Physiological Corticosterone Attenuates gp120-Mediated Microglial Activation and Is Associated with Reduced Anxiety-Like Behavior in gp120-Expressing Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Determination of Microglial Activation
2.2. Subjects and Housing
2.3. Determination of Estrous Cycle Phase
2.4. In Vivo Behavioral Assessment
2.5. Circulating Steroid Assessment
2.6. Statistical Analyses
3. Results
3.1. GP120 Activates, and Physiological Corticosterone Quiesces, Microglia In Vitro
3.2. Duration of Exposure to gp120 and Sex Influence Anxiety-Like Behavior
3.3. Elevated Corticosterone Was Associated with a Decreased Anxiety-Like Response to gp120
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joint United Nations Programme on HIV/AIDS. Global HIV & AIDS Statistics—2020 Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 27 August 2022).
- Antinori, A.; Arendt, G.; Becker, J.T.; Brew, B.J.; Byrd, D.A.; Cherner, M.; Clifford, D.B.; Cinque, P.; Epstein, L.G.; Goodkin, K.; et al. Updated Research Nosology for HIV-Associated Neurocognitive Disorders. Neurology 2007, 69, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Saylor, D.; Dickens, A.M.; Sacktor, N.; Haughey, N.; Slusher, B.; Pletnikov, M.; Mankowski, J.L.; Brown, A.; Volsky, D.J.; McArthur, J.C. HIV-Associated Neurocognitive Disorder--Pathogenesis and Prospects for Treatment. Nat. Rev. Neurol. 2016, 12, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Maschke, M. Incidence and Prevalence of Neurological Disorders Associated with HIV since the Introduction of Highly Active Antiretroviral Therapy (HAART). J. Neurol. Neurosurg. Psychiatry 2000, 69, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Bing, E.G.; Burnam, M.A.; Longshore, D.; Fleishman, J.A.; Sherbourne, C.D.; London, A.S.; Turner, B.J.; Eggan, F.; Beckman, R.; Vitiello, B.; et al. Psychiatric Disorders and Drug Use among Human Immunodeficiency Virus-Infected Adults in the United States. Arch. Gen. Psychiatry 2001, 58, 721–728. [Google Scholar] [CrossRef]
- Owe-Larsson, M.; Säll, L.; Salamon, E.; Allgulander, C. HIV Infection and Psychiatric Illness. Afr. J. Psychiatry 2009, 12, 115–128. [Google Scholar] [CrossRef]
- Blumenthal, R.; Durell, S.; Viard, M. HIV Entry and Envelope Glycoprotein-Mediated Fusion. J. Biol. Chem. 2012, 287, 40841–40849. [Google Scholar] [CrossRef]
- Jadhav, S.; Nema, V. HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediat. Inflamm. 2021, 2021, 1267041. [Google Scholar] [CrossRef]
- Yoon, V.; Fridkis-Hareli, M.; Munisamy, S.; Lee, J.; Anastasiades, D.; Stevceva, L. The GP120 Molecule of HIV-1 and Its Interaction with T Cells. Curr. Med. Chem. 2010, 17, 741–749. [Google Scholar] [CrossRef]
- Arabatzis, T.J.; Wakley, A.A.; McLane, V.D.; Canonico, D.; Cao, L. Effects of HIV Gp120 on Neuroinflammation in Immunodeficient vs. Immunocompetent States. J. Neuroimmune Pharmacol. 2020, 16, 437–453. [Google Scholar] [CrossRef]
- Bren, G.D.; Trushin, S.A.; Whitman, J.; Shepard, B.; Badley, A.D. HIV Gp120 Induces, NF-ΚB Dependent, HIV Replication That Requires Procaspase 8. PLoS ONE 2009, 4, e4875. [Google Scholar] [CrossRef] [Green Version]
- Shatrov, V.A.; Ratter, F.; Gruber, A.; Dröoge, W.; Lehmann, V. HIV Type 1 Glycoprotein 120 Amplifies Tumor Necrosis Factor-Induced NF-KB Activation in Jurkat Cells. AIDS Res. Hum. Retrovir. 1996, 12, 1209–1216. [Google Scholar] [CrossRef]
- Frye, C.A.; Paris, J.J.; Osborne, D.M.; Campbell, J.C.; Kippin, T.E. Prenatal Stress Alters Progestogens to Mediate Susceptibility to Sex-Typical, Stress-Sensitive Disorders, such as Drug Abuse: A Review. Front. Psychiatry 2011, 2, 52. [Google Scholar] [CrossRef] [PubMed]
- van Bodegom, M.; Homberg, J.R.; Henckens, M.J.A.G. Modulation of the Hypothalamic-Pituitary-Adrenal Axis by Early Life Stress Exposure. Front. Cell. Neurosci. 2017, 11, 87. [Google Scholar] [CrossRef]
- Afreen, B.; Khan, K.A.; Riaz, A. Adrenal Insufficiency in Pakistani Hiv Infected Patients. J. Ayub Med. Coll. Abbottabad JAMC 2017, 29, 428–431. [Google Scholar] [PubMed]
- Akase, I.E.; Habib, A.G.; Bakari, A.G.; Muhammad, H.; Gezawa, I.; Nashabaru, I.; Iliyasu, G.; Mohammed, A.A. Occurrence of Hypocortisolism in HIV Patients: Is the Picture Changing? Ghana Med. J. 2018, 52, 147–152. [Google Scholar] [CrossRef]
- Raber, J.; Toggas, S.M.; Lee, S.; Bloom, F.E.; Epstein, C.J.; Mucke, L. Central Nervous System Expression of HIV-1 Gp120 Activates the Hypothalamic-Pituitary-Adrenal Axis: Evidence for Involvement of NMDA Receptors and Nitric Oxide Synthase. Virology 1996, 226, 362–373. [Google Scholar] [CrossRef]
- Barnes, P.J. Anti-Inflammatory Actions of Glucocorticoids: Molecular Mechanisms. Clin. Sci. 1998, 94, 557–572. [Google Scholar] [CrossRef]
- Coutinho, A.E.; Chapman, K.E. The Anti-Inflammatory and Immunosuppressive Effects of Glucocorticoids, Recent Developments and Mechanistic Insights. Mol. Cell. Endocrinol. 2011, 335, 2–13. [Google Scholar] [CrossRef]
- Gjerstad, J.K.; Lightman, S.L.; Spiga, F. Role of Glucocorticoid Negative Feedback in the Regulation of HPA Axis Pulsatility. Stress 2018, 21, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Hannibal, K.E.; Bishop, M.D. Chronic Stress, Cortisol Dysfunction, and Pain: A Psychoneuroendocrine Rationale for Stress Management in Pain Rehabilitation. Phys. Ther. 2014, 94, 1816–1825. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The Role of the Hypothalamic-Pituitary-Adrenal Axis in Neuroendocrine Responses to Stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Brooke, S. Glucocorticoid Exacerbation of Gp120 Neurotoxicity: Role of Microglia. Exp. Neurol. 2002, 177, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Paris, J.J.; Liere, P.; Kim, S.; Mahdi, F.; Buchanan, M.E.; Nass, S.R.; Qrareya, A.N.; Salahuddin, M.F.; Pianos, A.; Fernandez, N.; et al. Pregnane Steroidogenesis Is Altered by HIV-1 Tat and Morphine: Physiological Allopregnanolone Is Protective against Neurotoxic and Psychomotor Effects. Neurobiol. Stress 2020, 12, 100211. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.E.; Singer, B.; Wilkinson, C.W.; Bruce, M. Gender Differences in Age-Related Changes in HPA Axis Reactivity. Psychoneuroendocrinology 2001, 26, 225–240. [Google Scholar] [CrossRef]
- Podhaizer, E.M.; Zou, S.; Fitting, S.; Samano, K.L.; El-Hage, N.; Knapp, P.E.; Hauser, K.F. Morphine and Gp120 Toxic Interactions in Striatal Neurons Are Dependent on HIV-1 Strain. J. Neuroimmune Pharmacol. 2011, 7, 877–891. [Google Scholar] [CrossRef]
- Pomin, V.H.; Mahdi, F.; Jin, W.; Zhang, F.; Linhardt, R.J.; Paris, J.J. Red Algal Sulfated Galactan Binds and Protects Neural Cells from HIV-1 Gp120 and Tat. Pharmaceuticals 2021, 14, 714. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Y.; Qiao, L.; Sun, Y.; Ding, W.; Zhang, H.; Li, N.; Chen, D. Sigma-1 Receptor Agonists Provide Neuroprotection against Gp120 via a Change in Bcl-2 Expression in Mouse Neuronal Cultures. Brain Res. 2012, 1431, 13–22. [Google Scholar] [CrossRef]
- Zou, S.; El-Hage, N.; Podhaizer, E.M.; Knapp, P.E.; Hauser, K.F. PTEN Gene Silencing Prevents HIV-1 Gp120IIIB-Induced Degeneration of Striatal Neurons. J. Neuro Virol. 2011, 17, 41–49. [Google Scholar] [CrossRef]
- Davis, E.J.; Foster, T.D.; Thomas, W.E. Cellular Forms and Functions of Brain Microglia. Brain Res. Bull. 1994, 34, 73–78. [Google Scholar] [CrossRef]
- Yoichi, K. Activated and phagocytic microglia. In Cerebral Ischemia: Molecular and Cellular Pathophysiology; Walz, W., Ed.; Humana Press: Totowa, NJ, USA, 1999; pp. 251–271. [Google Scholar]
- Paris, J.J.; Singh, H.D.; Carey, A.N.; McLaughlin, J.P. Exposure to HIV-1 Tat in Brain Impairs Sensorimotor Gating and Activates Microglia in Limbic and Extralimbic Brain Regions of Male Mice. Behav. Brain Res. 2015, 291, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Toggas, S.M.; Masliah, E.; Rockenstein, E.M.; Rail, G.F.; Abraham, C.R.; Mucke, L. Central Nervous System Damage Produced by Expression of the HIV-1 Coat Protein Gpl20 in Transgenic Mice. Nature 1994, 367, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Paris, J.J.; Fenwick, J.; McLaughlin, J.P. Progesterone Protects Normative Anxiety-like Responding among Ovariectomized Female Mice That Conditionally Express the HIV-1 Regulatory Protein, Tat, in the CNS. Horm. Behav. 2014, 65, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Scharfman, H.E.; MacLusky, N.J. The Influence of Gonadal Hormones on Neuronal Excitability, Seizures, and Epilepsy in the Female. Epilepsia 2006, 47, 1423–1440. [Google Scholar] [CrossRef] [PubMed]
- Frye, C.A.; Paris, J.J.; Rhodes, M.E. Engaging in Paced Mating, but Neither Exploratory, Anti-Anxiety, nor Social Behavior, Increases 5α-Reduced Progestin Concentrations in Midbrain, Hippocampus, Striatum, and Cortex. Reproduction 2007, 133, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.; Ballachey, E.L. A study of the rat’s behavior in a field. A contribution to method in comparative psychology. Univ. Calif. Publ. Psychol. 1932, 6, 1–12. [Google Scholar]
- Paris, J.J.; Zou, S.; Hahn, Y.K.; Knapp, P.E.; Hauser, K.F. 5α-Reduced Progestogens Ameliorate Mood-Related Behavioral Pathology, Neurotoxicity, and Microgliosis Associated with Exposure to HIV-1 Tat. Brain Behav. Immun. 2016, 55, 202–214. [Google Scholar] [CrossRef]
- Salahuddin, M.F.; Qrareya, A.N.; Mahdi, F.; Jackson, D.; Foster, M.; Vujanovic, T.; Box, J.G.; Paris, J.J. Combined HIV-1 Tat and Oxycodone Activate the Hypothalamic-Pituitary-Adrenal and -Gonadal Axes and Promote Psychomotor, Affective, and Cognitive Dysfunction in Female Mice. Horm. Behav. 2020, 119, 104649. [Google Scholar] [CrossRef]
- Takao, K.; Miyakawa, T. Light/Dark Transition Test for Mice. JoVE. J. Vis. Exp. 2006, 1, e104. [Google Scholar] [CrossRef]
- File, S.E. The Interplay of Learning and Anxiety in the Elevated Plus-Maze. Behav. Brain Res. 1993, 58, 199–202. [Google Scholar] [CrossRef]
- McLaughlin, J.P.; Paris, J.J.; Mintzopoulos, D.; Hymel, K.A.; Kim, J.K.; Cirino, T.J.; Gillis, T.E.; Eans, S.O.; Vitaliano, G.D.; Medina, J.M.; et al. Conditional Human Immunodeficiency Virus Transactivator of Transcription Protein Expression Induces Depression-like Effects and Oxidative Stress. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 599–609. [Google Scholar] [CrossRef]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The Tail Suspension Test: A New Method for Screening Antidepressants in Mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.-Y.; Wilson, B.C.; McMillian, M.K.; Bing, G.; Hudson, P.M.; Hong, J.-S. The Effects of the HIV-1 Envelope Protein Gp120 on the Production of Nitric Oxide and Proinflammatory Cytokines in Mixed Glial Cell Cultures. Cell. Immunol. 1996, 172, 77–83. [Google Scholar] [CrossRef]
- Salahuddin, M.F.; Qrareya, A.N.; Mahdi, F.; Moss, E.; Akins, N.S.; Li, J.; Le, H.V.; Paris, J.J. Allopregnanolone and NeuroHIV: Potential Benefits of Neuroendocrine Modulation in the Era of Antiretroviral Therapy. J. Neuroendocrinol. 2021, 34, e13047. [Google Scholar] [CrossRef] [PubMed]
- Bachis, A.; Forcelli, P.; Masliah, E.; Campbell, L.; Mocchetti, I. Expression of Gp120 in Mice Evokes Anxiety Behavior: Co-Occurrence with Increased Dendritic Spines and Brain-Derived Neurotrophic Factor in the Amygdala. Brain Behav. Immun. 2016, 54, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Guindon, J.; Blanton, H.; Brauman, S.; Donckels, K.; Narasimhan, M.; Benamar, K. Sex Differences in a Rodent Model of HIV-1-Associated Neuropathic Pain. Int. J. Mol. Sci. 2019, 20, 1196. [Google Scholar] [CrossRef] [PubMed]
- D’Hooge, R.; Franck, F.; Mucke, L.; De Deyn, P.P. Age-Related Behavioural Deficits in Transgenic Mice Expressing the HIV-1 Coat Protein Gp120. Eur. J. Neurosci. 1999, 11, 4398–4402. [Google Scholar] [CrossRef]
- Hoefer, M.M.; Sanchez, A.B.; Maung, R.; de Rozieres, C.M.; Catalan, I.C.; Dowling, C.C.; Thaney, V.E.; Piña-Crespo, J.; Zhang, D.; Roberts, A.J.; et al. Combination of Methamphetamine and HIV-1 Gp120 Causes Distinct Long-Term Alterations of Behavior, Gene Expression, and Injury in the Central Nervous System. Exp. Neurol. 2015, 263, 221–234. [Google Scholar] [CrossRef]
- Maung, R.; Hoefer, M.M.; Sanchez, A.B.; Sejbuk, N.E.; Medders, K.E.; Desai, M.K.; Catalan, I.C.; Dowling, C.C.; de Rozieres, C.M.; Garden, G.A.; et al. CCR5 Knockout Prevents Neuronal Injury and Behavioral Impairment Induced in a Transgenic Mouse Model by a CXCR4-Using HIV-1 Glycoprotein 120. J. Immunol. 2014, 193, 1895–1910. [Google Scholar] [CrossRef]
- Henry, B.L.; Geyer, M.A.; Buell, M.R.; Perry, W.; Young, J.W.; Minassian, A. Prepulse Inhibition in HIV-1 Gp120 Transgenic Mice after Withdrawal from Chronic Methamphetamine. Behav. Pharmacol. 2014, 25, 12–22. [Google Scholar] [CrossRef]
- González-González, J.G.; de la Garza-Hernández, N.E.; Garza-Morán, R.A.; Rivera-Morales, I.M.; Montes-Villarreal, J.; Valenzuela-Rendón, J.; Villarreal-Pérez, J.Z. Prevalence of abnormal adrenocortical function in human immunodeficiency virus infection by low-dose cosyntropin test. Int. J. STD AIDS 2001, 12, 804–810. [Google Scholar] [CrossRef]
- Ibarra, S. Adrenal Function in the Human Immunodeficiency Virus–Infected Patient. Arch. Intern. Med. 2002, 162, 1095. [Google Scholar] [CrossRef] [Green Version]
- Marik, P.E.; Kiminyo, K.; Zaloga, G.P. Adrenal Insufficiency in Critically Ill Patients with Human Immunodeficiency Virus. Crit. Care Med. 2002, 30, 1267–1273. [Google Scholar] [CrossRef]
- Prasanthai, V.; Sunthornyothin, S.; Phowthongkum, P.; Suankratay, C. Prevalence of adrenal insufficiency in critically ill patients with AIDS. J. Med. Assoc. Thai. 2007, 90, 1768–1774. [Google Scholar] [PubMed]
- Dutta, D.; Sharma, N.; Sharma, L.; Anand, A.; Gadpayle, A.; Gaurav, K.; Mukherjee, S.; Kulshreshtha, B. Presence, Patterns & Predictors of Hypocortisolism in Patients with HIV Infection in India. Indian J. Med. Res. 2018, 147, 142. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Zapanti, E.D. Hypothalamic-Pituitary-Adrenal Axis in HIV Infection and Disease. Endocrinol. Metab. Clin. N. Am. 2014, 43, 791–806. [Google Scholar] [CrossRef] [PubMed]
- Kino, T.; Gragerov, A.; Kopp, J.B.; Stauber, R.H.; Pavlakis, G.N.; Chrousos, G.P. The HIV-1 Virion-Associated Protein Vpr Is a Coactivator of the Human Glucocorticoid Receptor. J. Exp. Med. 1999, 189, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Kino, T.; Chrousos, G.P. Human Immunodeficiency Virus Type-1 Accessory Protein Vpr: A Causative Agent of the AIDS-Related Insulin Resistance/Lipodystrophy Syndrome? Ann. N. Y. Acad. Sci. 2004, 1024, 153–167. [Google Scholar] [CrossRef]
- Salahuddin, M.F.; Mahdi, F.; Sulochana, S.P.; Paris, J.J. HIV-1 Tat Protein Promotes Neuroendocrine Dysfunction Concurrent with the Potentiation of Oxycodone’s Psychomotor Effects in Female Mice. Viruses 2021, 13, 813. [Google Scholar] [CrossRef]
- Del Sordo Castillo, L.; Ruiz-Pérez, I.; de Olry Labry Lima, A. Biological, psychosocial, therapeutic and quality of life inequalities between HIV-positive men and women—A review from a gender perspective. AIDS Rev. 2010, 12, 113–120. [Google Scholar]
- Iswari, S.; Colas, A.E.; Karavolas, H.J. Binding of 5α-Dihydroprogesterone and Other Progestins to Female Rat Anterior Pituitary Nuclear Extracts. Steroids 1986, 47, 189–203. [Google Scholar] [CrossRef]
- Baulieu, E.E.; Robel, P.; Schumacher, M. Neurosteroids: Beginning of the Story. Int. Rev. Neurobiol. 2001, 46, 1–32. [Google Scholar] [CrossRef]
- Patchev, V. The Neurosteroid Tetrahydroprogesterone Attenuates the Endocrine Response to Stress and Exerts Glucocorticoid-like Effects on Vasopressin Gene Transcription in the Rat Hypothalamus. Neuropsychopharmacology 1996, 15, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Barbaccia, M.L.; Serra, M.; Purdy, R.H.; Biggio, G. Stress and Neuroactive Steroids. Int. Rev. Neurobiol. 2001, 46, 243–272. [Google Scholar] [CrossRef]
- Biggio, G.; Pisu, M.G.; Biggio, F.; Serra, M. Allopregnanolone Modulation of HPA Axis Function in the Adult Rat. Psychopharmacology 2014, 231, 3437–3444. [Google Scholar] [CrossRef] [PubMed]
- Belelli, D.; Phillips, G.D.; Atack, J.R.; Lambert, J.J. Relating Neurosteroid Modulation of Inhibitory Neurotransmission to Behaviour. J. Neuroendocrinol. 2021, 34, e13045. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.A.; Nakayama, A.Y.; Brooke, S.M.; Sapolsky, R.M. Glucocorticoid Modulation of Gp120-Induced Effects on Calcium-Dependent Degenerative Events in Primary Hippocampal and Cortical Cultures. Exp. Neurol. 1999, 158, 164–170. [Google Scholar] [CrossRef]
- Bellavance, M.-A.; Rivest, S. The HPA—Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Front. Immunol. 2014, 5, 136. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.N.; Pearce, B.D.; Biron, C.A.; Miller, A.H. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol. 2005, 18, 41–78. [Google Scholar] [CrossRef]
- Baschant, U.; Tuckermann, J. The Role of the Glucocorticoid Receptor in Inflammation and Immunity. J. Steroid Biochem. Mol. Biol. 2010, 120, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Na, K.-S.; Myint, A.-M.; Leonard, B.E. The Role of Pro-Inflammatory Cytokines in Neuroinflammation, Neurogenesis and the Neuroendocrine System in Major Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 64, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Levast, B.; Barblu, L.; Coutu, M.; Prévost, J.; Brassard, N.; Peres, A.; Stegen, C.; Madrenas, J.; Kaufmann, D.E.; Finzi, A. HIV-1 Gp120 Envelope Glycoprotein Determinants for Cytokine Burst in Human Monocytes. PLoS ONE 2017, 12, e0174550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Proestrous | Diestrous | Male | |||||
---|---|---|---|---|---|---|---|
gp120(−) | gp120(+) | gp120(−) | gp120(+) | gp120(−) | gp120(+) | ||
Open Field (5 min.) | Mean speed (m/s) | 0.06 ± 0.003 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.05 ± 0.004 | 0.06 ± 0.01 | 0.06 ± 0.01 |
Rearing Number | 59 ± 7 ‡ | 61 ± 9 ‡ | 80 ± 15 | 53 ± 3 | 72 ± 5 | 91 ± 7 | |
Rearing time active (s) | 49 ± 6 † | 41 ± 5 † | 59 ± 8 † | 43 ± 3 † | 92 ± 20 | 100 ± 19 | |
Center entries | 12 ± 2 | 12 ± 2 | 10 ± 2 † | 10 ± 2 † | 16 ± 3 | 16 ± 1 | |
Center time (s) | 17 ± 4 | 20 ± 3 | 11 ± 2 | 13 ± 3 | 17 ± 4 | 19 ± 2 | |
Latency to first entry (s) | 26 ± 6 | 74 ± 27 | 35 ± 11 | 33 ± 8 | 36 ± 17 | 24 ± 4 | |
Light-Dark Transition (5 min.) | Light zone entries | 8 ± 1 | 10 ± 2 | 9 ± 1 | 10 ± 2 | 12 ± 3 | 8 ± 2 |
Dark zone entries | 8 ± 1 | 8 ± 2 | 9 ± 1 | 10 ± 2 | 38 ± 28 | 8 ± 2 | |
Light zone time (s) | 46 ± 7 * | 50 ± 10 * | 100 ± 23 | 133 ± 25 | 92 ± 22 | 138 ± 28 | |
Dark zone time (s) | 225 ± 27 * | 231 ± 16 * | 194 ± 22 | 162 ± 24 | 177 ± 29 | 157 ± 25 | |
% Light zone time (s) | 20 | 22 | 52 | 82 | 52 | 88 | |
Distance (cm) | 3 ± 0.7 | 4 ± 2 | 3 ± 0.5 | 3 ± 0.7 | 3 ± 0.8 | 4 ± 0.9 | |
Elevated Plus Maze (5 min.) | Closed arm entries | 10 ± 1 | 8 ± 1 | 12 ± 1 | 10 ± 1 | 10 ± 1 | 10 ± 1 |
Open arm time (s) | 11 ± 3 | 34 ± 15 | 39 ± 18 † | 21 ± 10 † | 6 ± 3 | 2 ± 1 | |
Closed arm time (s) | 249 ± 12 † | 227 ± 22 † | 244 ± 8 | 246 ± 10 | 267 ± 7 | 270 ± 30 |
gp120(−) | gp120(+) | |||||
---|---|---|---|---|---|---|
r | R2 | p Value | R | R2 | p Value | |
Center entries | −0.31 | 0.10 | n.s | −0.35 | 0.12 | 0.08 |
Rearing Number | −0.25 | 0.06 | n.s | −0.44 | 0.19 | 0.02 |
Rearing time active | −0.24 | 0.06 | n.s | −0.51 | 0.26 | 0.01 |
Speed | −0.03 | 0.00 | n.s | −0.50 | 0.25 | 0.01 |
Distance | −0.03 | 0.00 | n.s | −0.49 | 0.24 | 0.01 |
Light Zone Time | 0.51 | 0.26 | 0.007 | 0.38 | 0.15 | 0.05 |
Latency to Open Arm | 0.28 | 0.08 | n.s. | 0.66 | 0.44 | 0.0002 |
% Open Arm Entries | 0.23 | 0.05 | n.s. | 0.47 | 0.22 | 0.02 |
Time Immobile | −0.45 | 0.20 | 0.02 | 0.20 | 0.04 | n.s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moss, E.M.; Mahdi, F.; Worth, C.J.; Paris, J.J. Physiological Corticosterone Attenuates gp120-Mediated Microglial Activation and Is Associated with Reduced Anxiety-Like Behavior in gp120-Expressing Mice. Viruses 2023, 15, 424. https://doi.org/10.3390/v15020424
Moss EM, Mahdi F, Worth CJ, Paris JJ. Physiological Corticosterone Attenuates gp120-Mediated Microglial Activation and Is Associated with Reduced Anxiety-Like Behavior in gp120-Expressing Mice. Viruses. 2023; 15(2):424. https://doi.org/10.3390/v15020424
Chicago/Turabian StyleMoss, Emaya M., Fakhri Mahdi, Charlie J. Worth, and Jason J. Paris. 2023. "Physiological Corticosterone Attenuates gp120-Mediated Microglial Activation and Is Associated with Reduced Anxiety-Like Behavior in gp120-Expressing Mice" Viruses 15, no. 2: 424. https://doi.org/10.3390/v15020424
APA StyleMoss, E. M., Mahdi, F., Worth, C. J., & Paris, J. J. (2023). Physiological Corticosterone Attenuates gp120-Mediated Microglial Activation and Is Associated with Reduced Anxiety-Like Behavior in gp120-Expressing Mice. Viruses, 15(2), 424. https://doi.org/10.3390/v15020424