Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials
Abstract
:1. Introduction
2. The β-Globin Locus Control Region (LCR)
3. β-Globin Retroviral Vectors
4. Lentiviral Vectors
5. Lentiviral Vectors for Sickle Cell Disease & β-Thalassemia
5.1. Anti-Sickling γ-Globin Lentiviral Vectors
5.2. Anti-Sickling β-Globin Variants
5.3. Induction of HbF for Anti-Sickling Activity
6. Sickle Cell Disease and β-Thalassemia Gene Therapy Trials
7. Evolving Technologies to Further Improve Gene Therapy for β-Hemoglobinopathies
8. Use of Chromatin Insulators in LV
9. Gene Editing as an Alternative to LV
10. Bone Marrow Conditioning to Facilitate Engraftment of Gene-Modified HSC
11. Conclusions, Looking Forward
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grosveld, F.; van Assendelft, G.B.; Greaves, D.R.; Kollias, G. Position-Independent, High-Level Expression of the Human β-Globin Gene in Transgenic Mice. Cell 1987, 51, 975–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingram, V.M. Gene Mutations in Human Hæmoglobin: The Chemical Difference Between Normal and Sickle Cell Hæmoglobin. Nature 1957, 180, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.M.; Tilly, K.; Maniatis, T. Fine Structure Genetic Analysis of a β-Globin Promoter. Science 1986, 232, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Muirhead, H.; Cox, J.M.; Mazzarella, L.; Perutz, M.F. Structure and Function of Haemoglobin. J. Mol. Biol. 1967, 28, 117–150. [Google Scholar] [CrossRef]
- Bunn, H.F.; Forget, B.G.; Ranney, H.M. Human Hemoglobins; Saunders: Philadelphia, PA, USA, 1977. [Google Scholar]
- Costantini, F.; Lacy, E. Introduction of a Rabbit β-Globin Gene into the Mouse Germ Line. Nature 1981, 294, 92–94. [Google Scholar] [CrossRef]
- Watson, J.; Starman, A.W.; Bilello, F.P.; Watson, J.; Starman, A.W.; Bilello, F.P. The Significance Of The Paucity Of Sickle Cells In Newborn Negro Infants. Am. J. Med. Sci. 1948, 215, 419–423. [Google Scholar] [CrossRef]
- Powars, D.R.; Weiss, J.N.; Chan, L.S.; Schroeder, W.A. Is There a Threshold Level of Fetal Hemoglobin That Ameliorates Morbidity in Sickle Cell Anemia? Blood 1984, 63, 921–926. [Google Scholar] [CrossRef]
- Platt, O.S.; Brambilla, D.J.; Rosse, W.F.; Milner, P.F.; Castro, O.; Steinberg, M.H.; Klug, P.P. Mortality In Sickle Cell Disease—Life Expectancy and Risk Factors for Early Death. N. Engl. J. Med. 1994, 330, 1639–1644. [Google Scholar] [CrossRef]
- Groudine, M.; Papayannopoulou, T. Human Fetal to Adult Hemoglobin Switching: Changes in Chromatin Structure of the 8-Globin Gene Locus. Proc. Natl. Acad. Sci. USA 1983, 80, 7551–7555. [Google Scholar] [CrossRef] [Green Version]
- Tuan, D.; Solomon, W.; Li, Q. The Beta-like Globin Gene Domain in Human Erythroid Cells. Proc. Natl. Acad. Sci. USA 1985, 82, 6384–6388. [Google Scholar] [CrossRef] [Green Version]
- Forrester, W.C.; Takegawa, S.; Papayannopoulou, T.; Stamatoyannopoulos, G.; Groudine, M. Evidence for a Locus Activation Region: The Formation of Developmentally Stable Hypersensitive Sites in Globin-Expressing Hybrids. Nucl. Acids Res. 1987, 15, 10159–10177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donze, D.; Townes, T.M.; Bieker, J.J. Role of Erythroid Kruppel-like Factor in Human γ- to β-Globin Gene Switching. J. Biol. Chem. 1995, 270, 1955–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, I.J.; Bieker, J.J. A Novel, Erythroid Cell-Specific Murine Transcription Factor That Binds to the CACCC Element and Is Related to the Krüppel Family of Nuclear Proteins. Mol. Cell Biol. 1993, 13, 2776–2786. [Google Scholar] [CrossRef] [PubMed]
- Asano, H.; Stamatoyannopoulos, G. Activation of β-Globin Promoter by Erythroid Krüppel-Like Factor. Mol. Cell Biol. 1998, 18, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkins, A.C.; Sharpe, A.H.; Orkin, S.H. Lethal β-Thalassaemia in Mice Lacking the Erythroid CACCC-Transcription Factor EKLF. Nature 1995, 375, 318–322. [Google Scholar] [CrossRef]
- Nuez, B.; Michalovich, D.; Bygrave, A.; Ploemacher, R.; Grosveld, F. Defective Haematopoiesis in Fetal Liver Resulting from Inactivation of the EKLF Gene. Nature 1995, 375, 316–318. [Google Scholar] [CrossRef] [Green Version]
- Orkin, S.H. Cell-Specific Transcription and Cell Differentiation in the Erythroid Lineage. Curr. Opin. Cell Biol. 1990, 2, 1003–1012. [Google Scholar] [CrossRef]
- Evans, T.; Felsenfeld, G. The Erythroid-Specific Transcription Factor Eryf1: A New Finger Protein. Cell 1989, 58, 877–885. [Google Scholar] [CrossRef]
- Vakoc, C.R.; Letting, D.L.; Gheldof, N.; Sawado, T.; Bender, M.A.; Groudine, M.; Weiss, M.J.; Dekker, J.; Blobel, G.A. Proximity among Distant Regulatory Elements at the β-Globin Locus Requires GATA-1 and FOG-1. Mol. Cell 2005, 17, 453–462. [Google Scholar] [CrossRef]
- Shivdasani, R.A.; Mayer, E.L.; Orkin, S.H. Absence of Blood Formation in Mice Lacking the T-Cell Leukaemia Oncoprotein Tal-1/SCL. Nature 1995, 373, 432–434. [Google Scholar] [CrossRef]
- Robb, L.; Lyons, I.; Li, R.; Hartley, L.; Köntgen, F.; Harvey, R.P.; Metcalf, D.; Begley, C.G. Absence of Yolk Sac Hematopoiesis from Mice with a Targeted Disruption of the Scl Gene. Proc. Natl. Acad. Sci. USA 1995, 92, 7075–7079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pevny, L.; Simon, M.C.; Robertson, E.; Klein, W.H.; Tsai, S.-F.; D’Agati, V.; Orkin, S.H.; Costantini, F. Erythroid Differentiation in Chimaeric Mice Blocked by a Targeted Mutation in the Gene for Transcription Factor GATA-1. Nature 1991, 349, 257–260. [Google Scholar] [CrossRef]
- Weiss, M.J.; Keller, G.; Orkin, S.H. Novel Insights into Erythroid Development Revealed through in Vitro Differentiation of GATA-1 Embryonic Stem Cells. Genes Dev. 1994, 8, 1184–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, W.J.; Kim, Y.W.; Kang, Y.; Lee, J.; Dean, A.; Kim, A. The Hematopoietic Regulator TAL1 Is Required for Chromatin Looping between the β-Globin LCR and Human γ-Globin Genes to Activate Transcription. Nucleic Acids Res. 2014, 42, 4283–4293. [Google Scholar] [CrossRef] [PubMed]
- Wadman, I.A. The LIM-Only Protein Lmo2 Is a Bridging Molecule Assembling an Erythroid, DNA-Binding Complex Which Includes the TAL1, E47, GATA-1 and Ldb1/NLI Proteins. EMBO J. 1997, 16, 3145–3157. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-H.; Hou, C.; Dean, A. A Positive Role for NLI/Ldb1 in Long-Range β-Globin Locus Control Region Function. Mol. Cell 2007, 28, 810–822. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, M.H.; Forget, B.; Higgs, D.R.; Weatherall, D.J. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management; Cambridge University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Menzel, S.; Garner, C.; Gut, I.; Matsuda, F.; Yamaguchi, M.; Heath, S.; Foglio, M.; Zelenika, D.; Boland, A.; Rooks, H.; et al. A QTL Influencing F Cell Production Maps to a Gene Encoding a Zinc-Finger Protein on Chromosome 2p15. Nat. Genet. 2007, 39, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, V.G.; Menne, T.F.; Xu, J.; Akie, T.E.; Lettre, G.; Van Handel, B.; Mikkola, H.K.A.; Hirschhorn, J.N.; Cantor, A.B.; Orkin, S.H. Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor BCL11A. Science 2008, 322, 1839–1842. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, V.G.; Xu, J.; Ragoczy, T.; Ippolito, G.C.; Walkley, C.R.; Maika, S.D.; Fujiwara, Y.; Ito, M.; Groudine, M.; Bender, M.A.; et al. Developmental and Species-Divergent Globin Switching Are Driven by BCL11A. Nature 2009, 460, 1093–1097. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Sankaran, V.G.; Ni, M.; Menne, T.F.; Puram, R.V.; Kim, W.; Orkin, S.H. Transcriptional Silencing of γ-Globin by BCL11A Involves Long-Range Interactions and Cooperation with SOX6. Genes Dev. 2010, 24, 783–798. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Bauer, D.E.; Kerenyi, M.A.; Vo, T.D.; Hou, S.; Hsu, Y.-J.; Yao, H.; Trowbridge, J.J.; Mandel, G.; Orkin, S.H. Corepressor-Dependent Silencing of Fetal Hemoglobin Expression by BCL11A. Proc. Natl. Acad. Sci. USA 2013, 110, 6518–6523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roosjen, M.; McColl, B.; Kao, B.; Gearing, L.J.; Blewitt, M.E.; Vadolas, J. Transcriptional Regulators Myb and BCL11A Interplay with DNA Methyltransferase 1 in Developmental Silencing of Embryonic and Fetal Β-like Globin Genes. FASEB J. 2014, 28, 1610–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinjamur, D.S.; Yao, Q.; Cole, M.A.; McGuckin, C.; Ren, C.; Zeng, J.; Hossain, M.; Luk, K.; Wolfe, S.A.; Pinello, L.; et al. ZNF410 Represses Fetal Globin by Singular Control of CHD4. Nat. Genet. 2021, 53, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, E.; Zini, R.; Salati, S.; Tenedini, E.; Norfo, R.; Tagliafico, E.; Manfredini, R.; Ferrari, S. C-Myb Supports Erythropoiesis through the Transactivation of KLF1 and LMO2 Expression. Blood 2010, 116, e99–e110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pule, G.D.; Ngo Bitoungui, V.J.; Chetcha Chemegni, B.; Kengne, A.P.; Antonarakis, S.; Wonkam, A. Association between Variants at BCL11A Erythroid-Specific Enhancer and Fetal Hemoglobin Levels among Sickle Cell Disease Patients in Cameroon: Implications for Future Therapeutic Interventions. OMICS J. Integr. Biol. 2015, 19, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Creary, L.E.; Ulug, P.; Menzel, S.; McKenzie, C.A.; Hanchard, N.A.; Taylor, V.; Farrall, M.; Forrester, T.E.; Thein, S.L. Genetic Variation on Chromosome 6 Influences F Cell Levels in Healthy Individuals of African Descent and HbF Levels in Sickle Cell Patients. PLoS ONE 2009, 4, e4218. [Google Scholar] [CrossRef] [Green Version]
- Bradai, M.; Abad, M.T.; Pissard, S.; Lamraoui, F.; Skopinski, L.; de Montalembert, M. Hydroxyurea Can Eliminate Transfusion Requirements in Children with Severe β-Thalassemia. Blood 2003, 102, 1529–1530. [Google Scholar] [CrossRef]
- Steinberg, M.H.; Barton, F.; Castro, O.; Pegelow, C.H.; Ballas, S.K.; Kutlar, A.; Orringer, E.; Bellevue, R.; Olivieri, N.; Eckman, J.; et al. Effect of Hydroxyurea on Mortality and Morbidity in Adult Sickle Cell Anemia: Risks and Benefits Up to 9 Years of Treatment. JAMA 2003, 289, 1645. [Google Scholar] [CrossRef]
- Pule, G.D.; Mowla, S.; Novitzky, N.; Wonkam, A. Hydroxyurea Down-regulates BCL11A, KLF-1 and MYB through MiRNA-mediated Actions to Induce Γ-globin Expression: Implications for New Therapeutic Approaches of Sickle Cell Disease. Clin. Transl. Med. 2016, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.A.; Lemischka, I.R.; Nathan, D.G.; Mulligan, R.C. Introduction of New Genetic Material into Pluripotent Haematopoietic Stem Cells of the Mouse. Nature 1984, 310, 476–480. [Google Scholar] [CrossRef]
- Soriano, P.; Cone, R.D.; Mulligan, R.C.; Jaenisch, R. Tissue-Specific and Ectopic Expression of Genes Introduced into Transgenic Mice by Retroviruses. Science 1986, 234, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Dzierzak, E.A.; Papayannopoulou, T.; Mulligan, R.C. Lineage-Specific Expression of a Human β-Globin Gene in Murine Bone Marrow Transplant Recipients Reconstituted with Retrovirus-Transduced Stem Cells. Nature 1988, 331, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Wang, C.H.; Antoniou, M.; Grosveld, F.; Mulligan, R.C. Generation of a High-Titer Retroviral Vector Capable of Expressing High Levels of the Human Beta-Globin Gene. Proc. Natl. Acad. Sci. USA 1995, 92, 6728–6732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, H.; Blömer, U.; Takahashi, M.; Gage, F.H.; Verma, I.M. Development of a Self-Inactivating Lentivirus Vector. J. Virol. 1998, 72, 8150–8157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, C.; Rivella, S.; Callegari, J.; Heller, G.; Gaensler, K.M.L.; Luzzatto, L.; Sadelain, M. Therapeutic Haemoglobin Synthesis in β-Thalassaemic Mice Expressing Lentivirus-Encoded Human β-Globin. Nature 2000, 406, 82–86. [Google Scholar] [CrossRef]
- Boulad, F.; Maggio, A.; Wang, X.; Moi, P.; Acuto, S.; Kogel, F.; Takpradit, C.; Prockop, S.; Mansilla-Soto, J.; Cabriolu, A.; et al. Lentiviral Globin Gene Therapy with Reduced-Intensity Conditioning in Adults with β-Thalassemia: A Phase 1 Trial. Nat. Med. 2022, 28, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bakanay, S.M.; Dainer, E.; Clair, B.; Adekile, A.; Daitch, L.; Wells, L.; Holley, L.; Smith, D.; Kutlar, A. Mortality in Sickle Cell Patients on Hydroxyurea Therapy. Blood 2005, 105, 545–547. [Google Scholar] [CrossRef] [Green Version]
- Kohli-Kumar, M.; Marandi, H.; Keller, M.A.; Guertin, K.; Hvizdala, E. Use of Hydroxyurea and Recombinant Erythropoietin In Management of Homozygous Β0 Thalassemia. J. Pediatr. Hematol. Oncol. 2002, 24, 777–778. [Google Scholar] [CrossRef]
- Moussavi, F.; Haddad-Deylami, H.; Alebouyeh, M.; Vossough, P. Hydroxyurea in the Treatment of Major β-Thalassemia and Importance of Genetic Screening. Ann. Hematol. 2004, 83, 430–433. [Google Scholar] [CrossRef]
- Persons, D.A.; Hargrove, P.W.; Allay, E.R.; Hanawa, H.; Nienhuis, A.W. The Degree of Phenotypic Correction of Murine β-Thalassemia Intermedia Following Lentiviral-Mediated Transfer of a Human γ-Globin Gene Is Influenced by Chromosomal Position Effects and Vector Copy Number. Blood 2003, 101, 2175–2183. [Google Scholar] [CrossRef]
- Pestina, T.I.; Hargrove, P.W.; Jay, D.; Gray, J.T.; Boyd, K.M.; Persons, D.A. Correction of Murine Sickle Cell Disease Using γ-Globin Lentiviral Vectors to Mediate High-Level Expression of Fetal Hemoglobin. Mol. Ther. 2009, 17, 245–252. [Google Scholar] [CrossRef]
- Kiem, H.-P.; Arumugam, P.; Christopher, B.; Adair, J.E.; Beard, B.C.; Fox, C.; Malik, P. Safety Of a Gamma Globin Expressing Lentivirus Vector In a Non-Human Primate Model For Gene Therapy Of Sickle Cell Disease. Blood 2013, 122, 2896. [Google Scholar] [CrossRef]
- Bank, A.; Dorazio, R.; Leboulch, P. A Phase I/II Clinical Trial of β-Globin Gene Therapy for β-Thalassemia. Ann. N. Y. Acad. Sci. 2005, 1054, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, E.; Georgomanoli, M.; Stamateris, E.; Panetsos, F.; Karagiorga, M.; Tsaftaridis, P.; Graphakos, S.; Anagnou, N.P. The New Self-Inactivating Lentiviral Vector for Thalassemia Gene Therapy Combining Two HPFH Activating Elements Corrects Human Thalassemic Hematopoietic Stem Cells. Hum. Gene Ther. 2012, 23, 15–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drakopoulou, E.; Georgomanoli, M.; Lederer, C.W.; Panetsos, F.; Kleanthous, M.; Voskaridou, E.; Valakos, D.; Papanikolaou, E.; Anagnou, N.P. The Optimized γ-Globin Lentiviral Vector GGHI-MB-3D Leads to Nearly Therapeutic HbF Levels In Vitro in CD34+ Cells from Sickle Cell Disease Patients. Viruses 2022, 14, 2716. [Google Scholar] [CrossRef]
- Pawliuk, R.; Westerman, K.A.; Fabry, M.E.; Payen, E.; Tighe, R.; Bouhassira, E.E.; Acharya, S.A.; Ellis, J.; London, I.M.; Eaves, C.J.; et al. Correction of Sickle Cell Disease in Transgenic Mouse Models by Gene Therapy. Science 2001, 294, 2368–2371. [Google Scholar] [CrossRef]
- McCune, S.L.; Reilly, M.P.; Chomo, M.J.; Asakura, T.; Townes, T.M. Recombinant Human Hemoglobins Designed for Gene Therapy of Sickle Cell Disease. Proc. Natl. Acad. Sci. USA 1994, 91, 9852–9856. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.W.; Torbert, J.V. Study of Two Abnormal Hemoglobins with Evidence for a New Genetic Locus for Hemoglobin Formation. Bull. Johns Hopkins Hosp. 1958, 102, 38–45. [Google Scholar]
- Baglioni, C.; Weatherall, D.J. Abnormal Human Hemoglobins IX. Chemistry of Hemoglobin JBaltimore. Biochim. Et Biophys. Acta 1963, 78, 637–643. [Google Scholar] [CrossRef]
- Levasseur, D.N.; Ryan, T.M.; Pawlik, K.M.; Townes, T.M. Correction of a Mouse Model of Sickle Cell Disease: Lentiviral/Antisickling β-Globin Gene Transduction of Unmobilized, Purified Hematopoietic Stem Cells. Blood 2003, 102, 4312–4319. [Google Scholar] [CrossRef]
- Miccio, A.; Cesari, R.; Lotti, F.; Rossi, C.; Sanvito, F.; Ponzoni, M.; Routledge, S.J.E.; Chow, C.-M.; Antoniou, M.N.; Ferrari, G. In Vivo Selection of Genetically Modified Erythroblastic Progenitors Leads to Long-Term Correction of -Thalassemia. Proc. Natl. Acad. Sci. USA 2008, 105, 10547–10552. [Google Scholar] [CrossRef] [Green Version]
- Roselli, E.A.; Mezzadra, R.; Frittoli, M.C.; Maruggi, G.; Biral, E.; Mavilio, F.; Mastropietro, F.; Amato, A.; Tonon, G.; Refaldi, C.; et al. Correction of Β-thalassemia Major by Gene Transfer in Haematopoietic Progenitors of Pediatric Patients. EMBO Mol. Med. 2010, 2, 315–328. [Google Scholar] [CrossRef]
- Urbinati, F.; Campo Fernandez, B.; Masiuk, K.E.; Poletti, V.; Hollis, R.P.; Koziol, C.; Kaufman, M.L.; Brown, D.; Mavilio, F.; Kohn, D.B. Gene Therapy for Sickle Cell Disease : A Lentiviral Vector Comparison Study. Hum. Gene Ther. 2018, 29, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Brendel, C.; Guda, S.; Renella, R.; Bauer, D.E.; Canver, M.C.; Kim, Y.-J.; Heeney, M.M.; Klatt, D.; Fogel, J.; Milsom, M.D.; et al. Lineage-Specific BCL11A Knockdown Circumvents Toxicities and Reverses Sickle Phenotype. J. Clin. Investig. 2016, 126, 3868–3878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Peng, C.; Sankaran, V.G.; Shao, Z.; Esrick, E.B.; Chong, B.G.; Ippolito, G.C.; Fujiwara, Y.; Ebert, B.L.; Tucker, P.W.; et al. Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing. Science 2011, 334, 993–996. [Google Scholar] [CrossRef] [Green Version]
- Guda, S.; Brendel, C.; Renella, R.; Du, P.; Bauer, D.E.; Canver, M.C.; Grenier, J.K.; Grimson, A.W.; Kamran, S.C.; Thornton, J.; et al. MiRNA-Embedded ShRNAs for Lineage-Specific BCL11A Knockdown and Hemoglobin F Induction. Mol. Ther. 2015, 23, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
- Brendel, C.; Negre, O.; Rothe, M.; Guda, S.; Parsons, G.; Harris, C.; McGuinness, M.; Abriss, D.; Tsytsykova, A.; Klatt, D.; et al. Preclinical Evaluation of a Novel Lentiviral Vector Driving Lineage-Specific BCL11A Knockdown for Sickle Cell Gene Therapy. Mol. Ther. Methods Clin. Dev. 2020, 17, 589–600. [Google Scholar] [CrossRef]
- Liu, B.; Brendel, C.; Vinjamur, D.S.; Zhou, Y.; Harris, C.; McGuinness, M.; Manis, J.P.; Bauer, D.E.; Xu, H.; Williams, D.A. Development of a Double ShmiR Lentivirus Effectively Targeting Both BCL11A and ZNF410 for Enhanced Induction of Fetal Hemoglobin to Treat β-Hemoglobinopathies. Mol. Ther. 2022, 30, 2693–2708. [Google Scholar] [CrossRef]
- Cavazzana-Calvo, M.; Payen, E.; Negre, O.; Wang, G.; Hehir, K.; Fusil, F.; Down, J.; Denaro, M.; Brady, T.; Westerman, K.; et al. Transfusion Independence and HMGA2 Activation after Gene Therapy of Human β-Thalassaemia. Nature 2010, 467, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Negre, O.; Bartholomae, C.; Beuzard, Y.; Cavazzana, M.; Christiansen, L.; Courne, C.; Deichmann, A.; Denaro, M.; Dreuzy, E.; Finer, M.; et al. Preclinical Evaluation of Efficacy and Safety of an Improved Lentiviral Vector for the Treatment of Beta-Thalassemia and Sickle Cell Disease. CGT 2014, 15, 64–81. [Google Scholar] [CrossRef] [Green Version]
- Negre, O.; Eggimann, A.-V.; Beuzard, Y.; Ribeil, J.-A.; Bourget, P.; Borwornpinyo, S.; Hongeng, S.; Hacein-Bey, S.; Cavazzana, M.; Leboulch, P.; et al. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(T87Q) Globin Gene. Hum. Gene Ther. 2016, 27, 148–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, A.A.; Walters, M.C.; Kwiatkowski, J.; Rasko, J.E.J.; Ribeil, J.-A.; Hongeng, S.; Magrin, E.; Schiller, G.J.; Payen, E.; Semeraro, M.; et al. Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. N. Engl. J. Med. 2018, 378, 1479–1493. [Google Scholar] [CrossRef] [PubMed]
- Marktel, S.; Scaramuzza, S.; Cicalese, M.P.; Giglio, F.; Galimberti, S.; Lidonnici, M.R.; Calbi, V.; Assanelli, A.; Bernardo, M.E.; Rossi, C.; et al. Intrabone Hematopoietic Stem Cell Gene Therapy for Adult and Pediatric Patients Affected by Transfusion-Dependent ß-Thalassemia. Nat. Med. 2019, 25, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Ribeil, J.-A.; Hacein-Bey-Abina, S.; Payen, E.; Magnani, A.; Semeraro, M.; Magrin, E.; Caccavelli, L.; Neven, B.; Bourget, P.; El Nemer, W.; et al. Gene Therapy in a Patient with Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Kanter, J.; Walters, M.C.; Hsieh, M.M.; Krishnamurti, L.; Kwiatkowski, J.; Kamble, R.T.; von Kalle, C.; Kuypers, F.A.; Cavazzana, M.; Leboulch, P.; et al. Interim Results from a Phase 1/2 Clinical Study of Lentiglobin Gene Therapy for Severe Sickle Cell Disease. Blood 2016, 128, 1176. [Google Scholar] [CrossRef]
- Kanter, J.; Walters, M.C.; Krishnamurti, L.; Mapara, M.Y.; Kwiatkowski, J.L.; Rifkin-Zenenberg, S.; Aygun, B.; Kasow, K.A.; Pierciey, F.J.; Bonner, M.; et al. Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. N. Engl. J. Med. 2022, 386, 617–628. [Google Scholar] [CrossRef]
- Arumugam, P.I.; Scholes, J.; Perelman, N.; Xia, P.; Yee, J.-K.; Malik, P. Improved Human β-Globin Expression from Self-Inactivating Lentiviral Vectors Carrying the Chicken Hypersensitive Site-4 (CHS4) Insulator Element. Mol. Ther. 2007, 15, 1863–1871. [Google Scholar] [CrossRef]
- Perumbeti, A.; Higashimoto, T.; Urbinati, F.; Franco, R.; Meiselman, H.J.; Witte, D.; Malik, P. A Novel Human Gamma-Globin Gene Vector for Genetic Correction of Sickle Cell Anemia in a Humanized Sickle Mouse Model: Critical Determinants for Successful Correction. Blood 2009, 114, 1174–1185. [Google Scholar] [CrossRef] [Green Version]
- Romero, Z.; Urbinati, F.; Geiger, S.; Cooper, A.R.; Wherley, J.; Kaufman, M.L.; Hollis, R.P.; Ruiz de Assin, R.; Senadheera, S.; Sahagian, A.; et al. β-Globin Gene Transfer to Human Bone Marrow for Sickle Cell Disease. J. Clin. Investig. 2013, 123, 3317–3330. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.A.; Unti, M.J.; Aleshe, B.; Brown, D.; Osborne, K.S.; Koziol, C.; Ayoub, P.G.; Smith, O.B.; O’Brien, R.; Tam, C.; et al. Improved Titer and Gene Transfer by Lentiviral Vectors Using Novel, Small β-Globin Locus Control Region Elements. Mol. Ther. 2020, 28, 328–340. [Google Scholar] [CrossRef]
- Hart, K.; Liu, B.; Hollis, R.P.; Brendel, C.; Williams, D.A.; Kohn, D.B. Treating Sickle Cell Disease with Lentiviral Vectors Combining an Anti-Sickling ΒAS3-Globin Gene with a BCL11A MicroRNA Adapted Short Hairpin RNAs. Mol. Ther. 2022, 30, 60. [Google Scholar]
- Ryu, B.Y.; Evans-Galea, M.V.; Gray, J.T.; Bodine, D.M.; Persons, D.A.; Nienhuis, A.W. An Experimental System for the Evaluation of Retroviral Vector Design to Diminish the Risk for Proto-Oncogene Activation. Blood 2008, 111, 1866–1875. [Google Scholar] [CrossRef] [PubMed]
- Desprat, R.; Bouhassira, E.E. Gene Specificity of Suppression of Transgene-Mediated Insertional Transcriptional Activation by the Chicken HS4 Insulator. PLoS ONE 2009, 4, e5956. [Google Scholar] [CrossRef]
- De Ravin, S.S.; Liu, S.; Sweeney, C.L.; Brault, J.; Whiting-Theobald, N.; Ma, M.; Liu, T.; Choi, U.; Lee, J.; O’Brien, S.A.; et al. Lentivector Cryptic Splicing Mediates Increase in CD34+ Clones Expressing Truncated HMGA2 in Human X-Linked Severe Combined Immunodeficiency. Nat. Commun. 2022, 13, 3710. [Google Scholar] [CrossRef] [PubMed]
- Romero, Z.; Campo-Fernandez, B.; Wherley, J.; Kaufman, M.L.; Urbinati, F.; Cooper, A.R.; Hoban, M.D.; Baldwin, K.M.; Lumaquin, D.; Wang, X.; et al. The Human Ankyrin 1 Promoter Insulator Sustains Gene Expression in a β-Globin Lentiviral Vector in Hematopoietic Stem Cells. Mol. Ther. Methods Clin. Dev. 2015, 2, 15012. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Doudna, J.A. CRISPR Technology: A Decade of Genome Editing Is Only the Beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef] [PubMed]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable Base Editing of A•T to G•C in Genomic DNA without DNA Cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef] [Green Version]
- Brunner, E.; Yagi, R.; Debrunner, M.; Beck-Schneider, D.; Burger, A.; Escher, E.; Mosimann, C.; Hausmann, G.; Basler, K. CRISPR-Induced Double-Strand Breaks Trigger Recombination between Homologous Chromosome Arms. Life Sci. Alliance 2019, 2, e201800267. [Google Scholar] [CrossRef] [Green Version]
- Cannan, W.J.; Pederson, D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin: Double-Strand Dna Break Formation In Chromatin. J. Cell. Physiol. 2016, 231, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Schipler, A.; Mladenova, V.; Soni, A.; Nikolov, V.; Saha, J.; Mladenov, E.; Iliakis, G. Chromosome Thripsis by DNA Double Strand Break Clusters Causes Enhanced Cell Lethality, Chromosomal Translocations and 53BP1-Recruitment. Nucleic Acids Res. 2016, 44, 7673–7690. [Google Scholar] [CrossRef] [Green Version]
- Peake, K.; Manning, J.; Lewis, C.-A.; Barr, C.; Rossi, F.; Krieger, C. Busulfan as a Myelosuppressive Agent for Generating Stable High-Level Bone Marrow Chimerism in Mice. JoVE 2015, 98, 52553. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.S.; Rubin, S.C. Basic Principles of Chemotherapy. In Clinical Gynecologic Oncology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 449–469.e2. [Google Scholar] [CrossRef]
- Conran, N.; Belcher, J.D. Inflammation in Sickle Cell Disease. Clin. Hemorheol. Microcirc. 2018, 68, 263–299. [Google Scholar] [CrossRef] [PubMed]
- Brunson, A.; Keegan, T.H.M.; Bang, H.; Mahajan, A.; Paulukonis, S.; Wun, T. Increased Risk of Leukemia among Sickle Cell Disease Patients in California. Blood 2017, 130, 1597–1599. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, M.M.; Bonner, M.; Pierciey, F.J.; Uchida, N.; Rottman, J.; Demopoulos, L.; Schmidt, M.; Kanter, J.; Walters, M.C.; Thompson, A.A.; et al. Myelodysplastic Syndrome Unrelated to Lentiviral Vector in a Patient Treated with Gene Therapy for Sickle Cell Disease. Blood Adv. 2020, 4, 2058–2063. [Google Scholar] [CrossRef]
- Muffly, L.S.; Chin, M.; Kwon, H.-S.; Lieber, C.; Smith, S.; Sikorski, R.; Shizuru, J.; Pang, W.; Artz, A.S. Early Results of Phase 1 Study of JSP191, an Anti-CD117 Monoclonal Antibody, with Non-Myeloablative Conditioning in Older Adults with MRD-Positive MDS/AML Undergoing Allogeneic Hematopoietic Cell Transplantation. JCO 2021, 39 (Suppl. 15), 7035. [Google Scholar] [CrossRef]
- Tisdale, J.F.; Donahue, R.E.; Uchida, N.; Pearse, B.R.; McDonough, S.M.; Proctor, J.L.; Krouse, A.; Linde, N.S.; Bonifacino, A.C.; Panwar, R.; et al. A Single Dose of CD117 Antibody Drug Conjugate Enables Autologous Gene-Modified Hematopoietic Stem Cell Transplant (Gene Therapy) in Nonhuman Primates. Blood 2019, 134 (Suppl. 1), 610. [Google Scholar] [CrossRef]
- Silva, M.; Bartlett, C.; Hanson, J.; Gilbert, J.; Bridgen, D. Non-Genotoxic Conditioning Approach for Autologous Hematopoietic Stem Cell Therapies through Transient MRNA Engineering Using Vector-Free Microfluidic Cell Squeeze® Technology. Blood 2022, 140 (Suppl. 1), 4495. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Gil, S.; Germond, A.; Fountain, C.; Baldessari, A.; Kim, J.; Liu, Z.; Georgakopoulou, A.; Radtke, S.; et al. Safe and Efficient in Vivo Hematopoietic Stem Cell Transduction in Nonhuman Primates Using HDAd5/35++ Vectors. Mol. Ther. Methods Clin. Dev. 2022, 24, 127–141. [Google Scholar] [CrossRef]
Sponsor | Country | Year | Disease | Lentiviral Vector Name | Participant | Status | Clinical Trial Identifier | |
---|---|---|---|---|---|---|---|---|
Beta Globin Gene Insertion | Genetix Pharmaceuticals (later, renamed bluebird bio) | France | 2006 | β-thalassemia Major | LentiGlobin HPV569 Lentiviral β-A-T87Q Globin Vector | 2 | Completed, Phase 1 and 2 | n/a |
Memorial Sloan Kettering Cancer Center | USA | 2012 | β-thalassemia Major | TNS9.3.55 Lentiviral encoding WT β-globin gene (Figure 3A) | 4 | Active, Phase 1 | NCT01639690 | |
bluebird bio | France | 2013 | β-thalassemia Major Sickle Cell Disease | LentiGlobin BB305 Lentiviral β-A-T87Q Globin Vector (Figure 3H) | 7 | Completed, Phase 1 and 2 | NCT02151526 | |
bluebird bio | USA | 2014 | Sickle Cell Disease | LentiGlobin BB305 Lentiviral β-A-T87Q Globin Vector (Figure 3H) | 50 | Active, Phase 1 and 2 | NCT02140554 | |
bluebird bio | USA Australia Thailand | 2013 | β-thalassemia Major | LentiGlobin BB305 Lentiviral β-A-T87Q Globin Vector (Figure 3H) | 19 | Completed, Phase 1 and 2 | NCT01745120 | |
bluebird bio | USA France Germany Italy Thailand United Kingdom | 2016 | β-thalassemia–transfusion dependent excluding β-thalassemia Major | LentiGlobin BB305 Lentiviral β-A-T87Q Globin Vector (Figure 3H) | 23 | Completed, Phase 3 | NCT02906202 | |
bluebird bio | USA France Germany Greece Italy UK | 2017 | β-thalassemia–Transfusion Dependent | LentiGlobin BB305 Lentiviral β-A-T87Q Globin Vector (Figure 3H) | 18 | Active, Phase 3 | NCT03207009 | |
bluebird bio | USA | 2020 | Sickle Cell Disease | LentiGlobin BB305 Lentiviral β-A-T87Q Globin Vector (Figure 3H) | 35 | Recruiting, Phase 3 | NCT04293185 | |
IRCCS San Raffaele Orchard Therapeutics | Italy | 2015 | β-thalassemia | GLOBE Lentivirus Vector Lentiviral vector with wild type β-globin gene (Figure 3E) | 10 | Completed, Phase 1 and 2 | NCT02453477 | |
Donald B. Kohn, M.D. California Institute for Regenerative Medicine | USA | 2014 | Sickle Cell Disease | Lenti/G-βAS3-FB Lentiviral Vector Lentiviral containing anti-sickle β-AS3 (not shown) | 6 | Recruiting, Phase 1 and 2 | NCT02247843 | |
Children’s Hospital Medical Center, Cincinnati | USA | 2014 | Sickle Cell Disease | Gamma Globin Lentivirus Vector Lentiviral vector with fetal γ-globin gene (Figure 3B) | 7 | Active, Phase 1 and 2 | NCT02186418 | |
Fetal Induction | David Williams, M.D. | USA | 2017 2022 | Sickle Cell Disease | short-hairpin RNA targeting BCL11A Lentiviral Vector Lentiviral vector with short-hairpin BCL11A RNA (Figure 3F) | 10 25 | Active, Phase 1 Recruiting, Phase 2 | NCT03282656 NCT05353647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segura, E.E.R.; Ayoub, P.G.; Hart, K.L.; Kohn, D.B. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses 2023, 15, 713. https://doi.org/10.3390/v15030713
Segura EER, Ayoub PG, Hart KL, Kohn DB. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses. 2023; 15(3):713. https://doi.org/10.3390/v15030713
Chicago/Turabian StyleSegura, Eva Eugenie Rose, Paul George Ayoub, Kevyn Lopez Hart, and Donald Barry Kohn. 2023. "Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials" Viruses 15, no. 3: 713. https://doi.org/10.3390/v15030713
APA StyleSegura, E. E. R., Ayoub, P. G., Hart, K. L., & Kohn, D. B. (2023). Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses, 15(3), 713. https://doi.org/10.3390/v15030713