; Di Guardo, G.; Nocera, F.D.; Lucifora, G.; Ligios, C.; Franco, A.; Fichi, G.; Cocumelli, C.; et al. Cetacean strandings in Italy: An unusual mortality event along the Tyrrhenian Sea coast in 2013. Dis. Aquat. Organ. 2014, 109, 81–86. [Google Scholar] [CrossRef]
- Van Bressem, M.F.; Raga, J.A.; Di Guardo, G.; Jepson, P.D.; Duignan, P.J.; Siebert, U.; Barrett, T.; De Oliveira Santos, M.C.; Moreno, I.B.; Siciliano, S.; et al. Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Dis. Aquat. Organ. 2009, 86, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Van Bressem, M.F.; Duignan, P.J.; Banyard, A.; Barbieri, M.; Colegrove, K.M.; de Guise, S.; di Guardo, G.; Dobson, A.; Domingo, M.; Fauquier, D.; et al. Cetacean Morbillivirus: Current Knowledge and Future Directions. Viruses 2014, 6, 5145–5181. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.S.; De Pasquale Da Silva, V.; Bracarense, A.P.F.R.L.; Domit, C. Environmental aspects and diseases related to immunosuppression in cetaceans: A concise review. Semin. Cienc. Agrar. 2018, 39, 2897–2918. [Google Scholar] [CrossRef]
- Jo, W.K.; Kruppa, J.; Habierski, A.; van de Bildt, M.; Mazzariol, S.; Di Guardo, G.; Siebert, U.; Kuiken, T.; Jung, K.; Osterhaus, A.; et al. Evolutionary evidence for multi-host transmission of cetacean morbillivirus. Emerg. Microbes Infect. 2018, 7, 201. [Google Scholar] [CrossRef]
- Cerutti, F.; Giorda, F.; Grattarola, C.; Mignone, W.; Beltramo, C.; Keck, N.; Lorusso, A.; Di Francesco, G.; Di Renzo, L.; Di Guardo, G.; et al. Specific capture and whole-genome phylogeography of Dolphin morbillivirus. Sci. Rep. 2020, 10, 20831. [Google Scholar] [CrossRef]
- de Medeiros Bento, M.C.R.; Eira, C.I.C.S.; Vingada, J.V.; Marçalo, A.L.; Ferreira, M.C.T.; Fernandez, A.L.; Tavares, L.M.M.; Duarte, A.I.S.P. New insight into dolphin morbillivirus phylogeny and epidemiology in the northeast Atlantic: Opportunistic study in cetaceans stranded along the Portuguese and Galician coasts. BMC Vet. Res. 2016, 12, 176. [Google Scholar] [CrossRef]
- Van De Bildt, M.W.G.; Kuiken, T.; Osterhaus, A.D.M.E. Cetacean morbilliviruses are phylogenetically divergent. Arch. Virol. 2005, 150, 577–583. [Google Scholar] [CrossRef]
- Di Guardo, G.; Mazzariol, S. Cetacean morbillivirus: A Land-to-Sea Journey and Back? Virol. Sin. 2019, 34, 240–242. [Google Scholar] [CrossRef]
- Libbey, J.E.; Fujinami, R.S. Morbillivirus: A highly adaptable viral genus. Heliyon 2023, 9, e18095. [Google Scholar] [CrossRef]
- Bento, M.C.; Canha, R.; Eira, C.; Vingada, J.; Nicolau, L.; Ferreira, M.; Domingo, M.; Tavares, L.; Duarte, A. Herpesvirus infection in marine mammals: A retrospective molecular survey of stranded cetaceans in the Portuguese coastline. Infect. Genet. Evol. 2019, 67, 222–233. [Google Scholar] [CrossRef]
- Sierra, E.; Fernández, A.; Fernández-Maldonado, C.; Sacchini, S.; Felipe-Jiménez, I.; Segura-Göthlin, S.; Colom-Rivero, A.; Câmara, N.; Puig-Lozano, R.; Rambaldi, A.M.; et al. Molecular Characterization of Herpesviral Encephalitis in Cetaceans: Correlation with Histopathological and Immunohistochemical Findings. Animals 2022, 12, 1149. [Google Scholar] [CrossRef] [PubMed]
- Sierra, E.; Fernández, A.; Felipe-Jiménez, I.; Zucca, D.; Díaz-Delgado, J.; Puig-Lozano, R.; Câmara, N.; Consoli, F.; Díaz-Santana, P.; Suárez-Santana, C.; et al. Histopathological Differential Diagnosis of Meningoencephalitis in Cetaceans: Morbillivirus, Herpesvirus, Toxoplasma gondii, Brucella sp., and Nasitrema sp. Front. Vet. Sci. 2020, 7, 650. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Castro, I.; Melero, M.; Crespo-Picazo, J.L.; de los Ángeles Jiménez, M.; Sierra, E.; Rubio-Guerri, C.; Arbelo, M.; Fernández, A.; García-Párraga, D.; Sánchez-Vizcaíno, J.M. Systematic Determination of Herpesvirus in Free-Ranging Cetaceans Stranded in the Western Mediterranean: Tissue Tropism and Associated Lesions. Viruses 2021, 13, 2180. [Google Scholar] [CrossRef]
- Bellière, E.N.; Esperón, F.; Arbelo, M.; Muñoz, M.J.; Fernández, A.; Sánchez-Vizcaíno, J.M. Presence of herpesvirus in striped dolphins stranded during the cetacean morbillivirus epizootic along the Mediterranean Spanish coast in 2007. Arch. Virol. 2010, 155, 1307–1311. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Nishida, S.; Sone, E.; Tajima, Y.; Makara, M.; Yoshioka, M.; Nakamura, M.; Yamada, T.K.; Koike, H. Molecular identification of novel alpha- and gammaherpesviruses from cetaceans stranded on japanese coasts. Zoolog. Sci. 2011, 28, 126–133. [Google Scholar] [CrossRef]
- Sierra, E.; Sánchez, S.; Saliki, J.T.; Blas-Machado, U.; Arbelo, M.; Zucca, D.; Fernández, A. Retrospective study of etiologic agents associated with nonsuppurative meningoencephalitis in stranded cetaceans in the canary Islands. J. Clin. Microbiol. 2014, 52, 2390–2397. [Google Scholar] [CrossRef] [PubMed]
- Soto, S.; González, B.; Willoughby, K.; Maley, M.; Olvera, A.; Kennedy, S.; Marco, A.; Domingo, M. Systemic Herpesvirus and Morbillivirus Co-Infection in a Striped Dolphin (Stenella coeruleoalba). J. Comp. Pathol. 2012, 146, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, T.W.; Santiago, N.T.; Lipscomb, T.P.; Garber, R.L.; McFee, W.E.; Knowles, S. Two novel alphaherpesviruses associated with fatal disseminated infections in atlantic bottlenose dolphins. J. Wildl. Dis. 2001, 37, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Manire, C.A.; Smolarek, K.A.; Romero, C.H.; Kinsel, M.J.; Clauss, T.M.; Byrd, L. Proliferative Dermatitis Associated with a Novel Alphaherpesvirus in an Atlantic Bottlenose Dolphin (Tursiops truncatus) on JSTOR. J. Zoo Wildl. Med. 2006, 37, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, M.; Sierra, E.; Esperón, F.; Watanabe, T.T.N.; Bellière, E.N.; De Los Monteros, A.E.; Fernández, A. Herpesvirus infection with severe lymphoid necrosis affecting a beaked whale stranded in the Canary Islands. Dis. Aquat. Organ. 2010, 89, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Duignan, P.; Van Bressem, M.; Cortéz-Hinojosa, G.; Kennedy-Stoskopf, S. Viruses. In CRC Handbook of Marine Mammal Medicine; CRC Press: Boca Raton, FL, USA, 2018; pp. 331–366. [Google Scholar]
- Vandevanter, D.R.; Warrener, P.; Bennett, L.; Schultz, E.R.; Coulter, S.; Garber, R.L.; Rose, T.M. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol. 1996, 34, 1666. [Google Scholar] [CrossRef]
- Moscoso, H.; Thayer, S.G.; Hofacre, C.L.; Kleven, S.H. Inactivation, Storage, and PCR Detection of Mycoplasma on FTA® Filter Paper. Avian Dis. 2004, 48, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.M.; Burgoyne, L.A. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol. 2004, 4, 4. [Google Scholar] [CrossRef]
- Keeler, S.P.; Ferro, P.J.; Brown, J.D.; Fang, X.; El-Attrache, J.; Poulson, R.; Jackwood, M.W.; Stallknecht, D.E. Use of FTA sampling cards for molecular detection of avian influenza virus in wild birds. Avian Dis. 2012, 56, 200–207. [Google Scholar] [CrossRef]
- Picard-Meyer, E.; Barrat, J.; Cliquet, F. Use of filter paper (FTA) technology for sampling, recovery and molecular characterisation of rabies viruses. J. Virol. Methods 2007, 140, 174–182. [Google Scholar] [CrossRef]
- Muthukrishnan, M.; Singanallur, N.B.; Ralla, K.; Villuppanoor, S.A. Evaluation of FTA cards as a laboratory and field sampling device for the detection of foot-and-mouth disease virus and serotyping by RT-PCR and real-time RT-PCR. J. Virol. Methods 2008, 151, 311–316. [Google Scholar] [CrossRef]
- Da Cunha Santos, G. FTA Cards for Preservation of Nucleic Acids for Molecular Assays: A Review on the Use of Cytologic/Tissue Samples. Arch. Pathol. Lab. Med. 2018, 142, 308–312. [Google Scholar] [CrossRef]
- Davis, E.H.; Velez, J.O.; Russell, B.J.; Jane Basile, A.; Brault, A.C.; Hughes, H.R. Evaluation of Whatman FTA cards for the preservation of yellow fever virus RNA for use in molecular diagnostics. PLoS Negl. Trop. Dis. 2022, 16, e0010487. [Google Scholar] [CrossRef]
- Love Stowell, S.M.; Bentley, E.G.; Gagne, R.B.; Gustafson, K.D.; Rutledge, L.Y.; Ernest, H.B. Optimal DNA extractions from blood on preservation paper limits conservation genomic but not conservation genetic applications. J. Nat. Conserv. 2018, 46, 89–96. [Google Scholar] [CrossRef]
- Centelleghe, C.; Beffagna, G.; Zanetti, R.; Zappulli, V.; Di Guardo, G.; Mazzariol, S. Molecular analysis of dolphin morbillivirus: A new sensitive detection method based on nested RT-PCR. J. Virol. Methods 2016, 235, 85–91. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 66–70. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org/ (accessed on 18 October 2023).
- Spinsanti, G.; Panti, C.; Lazzeri, E.; Marsili, L.; Casini, S.; Frati, F.; Fossi, C.M. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin biopsies. BMC Mol. Biol. 2006, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.J.; Mitchell, G.H.; Rowles, T.K.; Early, G. Dead Cetacean? Beach, Bloat, Float, Sink. Front. Mar. Sci. 2020, 7, 534514. [Google Scholar] [CrossRef]
- Kemp, K.M.; Jamieson, A.J.; Bagley, P.M.; McGrath, H.; Bailey, D.M.; Collins, M.A.; Priede, I.G. Consumption of large bathyal food fall, a six month study in the NE Atlantic. Mar. Ecol. Prog. Ser. 2006, 310, 65–76. [Google Scholar] [CrossRef]
- Burrows, D.G.; Reichert, W.L.; Bradley Hanson, M. Effects of decomposition and storage conditions on the δ13C and δ15N isotope values of killer whale (Orcinus orca) skin and blubber tissues. Mar. Mammal Sci. 2014, 30, 747–762. [Google Scholar] [CrossRef]
- Krafft, A.; Lichy, J.H.; Lipscomb, T.P.; Klaunberg, B.A.; Kennedy, S.; Taubenberger, J.K. Postmortem Diagnosis of Morbillivirus Infection in Bottlenose Dolphins (Tursiops truncatus) in the Atlantic and Gulf of Mexico Epizootics by Polymerase Chain Reaction-Based Assay. J. Wildl. Dis. 1995, 31, 410–415. [Google Scholar] [CrossRef]
- Runstadler, J.A.; Puryear, W. A brief introduction to influenza a virus in marine mammals. Methods Mol. Biol. 2020, 2123, 429–450. [Google Scholar] [CrossRef]
- Barth, H.; Morel, A.; Mougin, C.; Averous, G.; Legrain, M.; Fender, M.; Risch, S.; Fafi-Kremer, S.; Velten, M.; Oudet, P.; et al. Long-term storage and safe retrieval of human papillomavirus DNA using FTA elute cards. J. Virol. Methods 2016, 229, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.J.; Mirsadraei, L.; Sanchez, D.E.; Wilson, R.W.; Shabihkhani, M.; Lucey, G.M.; Wei, B.; Singer, E.J.; Mareninov, S.; Yong, W.H. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories. Clin. Biochem. 2014, 47, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Braae, U.C.; Johansen, M.V.; Ngowi, H.A.; Rasmussen, T.B.; Nielsen, J.; Uttenthal, A. Detection of African Swine Fever Virus DNA in Blood Samples Stored on FTA Cards from Asymptomatic Pigs in Mbeya Region, Tanzania. Transbound. Emerg. Dis. 2015, 62, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Cortes, A.L.; Montiel, E.R.; Gimeno, I.M. Validation of Marek’s Disease Diagnosis and Monitoring of Marek’s Disease Vaccines from Samples Collected in FTA® Cards. Avian Dis. 2009, 53, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Rajendram, D.; Ayenza, R.; Holder, F.M.; Moran, B.; Long, T.; Shah, H.N. Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards. J. Microbiol. Methods 2006, 67, 582–592. [Google Scholar] [CrossRef]
- Bunting, S.; Burnett, E.; Hunter, R.B.; Field, R.; Hunter, K.L. Incorporating molecular genetics into remote expedition fieldwork. Trop. Conserv. Sci. 2014, 7, 260–271. [Google Scholar] [CrossRef]
- Lipscomb, T.P.; Kennedy, S.; Moffett, D.; Krafft, A.; Klaunberg, B.A.; Lichy, J.H.; Regan, G.T.; Worthy, G.A.J.; Taubenberger, J.K. Morbilliviral epizootic in bottlenose dolphins of the Gulf of Mexico. J. Vet. Diagn. Investig. 1996, 8, 283–290. [Google Scholar] [CrossRef]
- Perozo, F.; Villegas, P.; Estevez, C.; Alvarado, I.; Purvis, L.B. Use of FTA® filter paper for the molecular detection of Newcastle disease virus. Avian Pathol. 2006, 35, 93–98. [Google Scholar] [CrossRef]
ID | Species | Sex | Length (cm) | Weight (kg) | DCC | Standing Site | Stranding Date |
---|---|---|---|---|---|---|---|
616 | Tursiops truncatus | F | 170 | 59.5 | 3 | Lido delle Nazioni (FE) | 21 October 2022 |
619 | Stenella coeruleoalba | F | 195 | 61 | 2 | Orbetello (GR) | 21 August 2022 |
620 | Stenella coeruleoalba | M | 171 | 52 | 3 | Lecce (LE) | 24 March 2022 |
621 | Stenella coeruleoalba | F | 80 | 6.45 | 3 | Maruggio (TA) | 19 August 2022 |
622 | Stenella coeruleoalba | M | 91 | 7.1 | 2 | Vittoria (RG) | 13 July 2022 |
623 | Stenella coeruleoalba | M | 90 | 7.45 | 3 | Messina (ME) | 4 August 2022 |
624 | Tursiops truncatus | F | 185 | 80.5 | 2 | Porto Tolle (RO) | 25 February 2023 |
ID | 616 | 619 | 620 | 621 | 622 | 623 | 624 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DCC | 3 | 2 | 3 | 3 | 2 | 3 | 2 | |||||||
Organ | Imprint | Tissue | Imprint | Tissue | Imprint | Tissue | Imprint | Tissue | Imprint | Tissue | Imprint | Tissue | Imprint | Tissue |
Brain | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
Cerebellum | ns | ns | 1 | 0 | 1 | 1 | ns | ns | 1 | 0 | 1 | 0 | ns | ns |
Kidney | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
Liver | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
Lung | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
Prescapular lymph node | ns | ns | ns | ns | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
Pulmonary lymph node | 0 * | 0 * | 1 | 1 | 1 | 0 | ns | ns | 1 | 1 | ns | ns | 0 | 1 |
Spleen | 0 * | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Tonsils | ns | ns | ns | ns | ns | ns | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Total of positive samples | 2 | 0 | 4 | 4 | 5 | 3 | 4 | 2 | 6 | 3 | 5 | 2 | 2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, H.; Tucciarone, C.M.; Cecchinato, M.; Legnardi, M.; Mazzariol, S.; Centelleghe, C. Comparison between Sampling Techniques for Virological Molecular Analyses: Dolphin Morbillivirus and Herpesvirus Detection from FTA® Card and Frozen Tissue. Viruses 2023, 15, 2422. https://doi.org/10.3390/v15122422
Si H, Tucciarone CM, Cecchinato M, Legnardi M, Mazzariol S, Centelleghe C. Comparison between Sampling Techniques for Virological Molecular Analyses: Dolphin Morbillivirus and Herpesvirus Detection from FTA® Card and Frozen Tissue. Viruses. 2023; 15(12):2422. https://doi.org/10.3390/v15122422
Chicago/Turabian StyleSi, Haiyang, Claudia Maria Tucciarone, Mattia Cecchinato, Matteo Legnardi, Sandro Mazzariol, and Cinzia Centelleghe. 2023. "Comparison between Sampling Techniques for Virological Molecular Analyses: Dolphin Morbillivirus and Herpesvirus Detection from FTA® Card and Frozen Tissue" Viruses 15, no. 12: 2422. https://doi.org/10.3390/v15122422
APA StyleSi, H., Tucciarone, C. M., Cecchinato, M., Legnardi, M., Mazzariol, S., & Centelleghe, C. (2023). Comparison between Sampling Techniques for Virological Molecular Analyses: Dolphin Morbillivirus and Herpesvirus Detection from FTA® Card and Frozen Tissue. Viruses, 15(12), 2422. https://doi.org/10.3390/v15122422