Recombinant Pseudorabies Virus Usage in Vaccine Development against Swine Infectious Disease
Abstract
:1. Introduction
2. The Biological Characteristics of PRV
3. PRV Recombinants Construction
3.1. Homologous Recombination
3.2. Bacterial Artificial Chromosome
3.3. Fosmid Library
3.4. CRISPR/Cas9
4. Principle behind Recombinant PRV
4.1. Promoter Affects Foreign Gene Expression
4.2. Insertion Site Is the Main Factor, Affects the Expression of Foreign Genes
5. Applications of Recombinant PRV
5.1. PRV Bartha K61 Strain as a Vector for Expressing Exogenous Antigens
5.2. Attenuated PRV Variant as a Vector for Expressing Exogenous Antigens
5.3. Attenuated PRV Variant as a Vector for Expressing Immunoregulatory Factors
5.4. Attenuated PRV Variant as Vector for Expressing Reporter Genes
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, R.M.; Zhou, Q.; Song, W.B.; Sun, E.C.; Zhang, M.M.; He, Q.G.; Chen, H.C.; Wu, B.; Liu, Z.F. Novel pseudorabies virus variant with defects in TK, gE and gI protects growing pigs against lethal challenge. Vaccine 2015, 33, 5733–5740. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tong, W.; Song, X.; Jia, R.; Li, L.; Zou, Y.; He, C.; Liang, X.; Lv, C.; Jing, B.; et al. Antiviral Effect of Resveratrol in Piglets Infected with Virulent Pseudorabies Virus. Viruses 2018, 10, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Li, J.; Gao, L.; He, Y.; Xie, J.; Zhu, P.; Zhang, Y.; Zhang, X.; Duan, L.; Yang, S.; et al. Epidemiological Investigation and Genetic Analysis of Pseudorabies Virus in Yunnan Province of China from 2017 to 2021. Viruses 2022, 14, 895. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.H.; Fu, P.F.; Chen, H.Y.; Wang, Z.Y. Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022, 14, 1638. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wu, J.; Tong, W.; Shan, T.; Cheng, X.; Xu, J.; Liang, C.; Zheng, H.; Li, G.; Tong, G. Comparative genomic analyses of a virulent pseudorabies virus and a series of its in vitro passaged strains. Virol. J. 2018, 15, 195. [Google Scholar] [CrossRef] [PubMed]
- Pomeranz, L.E.; Ekstrand, M.I.; Latcha, K.N.; Smith, G.A.; Enquist, L.W.; Friedman, J.M. Gene Expression Profiling with Cre-Conditional Pseudorabies Virus Reveals a Subset of Midbrain Neurons That Participate in Reward Circuitry. J. Neurosci. 2017, 37, 4128–4144. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Romero, N.; Favoreel, H.W. Pseudorabies Virus Inhibits Type I and Type III Interferon-Induced Signaling via Proteasomal Degradation of Janus Kinases. J. Virol. 2021, 95, e0079321. [Google Scholar] [CrossRef]
- Yin, Y.; Ma, J.; Van Waesberghe, C.; Devriendt, B.; Favoreel, H.W. Pseudorabies virus-induced expression and antiviral activity of type I or type III interferon depend on the type of infected epithelial cell. Front. Immunol. 2022, 13, 1016982. [Google Scholar] [CrossRef]
- Wang, Y.P.; Huang, L.P.; Du, W.J.; Wei, Y.W.; Xia, D.L.; Wu, H.L.; Feng, L.; Liu, C.M. The pseudorabies virus DNA polymerase processivity factor UL42 exists as a monomer in vitro and in vivo. Arch. Virol. 2016, 161, 1027–1031. [Google Scholar] [CrossRef]
- Xu, C.; Wang, M.; Song, Z.; Wang, Z.; Liu, Q.; Jiang, P.; Bai, J.; Li, Y.; Wang, X. Pseudorabies virus induces autophagy to enhance viral replication in mouse neuro-2a cells in vitro. Virus. Res. 2018, 248, 44–52. [Google Scholar] [CrossRef]
- Thomsen, D.R.; Marotti, K.R.; Palermo, D.P.; Post, L.E. Pseudorabies virus as a live virus vector for expression of foreign genes. Gene 1987, 57, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Chen, J.; Liang, W.; Chen, W.; Li, Z.; Chen, Q.; Cai, S. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice. Virol. J. 2020, 17, 180. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.L.; Wu, Y.H.; Li, H.F.; Li, S.Y.; Fan, S.Y.; Wu, H.L.; Li, Y.J.; Lü, Y.L.; Han, J.; Zhang, W.C.; et al. Clinical experience and next-generation sequencing analysis of encephalitis caused by pseudorabies virus. Zhonghua Yi Xue Za Zhi 2018, 98, 1152–1157. [Google Scholar]
- Zhao, N.; Wang, F.; Kong, Z.; Shang, Y. Pseudorabies Virus Tegument Protein UL13 Suppresses RLR-Mediated Antiviral Innate Immunity through Regulating Receptor Transcription. Viruses 2022, 14, 1465. [Google Scholar] [CrossRef] [PubMed]
- Dory, D.; Rémond, M.; Béven, V.; Cariolet, R.; Backovic, M.; Zientara, S.; Jestin, A. Pseudorabies virus glycoprotein B can be used to carry foot and mouth disease antigens in DNA vaccination of pigs. Antivir. Res. 2009, 81, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Yang, F.; Hu, X.; Tan, F.; Qi, J.; Peng, R.; Wang, M.; Chai, Y.; Hao, L.; Deng, J.; et al. Two classes of protective antibodies against Pseudorabies virus variant glycoprotein B: Implications for vaccine design. PLoS Pathog. 2017, 13, e1006777. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, M.H.; Shen, X.G.; Liu, H.; Zhang, Y.Y.; Peng, J.M.; Meng, F.; Wang, T.Y.; Bai, Y.Z.; Sun, M.X.; et al. Neuropilin-1 Facilitates Pseudorabies Virus Replication and Viral Glycoprotein B Promotes Its Degradation in a Furin-Dependent Manner. J. Virol. 2022, 96, e0131822. [Google Scholar] [CrossRef]
- Trybala, E.; Bergström, T.; Spillmann, D.; Svennerholm, B.; Flynn, S.J.; Ryan, P. Interaction between pseudorabies virus and heparin/heparan sulfate. Pseudorabies virus mutants differ in their interaction with heparin/heparan sulfate when altered for specific glycoprotein C heparin-binding domain. J. Biol. Chem. 1998, 273, 5047–5052. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Fan, H.; Tan, Y.; Xiao, S.; Ling, J.; Chen, H.; Guo, A. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus. Biochem. Biophys. Res. Commun. 2006, 347, 845–851. [Google Scholar] [CrossRef]
- Fan, H.; Liu, Z.; Tong, T.; Liu, X.; Guo, A. C3d-M28 enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus. Sheng Wu Gong Cheng Xue Bao 2009, 25, 987–992. [Google Scholar]
- Li, A.; Lu, G.; Qi, J.; Wu, L.; Tian, K.; Luo, T.; Shi, Y.; Yan, J.; Gao, G.F. Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D. PLoS Pathog. 2017, 13, e1006314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Liu, Y.; Chen, S.; Qiao, Y.; Guo, M.; Zheng, Y.; Xu, M.; Wang, Z.; Hou, J.; Wang, J. A gD&gC-substituted pseudorabies virus vaccine strain provides complete clinical protection and is helpful to prevent virus shedding against challenge by a Chinese pseudorabies variant. BMC Vet. Res. 2019, 15, 2. [Google Scholar]
- Zhang, T.; Liu, Y.; Chen, Y.; Wang, A.; Feng, H.; Wei, Q.; Zhou, E.; Zhang, G. A single dose glycoprotein D-based subunit vaccine against pseudorabies virus infection. Vaccine 2020, 38, 6153–6161. [Google Scholar] [CrossRef]
- Tyborowska, J.; Reszka, N.; Kochan, G.; Szewczyk, B. Formation of Pseudorabies virus glycoprotein E/I complex in baculovirus recombinant system. Acta Virol. 2006, 50, 169–174. [Google Scholar] [PubMed]
- Lu, S.; Xiang, M.; Dan, H.; Wu, B.; Gao, Q.; Huang, H.; He, Q.; Chen, H. Immune-tolerizing procedure for preparation of monoclonal antibodies against glycoprotein E of Pseudorabies virus. Monoclon. Antib. Immunodiagn. Immunother. 2013, 32, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Liao, C.M.; Chi, J.N.; Chien, M.S.; Huang, C. Growth properties and vaccine efficacy of recombinant pseudorabies virus defective in glycoprotein E and thymidine kinase genes. J. Biotechnol. 2016, 229, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Wu, J.Q.; Cheng, X.F.; Tong, W.; Zheng, H.; Zhu, H.J.; Liu, Y.T.; Jiang, Y.F.; Gao, F.; Yu, H.; et al. Identification of two novel epitopes targeting glycoprotein E of pseudorabies virus using monoclonal antibodies. Biochem. Biophys. Res. Commun. 2019, 519, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Freuling, C.M.; Müller, T.F.; Mettenleiter, T.C. Vaccines against pseudorabies virus (PrV). Vet. Microbiol. 2017, 206, 3–9. [Google Scholar] [CrossRef]
- Delva, J.L.; Nauwynck, H.J.; Mettenleiter, T.C.; Favoreel, H.W. The Attenuated Pseudorabies Virus Vaccine Strain Bartha K61: A Brief Review on the Knowledge Gathered During 60 Years of Research. Pathogens 2020, 9, 897. [Google Scholar] [CrossRef]
- Mettenleiter, T.C. Aujeszky Disease and the Development of the Marker/DIVA Vaccination Concept. Pathogens 2020, 9, 563. [Google Scholar] [CrossRef]
- Zhou, H.; Pan, Y.; Liu, M.; Han, Z. Prevalence of Porcine Pseudorabies Virus and Its Coinfection Rate in Heilongjiang Province in China from 2013 to 2018. Viral Immunol. 2020, 33, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.H.; Bai, Y.L.; Xu, T.; Zheng, L.L.; Li, X.S.; Chen, H.Y.; Wang, Z.Y. Isolation and Phylogenetic Analysis of Reemerging Pseudorabies Virus Within Pig Populations in Central China During 2012 to 2019. Front. Vet. Sci. 2021, 8, 764982. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.H.; Jin, Y.; Hou, C.Y.; Li, X.S.; Zhao, L.; Wang, Z.Y.; Chen, H.Y. Seroprevalence investigation and genetic analysis of pseudorabies virus within pig populations in Henan province of China during 2018–2019. Infect. Genet. Evol. 2021, 92, 104835. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zeng, X.; Zhang, G.; Wu, Q.; Niu, J.; Sun, B.; Xie, Q.; Ma, J. Molecular characterization and phylogenetic analysis of pseudorabies virus variants isolated from Guangdong province of southern China during 2013–2014. J. Vet. Sci. 2016, 17, 369–375. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.X.; Song, X.R.; Chen, H.C.; Liu, Z.F. Comparison of pseudorabies virus China reference strain with emerging variants reveals independent virus evolution within specific geographic regions. Virology 2017, 506, 92–98. [Google Scholar] [CrossRef]
- Zhai, X.; Zhao, W.; Li, K.; Zhang, C.; Wang, C.; Su, S.; Zhou, J.; Lei, J.; Xing, G.; Sun, H.; et al. Genome Characteristics and Evolution of Pseudorabies Virus Strains in Eastern China from 2017 to 2019. Virol. Sin. 2019, 34, 601–609. [Google Scholar] [CrossRef]
- Liu, J.; Chen, C.; Li, X. Novel Chinese pseudorabies virus variants undergo extensive recombination and rapid interspecies transmission. Transbound. Emerg. Dis. 2020, 67, 2274–2276. [Google Scholar] [CrossRef]
- Bo, Z.; Li, X. A Review of Pseudorabies Virus Variants: Genomics, Vaccination, Transmission, and Zoonotic Potential. Viruses 2022, 14, 1003. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xiao, Y.; Yang, Q.; Wang, Y.; Sun, Z.; Zhang, C.; Yan, S.; Wang, J.; Guo, L.; Yan, H.; et al. Construction of a gE-Deleted Pseudorabies Virus and Its Efficacy to the New-Emerging Variant PRV Challenge in the Form of Killed Vaccine. Biomed. Res. Int. 2015, 2015, 684945. [Google Scholar]
- Wang, J.; Guo, R.; Qiao, Y.; Xu, M.; Wang, Z.; Liu, Y.; Gu, Y.; Liu, C.; Hou, J. An inactivated gE-deleted pseudorabies vaccine provides complete clinical protection and reduces virus shedding against challenge by a Chinese pseudorabies variant. BMC Vet. Res. 2016, 12, 277. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Xu, Z.; Liu, X.; Li, P.; Yang, F.; Zhao, J.; Fan, Y.; Sun, X.; Zhu, L. A live gI/gE-deleted pseudorabies virus (PRV) protects weaned piglets against lethal variant PRV challenge. Virus. Genes. 2017, 53, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fang, K.; Rong, Z.; Li, X.; Ren, X.; Ma, H.; Chen, H.; Li, X.; Qian, P. Comparison of gE/gI- and TK/gE/gI-Gene-Deleted Pseudorabies Virus Vaccines Mediated by CRISPR/Cas9 and Cre/Lox Systems. Viruses 2020, 12, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Li, Z.; Feng, Z.; Fang, Z.; Chen, J.; Chen, W.; Liang, W.; Chen, Q. Pseudorabies virus (PRV) strain with defects in gE, gC, and TK genes protects piglets against an emerging PRV variant. J. Vet. Med. Sci. 2020, 82, 846–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.; Li, Z.; Zhang, J.; Huang, J.; Kang, H.; Tian, J.; Qu, L. Construction of a US7/US8/UL23/US3-deleted recombinant pseudorabies virus and evaluation of its pathogenicity in dogs. Vet. Microbiol. 2020, 240, 108543. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.Q.; Zheng, H.H.; Yang, Y.R.; Liu, F.; Zheng, L.L.; Jin, Y.; Chen, H.Y. Construction and immunogenicity of a gE/gI/TK-deleted PRV based on porcine pseudorabies virus variant. Mol. Cell Probes. 2020, 53, 101605. [Google Scholar] [CrossRef]
- Lv, L.; Liu, X.; Jiang, C.; Wang, X.; Cao, M.; Bai, J.; Jiang, P. Pathogenicity and immunogenicity of a gI/gE/TK/UL13-gene-deleted variant pseudorabies virus strain in swine. Vet. Microbiol. 2021, 258, 109104. [Google Scholar] [CrossRef]
- Xu, L.; Wei, J.F.; Zhao, J.; Xu, S.Y.; Lee, F.Q.; Nie, M.C.; Xu, Z.W.; Zhou, Y.C.; Zhu, L. The Immunity Protection of Central Nervous System Induced by Pseudorabies Virus DelgI/gE/TK in Mice. Front. Microbiol. 2022, 13, 862907. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, L.; Xu, L.; Li, F.; Deng, H.; Huang, Y.; Gu, S.; Sun, X.; Zhou, Y.; Xu, Z. The Construction and Immunogenicity Analyses of Recombinant Pseudorabies Virus with NADC30-Like Porcine Reproductive and Respiratory Syndrome Virus-Like Particles Co-expression. Front. Microbiol. 2022, 13, 846079. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, J.; Cong, X.; Qin, H.Y.; Wang, C.H.; Li, Y.; Li, S.; Luo, Y.; Sun, Y.; Qiu, H.J. Generation and Efficacy Evaluation of a Recombinant Pseudorabies Virus Variant Expressing the E2 Protein of Classical Swine Fever Virus in Pigs. Clin. Vaccine Immunol. 2015, 22, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Tong, W.; Zheng, H.; Li, G.X.; Gao, F.; Shan, T.L.; Zhou, Y.J.; Yu, H.; Jiang, Y.F.; Yu, L.X.; Li, L.W.; et al. Recombinant pseudorabies virus expressing E2 of classical swine fever virus (CSFV) protects against both virulent pseudorabies virus and CSFV. Antiviral Res. 2020, 173, 104652. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, M.; Tang, D.; Wu, X.; Ren, X.; Pan, H.; Li, Y.; Ji, Q.; Luo, Y.; Fan, H.; et al. Better immune efficacy triggered by the inactivated gI/gE-deleted pseudorabies virus with the additional insertion of gC gene in mice and weaned pigs. Virus. Res. 2021, 296, 198353. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.H.; Wang, L.Q.; Fu, P.F.; Zheng, L.L.; Chen, H.Y.; Liu, F. Characterization of a recombinant pseudorabies virus expressing porcine parvovirus VP2 protein and porcine IL-6. Virol. J. 2020, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Jiang, F.F.; Su, L.; Wang, X.; Chen, Y.X.; Chen, H.C.; Liu, Z.F. Highly Efficient Base Editing in Viral Genome Based on Bacterial Artificial Chromosome Using a Cas9-Cytidine Deaminase Fused Protein. Virol. Sin. 2020, 35, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guo, S.; Guo, R.; Chen, S.; Zheng, Y.; Xu, M.; Wang, Z.; Liu, Y.; Wang, J. Identification of four insertion sites for foreign genes in a pseudorabies virus vector. BMC Vet. Res. 2021, 17, 190. [Google Scholar] [CrossRef]
- Zhou, M.; Abid, M.; Yin, H.; Wu, H.; Teklue, T.; Qiu, H.J.; Sun, Y. Establishment of an Efficient and Flexible Genetic Manipulation Platform Based on a Fosmid Library for Rapid Generation of Recombinant Pseudorabies Virus. Front. Microbiol. 2018, 9, 2132. [Google Scholar] [CrossRef]
- Qi, H.; Wu, H.; Abid, M.; Qiu, H.J.; Sun, Y. Establishment of a Fosmid Library for Pseudorabies Virus SC Strain and Application in Viral Neuronal Tracing. Front. Microbiol. 2020, 11, 1168. [Google Scholar] [CrossRef]
- Abid, M.; Teklue, T.; Li, Y.; Wu, H.; Wang, T.; Qiu, H.J.; Sun, Y. Generation and Immunogenicity of a Recombinant Pseudorabies Virus Co-Expressing Classical Swine Fever Virus E2 Protein and Porcine Circovirus Type 2 Capsid Protein Based on Fosmid Library Platform. Pathogens 2019, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.C.; Tang, Y.D.; Zhao, K.; Wang, T.Y.; Liu, J.T.; Gao, J.C.; Chang, X.B.; Cui, H.Y.; Tian, Z.J.; Cai, X.H.; et al. Highly Efficient CRISPR/Cas9-Mediated Homologous Recombination Promotes the Rapid Generation of Bacterial Artificial Chromosomes of Pseudorabies Virus. Front. Microbiol. 2016, 7, 2110. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.F.; Cheng, X.; Su, B.Q.; Duan, L.F.; Wang, C.R.; Niu, X.R.; Wang, J.; Yang, G.Y.; Chu, B.B. CRISPR/Cas9-based generation of a recombinant double-reporter pseudorabies virus and its characterization in vitro and in vivo. Vet. Res. 2021, 52, 95. [Google Scholar] [CrossRef]
- Wu, X.; Wu, H.; Wang, H.; Luo, L.; Wang, J.; Wu, B.; He, Q.; Cao, G.; Lei, Y.; Chen, X.; et al. A new strategy to develop pseudorabies virus-based bivalent vaccine with high immunogenicity of porcine circovirus type 2. Vet. Microbiol. 2021, 255, 109022. [Google Scholar] [CrossRef]
- Hübner, A.; Keil, G.M.; Kabuuka, T.; Mettenleiter, T.C.; Fuchs, W. Efficient transgene insertion in a pseudorabies virus vector by CRISPR/Cas9 and marker rescue-enforced recombination. J. Virol. Methods 2018, 262, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Hu, Q.; Chen, S.; Zhou, T.; Yu, X.; Ma, H.; H Ghonaim, A.; Wu, H.; Sun, Q.; Fan, S.; et al. Recombinant Pseudorabies Virus with TK/gE Gene Deletion and Flt3L Co-Expression Enhances the Innate and Adaptive Immune Response via Activating Dendritic Cells. Viruses 2021, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.J.; Tian, Z.J.; Tong, G.Z.; Zhou, Y.J.; Ni, J.Q.; Luo, Y.Z.; Cai, X.H. Protective immunity induced by a recombinant pseudorabies virus expressing the GP5 of porcine reproductive and respiratory syndrome virus in piglets. Vet. Immunol. Immunopathol. 2005, 106, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.J.; Zhou, G.H.; Zheng, B.L.; Qiu, H.J.; Ni, J.Q.; Yang, H.L.; Yin, X.N.; Hu, S.P.; Tong, G.Z. A recombinant pseudorabies virus encoding the HA gene from H3N2 subtype swine influenza virus protects mice from virulent challenge. Vet. Immunol. Immunopathol. 2006, 111, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Klingbeil, K.; Lange, E.; Teifke, J.P.; Mettenleiter, T.C.; Fuchs, W. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus. J. Gen. Virol. 2014, 95, 948–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, S.J.; Ryan, P. The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant. J. Virol. 1996, 70, 1355–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Lv, L.; Sun, H.; Li, S.; Fan, H.; Wang, X.; Bai, J.; Jiang, P. Identification of linear B cell epitope on gB, gC, and gE proteins of porcine pseudorabies virus using monoclonal antibodies. Vet. Microbiol. 2019, 234, 83–91. [Google Scholar] [CrossRef]
- Waskow, C.; Liu, K.; Darrasse-Jèze, G.; Guermonprez, P.; Ginhoux, F.; Merad, M.; Shengelia, T.; Yao, K.; Nussenzweig, M. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 2008, 9, 676–683. [Google Scholar] [CrossRef]
- Yuan, X.; Qin, X.; Wang, D.; Zhang, Z.; Tang, X.; Gao, X.; Chen, W.; Sun, L. Mesenchymal stem cell therapy induces FLT3L and CD1c (+) dendritic cells in systemic lupus erythematosus patients. Nat. Commun. 2019, 10, 2498. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Wang, H.; Wu, H.; Yang, F.; Tripp, R.A.; Hogan, R.J.; Fu, Z.F. Rabies virus expressing dendritic cell-activating molecules enhances the innate and adaptive immune response to vaccination. J. Virol. 2011, 85, 1634–1644. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Huang, J.; Wang, Q.; He, Y.; Xu, Z.; Xiang, M.; Wu, B.; Chen, H. Recombinant pseudorabies virus expressing P12A and 3C of FMDV can partially protect piglets against FMDV challenge. Res. Vet. Sci. 2011, 91, 90–94. [Google Scholar] [CrossRef] [PubMed]
Approaches | Advantages | Disadvantages |
---|---|---|
Homologous recombination (HR) | The procedure is relatively easy; Site-specific insertion of foreign genes. | Construction of transfer vector is time-consuming and labor-intensive; The efficiency of homologous recombination is low; The purification of viruses is time-consuming. |
Bacterial Artificial Chromosome (BAC) | More efficient than homologous recombination; Cloning the entire genome into a plasmid facilitates genome modification. | Generation of recombinant BAC construct is time-consuming; The PRV genome is easily broken, and once the genome is broken, infectivity is lost and a recombinant virus cannot be obtained. |
Fosmid library | Generation of the fosmid library is more efficient; High structural stability. | The fracted genome was inserted into 5-6 fosmids; 5-6 fosmids need to be co-transfected. |
CRISPR/Cas9 system | Highly efficient; Simultaneous targeting of multiple sites. | It is necessary to construct homologous arms; Off-target effects usually occurred; This method also requires the purification of the virus. |
Vector | Exogenous Genes | Insertion Sites | Promoters | Modification of PRV | Immunization Dose/Route | Animal Model | Efficacy | Reference |
---|---|---|---|---|---|---|---|---|
Bartha-K61 | respiratory syndrome virus (PRRSV) GP5 | UL23 (TK) site | CMV promoter | homologous recombination (HR) | 10 7.0 pla- que-forming unit (PFU)/ intranasally (i.n.) and intramuscularly (i.m.) | 4-week-old piglet | confer significant protection against clinical disease and reduce pathogenic lesions induced by PRRSV challenge in vaccinated pigs | [63] |
Bartha-K61 | hemagglutinin (HA) gene of swine influenza virus (SIV) | not mentioned | SV40 promoter | HR | 10 5.0 PFU/i.n. | 8-week-old mice | protect mice from heterologous virulent challenge | [64] |
Bartha-K61 | HA of swine-origin H1N1 virus. | gG gene locus | MCMV promoter | bacterial artificial chromosome (BAC) technology-mediated HR | 2×10 7.0 PFU/i.n. | 7-week-old pigs | protected pig from clinical signs after challenge with a related swine-origin H1N1 influenza A virus | [65] |
Bartha-K61 | gD and gC genes of the AH02LA strain | gD and gC gene locus | BAC technology and HR | 10 6.0 TCID 50 / i.m | 4-week-old piglet | PRV B-gD&gC S is safe for piglets, and provides complete clinical protection against a pseudorabies variant (AH02LA) challenge | [22] | |
Bartha-K61 | open reading frames E199L, CP204L (p30) and KP177R (p22) of African swine fever virus. | gG gene locus | CAG promoters | BAC technology and CRISPR/Cas9 | [61] | |||
PRV variant (HN1201strain) | enhanced green fluorescent protein (EGFP) and firefly luciferase | between gE partial and gI partial | EGFP expression was under the control of the CAG promoter (a synthetic promoter composed of a CMV enhancer and chicken β-actin promoter); the firefly luciferase expression cassette was under the control of the SV40 promoter | CRISPR/Cas9 | [59] | |||
PRV variant (AH strain) | glycoprotein C | between gD and US9 | CMV promoter | HR | 10 7.0 TCID 50 / i.m (piglet); 10 5.0 TCID 50 / i.m (mice) | 4-week-old piglet; 4-week- old SPF Kunming mice | additional insertion of gC gene could enhance the protective efficacy in PRV gI/gE-deleted vaccine in pigs | [51] |
PRV variant (HNX strain) | cytokine Fms-related tyrosine kinase 3 ligand (Flt3L) | after gD | gD promoter | CRISPR/Cas9 and Cre/Lox systems | 10 5.0 TCID 50 / i.m | Six-week-old female BALB/c mice | Flt3L can activate DCs and enhance protective immune responses of recombinant pseudorabies virus with TK/gE gene deletion | [62] |
PRV variant (TJ strain) | classical swine fever virus (CSFV) E2 glycoprotein and capsid (Cap) protein of porcine circovirus type 2 (PCV2) | E2 expression cassette was inserted after US9; Cap was fused with gG and co-expressed with gG | E2 expression was under the control of CMV promoter; Cap was under the control of the gG promoter | fosmid library platform and Red/ET systems | 10 7, 10 6, and 10 5 TCID 50 / i.m (rabit); 10 6.0 TCID 50 / i.m (pig) | 6-week-old rabbits; 6-week-old pigs | rPRVTJ-delgE/gI/TK-E2-Cap elicited detectable anti-PRV antibodies, but not anti-PCV2 or anti-CSFV antibodies | [57] |
PRV variant (AH02LA strain) | S gene of a Porcine epidemic diarrhea virus (PEDV) variant | UL11-10, UL35-36, UL46-27 | MCMV promoter | BAC technology and En Passant method | [54] | |||
PRV variant (JS-2012) | CSFV E2 glycoprotein | between the gG and gD genes | not mentioned | HR | 10 5.0 TCID 50 / i.m | 3-week-old piglets | induce the production of Abs to the gE protein of PRV or to the CSFV proteins other than E2 | [50] |
PRV variant (TJ strain) | CSFV E2 glycoprotein | between gE partial and gI partial | CMV promoter | HR | 10 4, 10 5, and 106 TCID 50 / i.m | 6-week-old piglets | provided complete protection against the lethal challenge with either the PRV TJ strain or the CSFV Shimen strain | [49] |
PRV variant (HNX strain) | tandem repeats of porcine circovirus type 2 (PCV2) Capprotein gene ORF2 | gE and gG sites | CRISPR/Cas9 and HR | 10 5.8 TCID 50/ i.m | 4-week-old female BALB/c mice | high titer of specific antibodies for PRV and neutralized antibodies for PCV2 were detected | [60] | |
PRV (Fa strain) | CD2v of African swine fever virus | PRV UL23 (TK) site | CMV promoter | CRISPR/Cas9 and HR | 10 5.0 TCID 50 / i.m | 5-week-old SPF mice (ICR) | PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain has strong immunogenicity | [12] |
PRV | P12A and 3C of Foot-and-mouth disease virus (FMDV) | between gE partial and gI partial | CMV promoter | HR | 10 6.0 TCID 50 / i.m | 6-week-old large white piglets | PRV-P12A3C induced a high level of neutralizing antibody and FMDV-specific lymphocytes. | [71] |
PRV variant (TJ strain) | EGFP | fused with UL35 | UL35 promoter | fosmid library platform and Red/ET | [55] | |||
PRV (SC strain) | EGFP | fused with UL36 | UL36 promoter | fosmid library platform and Red/ET | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Abid, M.; Cao, S.; Zhu, S. Recombinant Pseudorabies Virus Usage in Vaccine Development against Swine Infectious Disease. Viruses 2023, 15, 370. https://doi.org/10.3390/v15020370
Zhou M, Abid M, Cao S, Zhu S. Recombinant Pseudorabies Virus Usage in Vaccine Development against Swine Infectious Disease. Viruses. 2023; 15(2):370. https://doi.org/10.3390/v15020370
Chicago/Turabian StyleZhou, Mo, Muhammad Abid, Shinuo Cao, and Shanyuan Zhu. 2023. "Recombinant Pseudorabies Virus Usage in Vaccine Development against Swine Infectious Disease" Viruses 15, no. 2: 370. https://doi.org/10.3390/v15020370
APA StyleZhou, M., Abid, M., Cao, S., & Zhu, S. (2023). Recombinant Pseudorabies Virus Usage in Vaccine Development against Swine Infectious Disease. Viruses, 15(2), 370. https://doi.org/10.3390/v15020370