A Novel Prophage-like Insertion Element within yabG Triggers Early Entry into Sporulation in Clostridium botulinum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Growth and DNA Isolation
2.2. Genome Sequencing and Bioinformatic Analysis
2.3. Growth Curves
2.4. Toxin Quantification
2.5. Spore Count Assay and Spore Heat Resistance
2.6. Phase-Contrast Microscopy
2.7. Spore Germination Assay
2.8. Transmission Electron Microscopy (TEM) Analysis
2.9. Detection and Quantification of the Different Forms of yin
2.10. Genome Sequence Accession Numbers
3. Results and Discussion
3.1. Identification of a Prophage-like Intervening Element in yabG
3.2. Phenotypic Impact of the yin Element on Sporulation and Toxin Production
3.3. Restoration of Intact yabG by Chromosomal Excision of the yin Element upon Sporulation
3.4. Circularization of the yin Element upon Chromosomal Excision
3.5. Presence of the yin Element Does Not Affect Spore Heat Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, I.S.; Ramamurthi, K.S. Spore formation in Bacillus subtilis. Environ. Microbiol. Rep. 2014, 6, 212–225. [Google Scholar] [CrossRef]
- Dürre, P. Physiology and sporulation in Clostridium. Microbiol. Spectr. 2014, 2, 1–14. [Google Scholar] [CrossRef]
- Al-Hinai, M.A.; Jones, S.W.; Papoutsakis, E.T. The Clostridium sporulation programs: Diversity and preservation of endospore differentiation. Microbiol. Mol. Biol. Rev. 2015, 79, 19–37. [Google Scholar] [CrossRef]
- Shen, A.; Edwards, A.N.; Sarker, M.R.; Paredes-Sabja, D. Sporulation and germination in Clostridial pathogens. Microbiol. Spectr. 2019, 7, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Setlow, P. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 2006, 101, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.N.; Karim, S.T.; Pascual, R.A.; Jowhar, L.M.; Anderson, S.E.; McBride, S.M. Chemical and stress resistances of Clostridium difficile spores and vegetative cells. Front. Microbiol. 2016, 7, 1698. [Google Scholar] [CrossRef] [PubMed]
- Moayeri, M.; Leppla, S.H.; Vrentas, C.; Pomerantsev, A.P.; Liu, S. Anthrax pathogenesis. Annu. Rev. Microbiol. 2015, 69, 185–208. [Google Scholar] [CrossRef]
- Rineh, A.; Kelso, M.J.; Vatansever, F.; Tegos, G.P.; Hamblin, M.R. Clostridium difficile infection: Molecular pathogenesis and novel therapeutics. Expert. Rev. Anti Infect. Ther. 2014, 12, 131–150. [Google Scholar] [CrossRef]
- Fishman, P.S. 34—Tetanus toxin. In Botulinum Toxin; Jankovic, J., Albanese, A., Atassi, M.Z., Dolly, J.O., Hallett, M., Mayer, N.H., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 406–424.e1. [Google Scholar]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef]
- Pellett, S. Pathogenesis of Clostridium botulinum in humans. In Human Emerging and Re-Emerging Infections; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 821–839. [Google Scholar]
- Lindström, M.; Kiviniemi, K.; Korkeala, H. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Int. J. Food Microbiol. 2006, 108, 92–104. [Google Scholar] [CrossRef]
- Brook, I. Infant botulism. J. Perinatol. 2007, 27, 175–180. [Google Scholar] [CrossRef]
- Guru, P.K.; Becker, T.L.; Stephens, A.; Cannistraro, R.J.; Eidelman, B.H.; Hata, D.J.; Brumble, L. Adult intestinal botulism: A rare presentation in an immunocompromised patient with short bowel syndrome. Mayo Clin. Proc. Innov. Qual. Outcomes 2018, 2, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.A.; Anniballi, F.; Austin, J.W. Adult intestinal toxemia botulism. Toxins 2020, 12, 81. [Google Scholar] [CrossRef]
- Takemaru, K.-i.; Mizuno, M.; Sato, T.; Takeuchi, M.; Kobayashi, Y. Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 1995, 141, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Haraldsen, J.D.; Sonenshein, A.L. Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol. Microbiol. 2003, 48, 811–821. [Google Scholar] [CrossRef]
- Serrano, M.; Kint, N.; Pereira, F.C.; Saujet, L.; Boudry, P.; Dupuy, B.; Henriques, A.O.; Martin-Verstraete, I. A recombination directionality factor controls the cell type-specific activation of σK and the fidelity of spore development in Clostridium difficile. PLoS Genet. 2016, 12, e1006312. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Kawano, Y.; Iwamoto, K.; Arai, K.; Maruyama, Y.; Eichenberger, P.; Sato, T. Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis. PLoS Genet. 2014, 10, e1004636. [Google Scholar] [CrossRef]
- Abe, K.; Yoshinari, A.; Aoyagi, T.; Hirota, Y.; Iwamoto, K.; Sato, T. Regulated DNA rearrangement during sporulation in Bacillus weihenstephanensis KBAB4. Mol. Microbiol. 2013, 90, 415–427. [Google Scholar] [CrossRef]
- Abe, K.; Shimizu, S.-y.; Tsuda, S.; Sato, T. A novel non prophage(-like) gene-intervening element within gerE that is reconstituted during sporulation in Bacillus cereus ATCC10987. Sci. Rep. 2017, 7, 11426. [Google Scholar] [CrossRef]
- Feiner, R.; Argov, T.; Rabinovich, L.; Sigal, N.; Borovok, I.; Herskovits, A.A. A new perspective on lysogeny: Prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 2015, 13, 641–650. [Google Scholar] [CrossRef]
- Takamatsu, H.; Kodama, T.; Imamura, A.; Asai, K.; Kobayashi, K.; Nakayama, T.; Ogasawara, N.; Watabe, K. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition. J. Bacteriol. 2000, 182, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, R.; Okuda, N.; Takamatsu, H.; Watabe, K. Modification of GerQ reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J. Biochem. 2006, 139, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, H.; Imamura, A.; Kodama, T.; Asai, K.; Ogasawara, N.; Watabe, K. The yabG gene of Bacillus subtilis encodes a sporulation specific protease which is involved in the processing of several spore coat proteins. FEMS Microbiol. Lett. 2000, 192, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Kevorkian, Y.; Shirley, D.J.; Shen, A. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 2016, 122, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Ramalhete, S.; Martinez-Aguirre, A.; Ingle, P.; Melo, M.N.; Minton, N.P.; Hernandez, G.; Cordeiro, T.N.; Serrano, M.; Henriques, A.O. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog. 2023, 19, e1011741. [Google Scholar] [CrossRef]
- Abecasis, A.B.; Serrano, M.; Alves, R.; Quintais, L.; Pereira-Leal, J.B.; Henriques, A.O. A genomic signature and the identification of new sporulation genes. J. Bacteriol. 2013, 195, 2101–2115. [Google Scholar] [CrossRef] [PubMed]
- Douillard, F.P.; Derman, Y.; Woudstra, C.; Selby, K.; Mäklin, T.; Dorner, M.B.; Saxén, H.; Dorner, B.G.; Korkeala, H.; Lindström, M. Genomic and phenotypic characterization of Clostridium botulinum isolates from an infant botulism case suggests adaptation signatures to the gut. mBio 2022, 13, e0238421. [Google Scholar] [CrossRef] [PubMed]
- Derman, Y.; Korkeala, H.; Salo, E.; Lonnqvist, T.; Saxén, H.; Lindström, M. Infant botulism with prolonged faecal excretion of botulinum neurotoxin and Clostridium botulinum for 7 months. Epidemiol. Infect. 2014, 142, 335–339. [Google Scholar] [CrossRef]
- Rodriguez-R, L.M.; Gunturu, S.; Harvey, W.T.; Rosselló-Mora, R.; Tiedje, J.M.; Cole, J.R.; Konstantinidis, K.T. The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018, 46, W282–W288. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2019, 48, D606–D612. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schutze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Takahashi, T.; Sato, T. Extreme C-terminal element of SprA serine integrase is a potential component of the "molecular toggle switch" which controls the recombination and its directionality. Mol. Microbiol. 2021, 115, 1110–1121. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.; Fiebig, U.; Liu, Y.; Tierney, R.; Dano, J.; Worbs, S.; Endermann, T.; Nevers, M.C.; Volland, H.; Sesardic, D.; et al. Recommended immunological strategies to screen for botulinum neurotoxin-containing samples. Toxins 2015, 7, 5011–5034. [Google Scholar] [CrossRef]
- Pauly, D.; Kirchner, S.; Stoermann, B.; Schreiber, T.; Kaulfuss, S.; Schade, R.; Zbinden, R.; Avondet, M.A.; Dorner, M.B.; Dorner, B.G. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay. Analyst 2009, 134, 2028–2039. [Google Scholar] [CrossRef]
- Food and Drug Administration. Bacteriological Analytical Manual, 8th ed.; AOAC International: Gaithersburg, MD, USA, 1998.
- Portinha, I.M.; Douillard, F.P.; Korkeala, H.; Lindström, M. Sporulation strategies and potential role of the exosporium in survival and persistence of Clostridium botulinum. Int. J. Mol. Sci. 2022, 23, 754. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2020, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Mascher, G.; Mertaoja, A.; Korkeala, H.; Lindström, M. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E. Environ. Microbiol. 2017, 19, 4287–4300. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, B.; Losick, R.; Stragier, P. The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 1990, 4, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Stragier, P.; Kunkel, B.; Kroos, L.; Losick, R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 1989, 243, 507–512. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douillard, F.P.; Portinha, I.M.; Derman, Y.; Woudstra, C.; Mäklin, T.; Dorner, M.B.; Korkeala, H.; Henriques, A.O.; Lindström, M. A Novel Prophage-like Insertion Element within yabG Triggers Early Entry into Sporulation in Clostridium botulinum. Viruses 2023, 15, 2431. https://doi.org/10.3390/v15122431
Douillard FP, Portinha IM, Derman Y, Woudstra C, Mäklin T, Dorner MB, Korkeala H, Henriques AO, Lindström M. A Novel Prophage-like Insertion Element within yabG Triggers Early Entry into Sporulation in Clostridium botulinum. Viruses. 2023; 15(12):2431. https://doi.org/10.3390/v15122431
Chicago/Turabian StyleDouillard, François P., Inês Martins Portinha, Yağmur Derman, Cédric Woudstra, Tommi Mäklin, Martin B. Dorner, Hannu Korkeala, Adriano O. Henriques, and Miia Lindström. 2023. "A Novel Prophage-like Insertion Element within yabG Triggers Early Entry into Sporulation in Clostridium botulinum" Viruses 15, no. 12: 2431. https://doi.org/10.3390/v15122431
APA StyleDouillard, F. P., Portinha, I. M., Derman, Y., Woudstra, C., Mäklin, T., Dorner, M. B., Korkeala, H., Henriques, A. O., & Lindström, M. (2023). A Novel Prophage-like Insertion Element within yabG Triggers Early Entry into Sporulation in Clostridium botulinum. Viruses, 15(12), 2431. https://doi.org/10.3390/v15122431