Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection
Abstract
:1. Introduction
2. Interleukins (ILs) in WNV Infection
2.1. Interleukin-1 Family
2.2. Interleukin 6 Family
2.3. Interleukin 17 Family
2.4. Interleukin 12 Family
2.5. Interleukin 10 Family
3. Chemokines in WNV Infection
3.1. CC Chemokines
3.1.1. CCL2, CCL7 and CCL12 (Ccr2 Agonists)
3.1.2. CCL3, CCL4, and CCL5 (Ccr5 Agonists)
3.1.3. CCL19 and CCL21 (Ccr7 Agonists)
3.2. CXC Chemokines
3.2.1. CXCL1-3, CXCL6-8 (Cxcr2 Agonists)
3.2.2. CXCL9 and CXCL10 (Cxcr3 Ligands)
3.2.3. CXCL12 (Cxcr4 Ligand)
3.3. CX3C Chemokines
4. Tumor Necrosis Factor Superfamily Ligands
4.1. Tumor Necrosis Factor α
4.2. TRAIL and FasL
4.3. CD40L
4.4. BAFF
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chambers, T.J.; Hahn, C.S.; Galler, R.; Rice, C.M. Flavivirus Genome Organization, Expression, and Replication. Annu. Rev. Microbiol. 1990, 44, 649–688. [Google Scholar] [CrossRef]
- McLean, R.G.; Ubico, S.R.; Docherty, D.E.; Hansen, W.R.; Sileo, L.; McNamara, T.S. West Nile Virus Transmission and Ecology in Birds. Ann. N. Y. Acad. Sci. 2001, 951, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, Z.; Wang, M.; Cheng, A. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins. Viruses 2017, 9, 291. [Google Scholar] [CrossRef] [PubMed]
- Roosendaal, J.; Westaway, E.G.; Khromykh, A.; Mackenzie, J.M. Regulated Cleavages at the West Nile Virus NS4A-2K-NS4B Junctions Play a Major Role in Rearranging Cytoplasmic Membranes and Golgi Trafficking of the NS4A Protein. J. Virol. 2006, 80, 4623–4632. [Google Scholar] [CrossRef] [Green Version]
- Samuel, C.E. Host Genetic Variability and West Nile Virus Susceptibility. Proc. Natl. Acad. Sci. USA 2002, 99, 11555–11557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, F.; Ashley Thompson, E.; Vig, P.J.S.; Arturo Leis, A. Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens 2019, 8, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, L.R.; Brault, A.C.; Nasci, R.S.; Infectious, Z.; Services, H.; Collins, F. West Nile Virus: Review of the Literature. JAMA 2013, 310, 308–315. [Google Scholar] [CrossRef]
- Alli, A.; Ortiz, J.F.; Atoot, A.; Atoot, A.; Millhouse, P.W. Management of West Nile Encephalitis: An Uncommon Complication of West Nile Virus. Cureus 2021, 13, e13183. [Google Scholar] [CrossRef]
- Ouhoumanne, N.; Lowe, A.M.; Fortin, A.; Kairy, D.; Vibien, A.; K-Lensch, J.; Tannenbaum, T.N.; Milord, F. Morbidity, Mortality and Long-Term Sequelae of West Nile Virus Disease in Québec. Epidemiol. Infect. 2018, 146, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Fulton, C.D.M.; Beasley, D.W.C.; Bente, D.A.; Dineley, K.T. Long-Term, West Nile Virus-Induced Neurological Changes: A Comparison of Patients and Rodent Models. Brain Behav. Immun. Health 2020, 7, 100105. [Google Scholar] [CrossRef]
- Weatherhead, J.E.; Miller, V.E.; Garcia, M.N.; Hasbun, R.; Salazar, L.; Dimachkie, M.M.; Murray, K.O. Long-Term Neurological Outcomes in West Nile Virus-Infected Patients: An Observational Study. Am. J. Trop. Med. Hyg. 2015, 92, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Tebas, P.; Spitsin, S.; Barrett, J.S.; Tuluc, F.; Elci, O.; Korelitz, J.J.; Wagner, W.; Winters, A.; Kim, D.; Catalano, R.; et al. Reduction of Soluble CD163, Substance P, Programmed Death 1 and Inflammatory Markers: Phase 1B Trial of Aprepitant in HIV-1-Infected Adults. AIDS 2015, 29, 931–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suthar, M.S.; Diamond, M.S.; Gale, M., Jr. West Nile Virus Infection and Immunity. Nat. Rev. Microbiol. 2013, 11, 115–128. [Google Scholar] [CrossRef]
- Shrestha, B.; Diamond, M.S. Role of CD8 + T Cells in Control of West Nile Virus Infection. J. Virol. 2004, 78, 8312–8321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, M.G.; Bowen, J.R.; McDonald, C.E.; Pulendran, B.; Suthar, M.S. West Nile Virus Infection Blocks Inflammatory Response and T Cell Costimulatory Capacity of Human Monocyte-Derived Dendritic Cells. J. Virol. 2019, 93, e00664-19. [Google Scholar] [CrossRef]
- Ramos, H.J.; Lanteri, M.C.; Blahnik, G.; Negash, A.; Suthar, M.S.; Brassil, M.M.; Sodhi, K.; Treuting, P.M.; Busch, M.P.; Norris, P.J.; et al. IL-1β Signaling Promotes CNS-Intrinsic Immune Control of West Nile Virus Infection. PLoS Pathog. 2012, 8, e1003039. [Google Scholar] [CrossRef] [Green Version]
- Martina, B.E.E.; Koraka, P.; van den Doel, P.; Rimmelzwaan, G.F.; Haagmans, B.L.; Osterhaus, A.D.M.E. DC-SIGN Enhances Infection of Cells with Glycosylated West Nile Virus in Vitro and Virus Replication in Human Dendritic Cells Induces Production of IFN-α and TNF-α. Virus Res. 2008, 135, 64–71. [Google Scholar] [CrossRef]
- Kong, K.; Wang, X.; Anderson, J.; Fikrig, E.; Montgomery, R.R. West Nile Virus Attenuates Activation of Primary Human Macrophages. Viral Immunol. 2008, 21, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Roe, K.; O’Connell, M.; Nerurkar, V.R. Induction of Virus-Specific Effector Immune Cell Response Limits Virus Replication and Severe Disease in Mice Infected with Non-Lethal West Nile Virus Eg101 Strain. J. Neuroinflamm. 2015, 12, 178. [Google Scholar] [CrossRef]
- Cheeran, M.C.J.; Hu, S.; Sheng, W.S.; Rashid, A.; Peterson, P.K.; Lokensgard, J.R. Differential Responses of Human Brain Cells to West Nile Virus Infection. J. NeuroVirol. 2005, 11, 512–524. [Google Scholar] [CrossRef]
- Kosch, R.; Delarocque, J.; Claus, P.; Becker, S.C.; Jung, K. Gene Expression Profiles in Neurological Tissues during West Nile Virus Infection: A Critical Meta-Analysis. BMC Genom. 2018, 19, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassert, M.; Brien, J.D.; Pinto, A.K. The Temporal Role of Cytokines in Flavivirus Protection and Pathogenesis. Curr. Clin. Microbiol. Rep. 2019, 6, 25–33. [Google Scholar] [CrossRef]
- Pan, Y.; Cai, W.; Cheng, A.; Wang, M.; Yin, Z.; Jia, R. Flaviviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Front. Immunol. 2022, 13, 829433. [Google Scholar] [CrossRef]
- Bardina, S.V.; Lim, J.K. The Role of Chemokines in the Pathogenesis of Neurotropic Flaviviruses. Immunol. Res. 2012, 54, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Leong, W.Y.; Wilder-Smith, A. Markers of Dengue Severity: A Systematic Review of Cytokines and Chemokines. J. Gen. Virol. 2016, 97, 3103–3119. [Google Scholar] [CrossRef]
- Kuczera, D.; Assolini, J.P.; Tomiotto-Pellissier, F.; Pavanelli, W.R.; Silveira, G.F. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J. Interferon Cytokine Res. 2018, 38, 69–80. [Google Scholar] [CrossRef]
- Maucourant, C.; Queiroz, G.A.N.; Samri, A.; Grassi, M.F.R.; Yssel, H.; Vieillard, V. Zika Virus in the Eye of the Cytokine Storm. Eur. Cytokine Netw. 2019, 30, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lobigs, M.; Lee, E.V.A.; Müllbacher, A. Exocytosis and Fas Mediated Cytolytic Mechanisms Exert Protection from West Nile Virus Induced Encephalitis in Mice. Immunol. Cell Biol. 2004, 82, 170–173. [Google Scholar] [CrossRef]
- Fares-Gusmao, R.; Rocha, B.C.; Sippert, E.; Lanteri, M.C.; Áñez, G.; Rios, M. Differential Pattern of Soluble Immune Markers in Asymptomatic Dengue, West Nile and Zika Virus Infections. Sci. Rep. 2019, 9, 17172. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.C.; Brault, A.C.; Hunsperger, E. The Contribution of Rodent Models to the Pathological Assessment of Flaviviral Infections of the Central Nervous System. Arch. Virol. 2015, 157, 1423–1440. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, M.G.; Bowen, J.R.; McDonald, C.E.; Young, E.; Baric, R.S.; Pulendran, B.; Suthar, M.S. STAT5: A Target of Antagonism by Neurotropic Flaviviruses. J. Virol. 2019, 93, e00665-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glass, W.G.; Lim, J.K.; Cholera, R.; Pletnev, A.G.; Gao, J.L.; Murphy, P.M. Chemokine Receptor CCR5 Promotes Leukocyte Trafficking to the Brain and Survival in West Nile Virus Infection. J. Exp. Med. 2005, 202, 1087–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, K.W.; Lee, J.J.; Foster, G.A.; Krysztof, D.; Stramer, S.L.; Lim, J.K. Sex Differences in Cytokine Production Following West Nile Virus Infection: Implications for Symptom Manifestation. Pathog. Dis. 2019, 77, ftz016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, K.W.; Sachs, D.; Bardina, S.V.; Michlmayr, D.; Rodriguez, C.A.; Sum, J.; Foster, G.A.; Krysztof, D.; Stramer, S.L.; Lim, J.K. Differences in Early Cytokine Production Are Associated with Development of a Greater Number of Symptoms Following West Nile Virus Infection. J. Infect. Dis. 2016, 214, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.K.; Louie, C.Y.; Glaser, C.; Jean, C.; Johnson, B.; Johnson, H.; McDermott, D.H.; Murphy, P.M. Genetic Deficiency of Chemokine Receptor CCR5 Is a Strong Risk Factor for Symptomatic West Nile Virus Infection: A Meta-Analysis of 4 Cohorts in the US Epidemic. J. Infect. Dis. 2008, 197, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Glass, W.G.; Mcdermott, D.H.; Lim, J.K.; Lekhong, S.; Yu, S.F.; Frank, W.A.; Pape, J.; Cheshier, R.C.; Murphy, P.M. CCR5 Deficiency Increases Risk of Symptomatic West Nile Virus Infection. J. Exp. Med. 2006, 203, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Rituparna, D.; Kerry, G.; Charles, M.; Feng, Q.; Lin, L.; Yan, S.; Ruth, R.M.; Mark, L.; Richard, B. Association between High Expression Macrophage Migration Inhibitory Factor (MIF) Alleles and West Nile Virus Encephalitis. Cytokine 2016, 78, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.; Pinto, A.K.; Green, S.; Bosch, I.; Diamond, M.S. CD8+ T Cells Use TRAIL To Restrict West Nile Virus Pathogenesis by Controlling Infection in Neurons. J. Virol. 2012, 86, 8937–8948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, B.; Diamond, M.S. Fas Ligand Interactions Contribute to CD8 + T-Cell-Mediated Control of West Nile Virus Infection in the Central Nervous System. J. Virol. 2007, 81, 11749–11757. [Google Scholar] [CrossRef] [Green Version]
- Sitati, E.; Mccandless, E.E.; Klein, R.S.; Diamond, M.S. CD40-CD40 Ligand Interactions Promote Trafficking of CD8 + T Cells into the Brain and Protection against West Nile Virus Encephalitis. J. Virol. 2007, 81, 9801–9811. [Google Scholar] [CrossRef] [Green Version]
- Giordano, D.; Draves, K.E.; Young, L.B.; Roe, K.; Bryan, M.A.; Dresch, C.; Richner, J.M.; Diamond, M.S.; Gale, M.; Clark, E.A. Protection of Mice Deficient in Mature B Cells from West Nile Virus Infection by Passive and Active Immunization. PLoS Pathog. 2017, 13, e1006743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Bai, F.; Zenewicz, L.A.; Dai, J.; Gate, D.; Cheng, G.; Yang, L.; Qian, F.; Yuan, X.; Montgomery, R.R.; et al. IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis. PLoS ONE 2012, 7, e44153. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Wang, P.; Paul, A.; Dai, J.; Gate, D.; Lowery, J.; Stokic, D.; Leis, A.; Flavell, R.; Town, T.; et al. Interleukin-17A Promotes CD8+ T Cell Cytotoxicity to Facilitate West Nile Virus Clearance. J. Virol. 2017, 91, e01529-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.K.; Obara, C.J.; Rivollier, A.; Pletnev, A.G.; Kelsall, B.L.; Murphy, P.M. Chemokine Receptor CCR2 Is Critical for Monocyte Accumulation and Survival in West Nile Virus Encephalitis. J. Immunol. 2011, 186, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Bardina, S.V.; Michlmay, D.; Hoffman, K.W.; Obara, C.J.; Sum, J.; Charo, I.F.; Lu, W.; Pletnev, A.G.; Lim, J.K. Differential Roles of Chemokines CCL2 and CCL7 in Monocytosis and Leukocyte Migration during West Nile Virus Infection. Physiol. Behav. 2015, 195, 4306–4318. [Google Scholar] [CrossRef] [Green Version]
- Bardina, S.V.; Brown, J.A.; Michlmayr, D.; Hoffman, K.W. Chemokine Receptor Ccr7 Restricts Fatal West Nile Virus Encephalitis. J. Virol. 2017, 91, e02409-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, R.S.; Lin, E.; Zhang, B.; Luster, A.D.; Tollett, J.; Samuel, M.A.; Engle, M.; Diamond, M.S. Neuronal CXCL10 Directs CD8 + T-Cell Recruitment and Control of West Nile Virus Encephalitis. J. Virol. 2005, 79, 11457–11466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Chan, Y.K.; Lu, B.; Diamond, M.S.; Klein, R.S. CXCR3 Mediates Region-Specific Antiviral T Cell Trafficking within the Central Nervous System during West Nile Virus Encephalitis. J. Immunol. 2008, 180, 2641–2649. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Kong, K.; Dai, J.; Qian, F.; Zhang, L.; Brown, C.R.; Fikrig, E.; Montgomery, R.R. A Paradoxical Role for Neutrophils in the Pathogenesis of West Nile Virus. J. Infect. Dis. 2010, 8031, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Brocker, C.; Carpenter, C.; Nebert, D.W.; Vasiliou, V. Evolutionary Divergence and Functions of the Human Acyl-CoA Thioesterase Gene (ACOT) Family. Hum. Genom. 2010, 4, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Roe, K.; Orillo, B.; Muruve, D.A.; Nerurkar, V.R.; Gale, M.; Verma, S. Inflammasome Adaptor Protein Apoptosis-Associated Speck-Like Protein Containing CARD (ASC) Is Critical for the Immune Response and Survival in West Nile Virus Encephalitis. J. Virol. 2013, 87, 3655–3667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Verma, S.; Nerurkar, V.R. Pro-Inflammatory Cytokines Derived from West Nile Virus (WNV)-Infected SK-N-SH Cells Mediate Neuroinflammatory Markers and Neuronal Death. J. Neuroinflamm. 2010, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Soung, A.L.; Davé, V.A.; Garber, C.; Tycksen, E.D.; Vollmer, L.L.; Klein, R.S. IL-1 Reprogramming of Adult Neural Stem Cells Limits Neurocognitive Recovery after Viral Encephalitis by Maintaining a Proinflammatory State. Brain Behav. Immun. 2022, 99, 383–396. [Google Scholar] [CrossRef]
- Durrant, D.M.; Daniels, B.P.; Klein, R.S. IL-1R1 Signaling Regulates CXCL12-Mediated T Cell Localization and Fate within the CNS during West Nile Virus Encephalitis. J. Immunol. 2014, 193, 4095–4106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccetti, S.; Sinigaglia, A.; Desole, G.; Nowotny, N.; Trevisan, M.; Barzon, L. Modelling West Nile Virus and Usutu Virus Pathogenicity in Human Neural Stem Cells. Viruses 2020, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- van Marle, G.; Antony, J.; Ostermann, H.; Dunham, C.; Hunt, T.; Halliday, W.; Maingat, F.; Urbanowski, M.D.; Hobman, T.; Peeling, J.; et al. West Nile Virus-Induced Neuroinflammation: Glial Infection and Capsid Protein-Mediated Neurovirulence. J. Virol. 2007, 81, 10933–10949. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Chung, L.; Zheng, W.; Bruno, V.; Alexander, R.P.; Wang, Z.; Wang, X.; Kurscheid, S.; Zhao, H.; Fikrig, E.; et al. Identification of Genes Critical for Resistance to Infection by West Nile Virus Using RNA-Seq Analysis. Viruses 2013, 5, 1664–1681. [Google Scholar] [CrossRef]
- Yao, Y.; Strauss-Albee, D.M.; Zhou, J.Q.; Malawista, A.; Garcia, M.N.; Murray, K.O.; Blish, C.A.; Montgomery, R.R. The Natural Killer Cell Response to West Nile Virus in Young and Old Individuals with or without a Prior History of Infection. PLoS ONE 2017, 12, e0172625. [Google Scholar] [CrossRef] [Green Version]
- Aarreberg, L.D.; Wilkins, C.; Ramos, H.J.; Green, R.; Davis, M.A.; Chow, K.; Gale, M. Interleukin-1 β Signaling in Dendritic Cells Induces Antiviral Interferon Responses. mBio 2018, 9, e00342-18. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.J.; Suen, W.W.; Bosco-Lauth, A.; Hartwig, A.E.; Hall, R.A.; Bowen, R.A.; Bielefeldt-Ohmann, H. Kinetics of the West Nile Virus Induced Transcripts of Selected Cytokines and Toll-like Receptors in Equine Peripheral Blood Mononuclear Cells. Vet. Res. 2016, 47, 61. [Google Scholar] [CrossRef] [Green Version]
- Bielefeldt-Ohmann, H.; Bosco-lauth, A.; Hartwig, A.; Uddin, M.J.; Barcelon, J.; Suen, W.W.; Wang, W.; Hall, R.A.; Bowen, R.A. Microbial Pathogenesis Characterization of Non-Lethal West Nile Virus (WNV) Infection in Horses: Subclinical Pathology and Innate Immune Response. Microb. Pathog. 2017, 103, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Byrne, S.N.; Halliday, G.M.; Johnston, L.J.; King, N.J.C. Interleukin-1β but Not Tumor Necrosis Factor Is Involved in West Nile Virus-Induced Langerhans Cell Migration from the Skin in C57BL/6 Mice. J. Investig. Dermatol. 2001, 117, 702–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, C.; Vasek, M.J.; Vollmer, L.L.; Sun, T.; Jiang, X.; Klein, R.S. Astrocytes Decrease Adult Neurogenesis during Virus-Induced Memory Dysfunction via Interleukin-1. Nat. Immunol. 2018, 19, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Nerurkar, V.R. Integrated Analysis of MicroRNAs and Their Disease Related Targets in the Brain of Mice Infected with West Nile Virus. Virology 2014, 452–453, 143–151. [Google Scholar] [CrossRef]
- Lim, S.M.; van den Ham, H.J.; Oduber, M.; Martina, E.; Zaaraoui-Boutahar, F.; Roose, J.M.; van IJcken, W.F.J.; Osterhaus, A.D.M.E.; Andeweg, A.C.; Koraka, P.; et al. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus. Front. Microbiol. 2017, 8, 1556. [Google Scholar] [CrossRef]
- Xiea, G.; Weltea, T.; Wanga, J.; Whitemanb, M.C.; Wickerb, J.A.; Saxenaa, V.; Conga, Y.; Barretta, A.D.T.; Wang, T. A West Nile Virus NS4B-P38G Mutant Strain Induces Adaptive Immunity via TLR7-MyD88-Dependent and Independent Signaling Pathways. Vaccine 2013, 31, 4143–4151. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Town, T.; Alexopoulou, L.; Anderson, J.F.; Fikrig, E.; Flavell, R.A. Toll-like Receptor 3 Mediates West Nile Virus Entry into the Brain Causing Lethal Encephalitis. Nat. Med. 2004, 10, 1366–1373. [Google Scholar] [CrossRef]
- Suen, W.W.; Uddin, M.J.; Prow, N.A.; Bowen, R.A.; Hall, R.A.; Bielefeldt-Ohmann, H. Tissue-Specific Transcription Profile of Cytokine and Chemokine Genes Associated with Flavivirus Control and Non-Lethal Neuropathogenesis in Rabbits. Virology 2016, 494, 1–14. [Google Scholar] [CrossRef]
- Quick, E.D.; Leser, J.S.; Clarke, P.; Tyler, K.L. Activation of Intrinsic Immune Responses and Microglial Phagocytosis in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection. J. Virol. 2014, 88, 13005–13014. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.J.; Suen, W.W.; Prow, N.A.; Hall, R.A.; Bielefeldt-Ohmann, H. West Nile Virus Challenge Alters the Transcription Profiles of Innate Immune Genes in Rabbit Peripheral Blood Mononuclear Cells. Front. Vet. Sci. 2015, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Shirato, K.; Miyoshi, H.; Kariwa, H.; Takashima, I. The Kinetics of Proinflammatory Cytokines in Murine Peritoneal Macrophages Infected with Envelope Protein-Glycosylated or Non-Glycosylated West Nile Virus. Virus Res. 2006, 121, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Saxenaa, V.; Weltea, T.; Baob, X.; Xiea, G.; Wanga, J.; Higgsc, S.; Teshd, R.B.; Wang, T. A Hamster-Derived West Nile Virus Strain Is Highly Attenuated and Induces a Differential Proinflammatory Cytokine Response in Two Murine Cell Lines. Virus Res. 2013, 167, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapkal, G.N.; Harini, S.; Ayachit, V.M.; Fulmali, P.V.; Mahamuni, S.A.; Bondre, V.P.; Gore, M.M. Neutralization Escape Variant of West Nile Virus Associated with Altered Peripheral Pathogenicity and Differential Cytokine Profile. Virus Res. 2011, 158, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Welte, T.; Zheng, X.; Chang, G.-J.J.; Holbrook, M.R.; Soong, L.; Wang, T. γδd T Cells Promote the Maturation of Dendritic Cells During West Nile Virus Infection. FEMS Immunol. Med. Microbiol. 2010, 59, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Alout, H.; Diop, F.; Damour, A.; Bengue, M.; Weill, M.; Missé, D.; Lévêque, N.; Bodet, C. Innate Immune Response of Primary Human Keratinocytes to West Nile Virus Infection and Its Modulation by Mosquito Saliva. Front. Cell. Infect. Microbiol. 2018, 8, 387. [Google Scholar] [CrossRef]
- Peña, J.; Plante, J.A.; Carillo, A.C.; Roberts, K.K.; Smith, J.K.; Juelich, T.L.; Beasley, D.W.C.; Freiberg, A.N.; Labute, M.X.; Naraghi-Arani, P. Multiplexed Digital MRNA Profiling of the Inflammatory Response in the West Nile Swiss Webster Mouse Model. PLoS Negl. Trop. Dis. 2014, 8, e3216. [Google Scholar] [CrossRef] [Green Version]
- Maximova, O.A.; Sturdevant, D.E.; Kash, J.C.; Kanakabandi, K.; Xiao, Y.; Minai, M.; Moore, I.N.; Taubenberger, J.; Martens, C.; Cohen, J.I.; et al. Virus Infection of the Cns Disrupts the Immune-Neural-Synaptic Axis via Induction of Pleiotropic Gene Regulation of Host Responses. Elife 2021, 10, e62273. [Google Scholar] [CrossRef]
- Saxena, V.; Xie, G.; Li, B.; Farris, T.; Welte, T.; Gong, B.; Boor, P.; Wu, P.; Tang, S.J.; Tesh, R.; et al. A Hamster-Derived West Nile Virus Isolate Induces Persistent Renal Infection in Mice. PLoS Negl. Trop. Dis. 2013, 7, e2275. [Google Scholar] [CrossRef]
- Bai, F.; Town, T.; Qian, F.; Wang, P.; Kamanaka, M.; Connolly, T.M.; Gate, D.; Montgomery, R.R.; Flavell, R.A.; Fikrig, E. IL-10 Signaling Blockade Controls Murine West Nile Virus Infection. PLoS Pathog. 2009, 5, e1000610. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Luo, H.; Tian, B.; Mann, B.; Bao, X.; Mcbride, J.; Tesh, R.; Barrett, A.D.; Wang, T. A West Nile Virus NS4B-P38G Mutant Strain Induces Cell Intrinsic Innate Cytokine Responses in Human Monocytic and Macrophage Cells. Vaccine 2015, 33, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.B.; Swarts, J.L.; Wilkins, C.; Thomas, S.; Green, R.; Sekine, A.; Voss, K.M.; Ireton, R.C.; Mooney, M.; Choonoo, G.; et al. A Mouse Model of Chronic West Nile Virus Disease. PLoS Pathog. 2016, 12, e1005996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Town, T.; Bai, F.; Wang, T.; Kaplan, A.; Qian, F.; Montgomery, R.; Anderson, J.; Flavell, R.A.; Fikrig, E. Toll-like Receptor 7 Mitigates Lethal West Nile Encephalitis via Interleukin 23-Dependent Immune Cell Infiltration and Homing. Immunity 2009, 30, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welte, T.; Reagan, K.; Fang, H.; Machain-Williams, C.; Zheng, X.; Mendell, N.; Chang, G.J.J.; Wu, P.; Blair, C.D.; Wang, T. Toll-like Receptor 7-Induced Immune Response to Cutaneous West Nile Virus Infection. J. Gen. Virol. 2009, 90, 2660–2668. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Winkelmann, E.R.; Zhu, S.; Ru, W.; Mays, E.; Silvas, J.A.; Vollmer, L.L.; Gao, J.; Peng, B.H.; Bopp, N.E.; et al. Peli1 Facilitates Virus Replication and Promotes Neuroinflammation during West Nile Virus Infection. J. Clin. Investig. 2018, 128, 4980–4991. [Google Scholar] [CrossRef]
- Clarke, P.; Leser, J.S.; Bowen, R.A.; Tylera, K.L. Virus-Induced Transcriptional Changes in the Brain Include the Differential Expression of Genes Associated with Interferon, Apoptosis, Interleukin 17 Receptor A, and Glutamate Signaling as Well as Flavivirus-Specific Upregulation of TRNA Synthetases. mBio 2014, 5, e00902-14. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, M.A.; Denslow, N.D.; Seino, K.S.; Barber, D.S.; Long, M.T. Gene Expression Analysis in the Thalamus and Cerebrum of Horses Experimentally Infected with West Nile Virus. PLoS ONE 2011, 6, e24371. [Google Scholar] [CrossRef]
- Garcia-tapia, D.; Hassett, D.E.; Mitchell, W.J., Jr.; Johnson, G.C.; Kleiboeker, S.B. West Nile Virus Encephalitis: Sequential Histopathological and Immunological Events in a Murine Model of Infection. J. NeuroVirol. 2007, 13, 130–138. [Google Scholar] [CrossRef]
- Munoz-Erazo, L.; Natoli, R.; Provis, J.M.; Madigan, M.C.; Jonathan, N.; King, C. Microarray Analysis of Gene Expression in West Nile Virus–Infected Human Retinal Pigment Epithelium. Mol. Vis. 2012, 18, 730–743. [Google Scholar]
- Davison, A.M.; King, N.J.C. Accelerated Dendritic Cell Differentiation from Migrating Ly6C Lo Bone Marrow Monocytes in Early Dermal West Nile Virus Infection. J. Immunol. 2011, 186, 2382–2396. [Google Scholar] [CrossRef] [Green Version]
- Getts, D.R.; Terry, R.L.; Getts, M.T.; Marcus, M.; Rana, S.; Shrestha, B.; Radford, J.; van Rooijen, N.; Campbell, I.L.; King, N.J.C. Ly6c+ “Inflammatory Monocytes” Are Microglial Precursors Recruited in a Pathogenic Manner in West Nile Virus Encephalitis. J. Exp. Med. 2008, 205, 2319–2337. [Google Scholar] [CrossRef] [Green Version]
- Michlmayr, D.; McKimmie, C.S.; Pingen, M.; Haxton, B.; Mansfield, K.; Johnson, N.; Fooks, A.R.; Graham, G.J. Defining the Chemokine Basis for Leukocyte Recruitment during Viral Encephalitis. J. Virol. 2014, 88, 9553–9567. [Google Scholar] [CrossRef] [Green Version]
- Vidaña, B.; Johnson, N.; Fooks, A.R.; Sánchez-Cordón, P.J.; Hicks, D.J.; Nuñez, A. West Nile Virus Spread and Differential Chemokine Response in the Central Nervous System of Mice: Role in Pathogenic Mechanisms of Encephalitis. Transbound. Emerg. Dis. 2020, 67, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Durrant, D.M.; Daniels, B.P.; Pasieka, T.; Dorsey, D.; Klein, R.S. CCR5 Limits Cortical Viral Loads during West Nile Virus Infection of the Central Nervous System. J. Neuroinflamm. 2015, 12, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, F.; Goel, G.; Meng, H.; Wang, X.; You, F.; Devine, L.; Raddassi, K.; Garcia, M.N.; Murray, K.O.; Bolen, C.R.; et al. Systems Immunology Reveals Markers of Susceptibility to West Nile Virus Infection. Clin. Vaccine Immunol. 2015, 22, 6–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suthar, M.S.; Brassil, M.M.; Blahnik, G.; McMillan, A.; Ramos, H.J.; Proll, S.C.; Belisle, S.E.; Katze, M.G.; Gale, M. A Systems Biology Approach Reveals That Tissue Tropism to West Nile Virus Is Regulated by Antiviral Genes and Innate Immune Cellular Processes. PLoS Pathog. 2013, 9, e1003168. [Google Scholar] [CrossRef]
- Shirato, K.; Kimura, T.; Mizutani, T.; Kariwa, H.; Takashima, I. Different Chemokine Expression in Lethal and Non-Lethal Murine West Nile Virus Infection. J. Med. Virol. 2004, 74, 507–513. [Google Scholar] [CrossRef]
- Huang, B.; West, N.; Vider, J.; Zhang, P.; Griffiths, R.E.; Wolvetang, E.; Burtonclay, P.; Warrilow, D. Inflammatory Responses to a Pathogenic West Nile Virus Strain. BMC Infect. Dis. 2019, 19, 912. [Google Scholar] [CrossRef]
- Silva, M.C.; Guerrero-plata, A.; Gilfoy, F.D.; Garofalo, R.P.; Mason, P.W. Differential Activation of Human Monocyte-Derived and Plasmacytoid Dendritic Cells by West Nile Virus Generated in Different Host Cells ᰔ. J. Virol. 2007, 81, 13640–13648. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Patel, J.; Croyle, M.; Diamond, M.S.; Klein, R.S. TNF-α-Dependent Regulation of CXCR3 Expression Modulates Neuronal Survival during West Nile Virus Encephalitis. J. Neuroimmunol. 2010, 224, 28–38. [Google Scholar] [CrossRef] [Green Version]
- McCandless, E.E.; Zhang, B.; Diamond, M.S.; Klein, R.S. CXCR4 Antagonism Increases T Cell Trafficking in the Central Nervous System and Improves Survival from West Nile Virus Encephalitis. Proc. Natl. Acad. Sci. USA 2008, 105, 11270–11275. [Google Scholar] [CrossRef] [Green Version]
- García-Nicolás, O.; Lewandowska, M.; Ricklin, M.E.; Summerfield, A. Monocyte-Derived Dendritic Cells as Model to Evaluate Species Tropism of Mosquito-Borne Flaviviruses. Front. Cell. Infect. Microbiol. 2019, 9, 117. [Google Scholar] [CrossRef]
- Yeung, A.W.S.; Wu, W.; Freewan, M.; Stocker, R.; King, N.J.C.; Thomas, S.R. Flavivirus Infection Induces Indoleamine Macrophages via Tumor Necrosis Factor and NF-Kappa B. J. Leukoc. Biol. 2012, 91, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Valenzuela, R.; Netland, J.; Seo, Y.; Bevan, M.J.; Grakoui, A. Dynamics of Tissue-Specific CD8+ T Cell Responses during West Nile Virus Infection. J. Virol. 2018, 92, e00014-18. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.; Zhang, B.; Purtha, W.E.; Klein, R.S.; Diamond, M.S. Tumor Necrosis Factor Alpha Protects against Lethal West Nile Virus Infection by Promoting Trafficking of Mononuclear Leukocytes into the Central Nervous System. J. Virol. 2008, 82, 8956–8964. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; King, N.J.C.; Kesson, A.M. The Role of Tumor Necrosis Factor in Modulating Responses of Murine Embryo Fibroblasts by Flavivirus, West Nile B. Virology 2004, 329, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szretter, K.J.; Samuel, M.A.; Gilfillan, S.; Fuchs, A.; Colonna, M.; Diamond, M.S. The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis. J. Virol. 2009, 83, 9329–9338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getts, D.R.; Matsumoto, I.; Mu, M.; Getts, T.; Radford, J.; Shrestha, B.; Campbell, I.L.; King, N.J.C. Role of IFN-γ in an Experimental Murine Model of West Nile Virus-Induced Seizures. J. Neurochem. 2007, 103, 1019–1030. [Google Scholar] [CrossRef]
- Shrestha, B.; Wang, T.; Samuel, M.A.; Whitby, K.; Craft, J.; Fikrig, E.; Diamond, M.S. Gamma Interferon Plays a Crucial Early Antiviral Role in Protection against West Nile Virus Infection. J. Virol. 2006, 80, 5338–5348. [Google Scholar] [CrossRef] [Green Version]
- O’Neal, J.T.; Upadhyay, A.A.; Wolabaugh, A.; Patel, N.B.; Bosinger, S.E.; Suthar, M.S. West Nile Virus-Inclusive Single-Cell RNA Sequencing Reveals Heterogeneity in the Type I Interferon Response within Single Cells. J. Virol. 2019, 93, e01778-18. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Belcaid, M.; Nerurkar, V.R. Identification of Host Genes Leading to West Nile Virus Encephalitis in Mice Brain Using RNA-Seq Analysis. Sci. Rep. 2016, 6, 26350. [Google Scholar] [CrossRef]
- Sonar, S.; Girdhari, L. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity. Front. Immunol. 2015, 6, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, D.; Kuley, R.; Draves, K.E.; Roe, K.; Holder, U.; Giltiay, V.; Clark, E.A. B Cell Activating Factor (BAFF) Produced by Neutrophils and Dendritic Cells Is Regulated Differently and Has Distinct Roles in Ab Responses and Protective Immunity against West Nile Virus. J. Immunol. 2020, 204, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
- Fields, J.K.; Günther, S.; Sundberg, E.J. Structural Basis of IL-1 Family Cytokine Signaling. Front. Immunol. 2019, 10, 1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and Chemokines: At the Crossroads of Cell Signalling and Inflammatory Disease. Biochim. Biophys. Acta Mol. Cell Res. 2014, 1843, 2563–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durrant, D.M.; Robinette, M.L.; Klein, R.S. IL-1R1 Is Required for Dendritic Cell-Mediated T Cell Reactivation within the CNS during West Nile Virus Encephalitis. J. Exp. Med. 2013, 210, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Weltea, T.; Xiea, G.; Wickerb, J.A.; Whitemanb, M.C.; Lib, L.; Rachamallua, A.; Barretta, A.; Wang, T. Immune Responses to An Attenuated West Nile Virus NS4B- P38G Mutant Strain. Vaccine 2011, 29, 4853–4861. [Google Scholar] [CrossRef] [Green Version]
- Kovats, S.; Turner, S.; Simmons, A.; Powe, T.; Chakravarty, E.; Alberola-Ila, J. West Nile Virus-Infected Human Dendritic Cells Fail to Fully Activate Invariant Natural Killer T Cells. Clin. Exp. Immunol. 2016, 186, 214–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryan, M.A.; Giordano, D.; Draves, K.E.; Green, R.; Gale, M.; Clark, E.A. Splenic Macrophages Are Required for Protective Innate Immunity against West Nile Virus. PLoS ONE 2018, 13, e0191690. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Wehbe, M.; Lévêque, N.; Bodet, C. Skin Innate Immune Response to Flaviviral Infection. Eur. Cytokine Netw. 2017, 28, 41–51. [Google Scholar] [CrossRef]
- Zheng, D.; Kern, L.; Elinav, E. The NLRP6 Inflammasome. Immunology 2021, 162, 281–289. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome Activation and Regulation: Toward a Better Understanding of Complex Mechanisms. Cell Discov. 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Overview of the IL-1 Family in Innate Inflammation and Acquired Immunity. Immunol. Rev. 2018, 28, 8–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanda, J.D.; Ho, T.S.; Satria, R.D.; Jhan, M.K.; Wang, Y.T.; Lin, C.F. IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis. J. Immunol. Res. 2021, 2021, 8214656. [Google Scholar] [CrossRef]
- Tobler, L.H.; Cameron, M.J.; Lanteri, M.C.; Prince, H.E.; Danesh, A.; Persad, D.; Lanciotti, R.S.; Norris, P.J.; Kelvin, D.J.; Busch, M.P. Interferon and Interferon-Induced Chemokine Expression Is Associated with Control of Acute Viremia in West Nile Virus-Infected Blood Donors. J. Infect. Dis. 2008, 198, 979–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leis, A.A.; Grill, M.F.; Goodman, B.P.; Sadiq, S.B.; Sinclair, D.J.; Vig, P.J.S.; Bai, F. Tumor Necrosis Factor-Alpha Signaling May Contribute to Chronic West Nile Virus Post-Infectious Proinflammatory State. Front. Med. 2020, 7, 164. [Google Scholar] [CrossRef]
- Bonilla, W.V.; Fröhlich, A.; Senn, K.; Kallert, S.; Fernandez, M.; Fallon, P.G.; Klemenz, R.; Nakae, S.; Adler, H.; Merkler, D. The Alarmin Interleukin-33 Drives. Science 2012, 335, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Franca, R.F.O.; Costa, R.S.; Silva, J.R.; Peres, R.S.; Mendonça, L.R.; Colón, D.F.; Alves-Filho, J.C.; Cunha, F.Q. IL-33 Signaling Is Essential to Attenuate Viral-Induced Encephalitis Development by Downregulating INOS Expression in the Central Nervous System. J. Neuroinflamm. 2016, 13, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, T. IL-6 in Inflammation, Autoimmunity and Cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Velazquez-Salinas, L.; Verdugo-Rodriguez, A.; Rodriguez, L.L.; Borca, M.V. The Role of Interleukin 6 during Viral Infections. Front. Microbiol. 2019, 10, 1057. [Google Scholar] [CrossRef] [Green Version]
- Zidovec-Lepej, S.; Vilibic-Cavlek, T.; Barbic, L.; Ilic, M.; Savic, V.; Tabain, I.; Ferenc, T.; Grgic, I.; Gorenec, L.; Bogdanic, M.; et al. Antiviral Cytokine Response in Neuroinvasive and Non-Neuroinvasive West Nile Virus Infection. Viruses 2021, 13, 342. [Google Scholar] [CrossRef]
- Venter, M.; Burt, F.J.; Blumberg, L.; Fickl, H.; Paweska, J.; Swanepoel, R. Cytokine Induction after Laboratory-Acquired West Nile Virus Infection. New Engl. J. Med. 2009, 360, 1260–1262. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.N.; Hause, A.M.; Walker, C.M.; Orange, J.S.; Hasbun, R.; Murray, K.O. Evaluation of Prolonged Fatigue Post-West Nile Virus Infection and Association of Fatigue with Elevated Antiviral and Proinflammatory Cytokines. Viral Immunol. 2014, 27, 327–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milovanovic, J.; Arsenijevic, A.; Stojanovic, B.; Kanjevac, T.; Arsenijevic, D.; Radosavljevic, G.; Milovanovic, M.; Arsenijevic, N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front. Immunol. 2020, 11, 947. [Google Scholar] [CrossRef] [PubMed]
- Yung Peng, R.C.; Rose Khavari, N.D. Interleukin 12 (IL-12) Family Cytokines: Role in Immune Pathogenesis and Treatment of CNS Autoimmune Disease. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef]
- Hansen, M.; Nolan, M.S.; Gorchakov, R.; Hasbun, R.; Murray, K.O.; Ronca, S.E. Unique Cytokine Response in West Nile Virus Patients Who Developed Chronic Kidney Disease: A Prospective Cohort Study. Viruses 2021, 13, 311. [Google Scholar] [CrossRef]
- Schneider, B.S.; McGee, C.E.; Jordan, J.M.; Stevenson, H.L.; Soong, L.; Higgs, S. Prior Exposure to Uninfected Mosquitoes Enhances Mortality in Naturally-Transmitted West Nile Virus Infection. PLoS ONE 2007, 2, e1171. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.X.; Arumugam, T.V.; Gelderblom, M.; Magnus, T.; Drummond, G.R.; Sobey, C.G. Role of CCR2 in Inflammatory Conditions of the Central Nervous System. J. Cereb. Blood Flow Metab. 2014, 34, 1425–1429. [Google Scholar] [CrossRef] [Green Version]
- Venuti, A.; Pastori, C.; Lopalco, L. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Front. Immunol. 2017, 8, 1358. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.K.; McDermott, D.H.; Lisco, A.; Foster, G.A.; Krysztof, D.; Follmann, D.; Stramer, S.L.; Murphy, P.M. CCR5 Deficiency Is a Risk Factor for Early Clinical Manifestations of West Nile Virus Infection but Not for Viral Transmission. J. Infect. Dis. 2010, 201, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Hussmann, K.L.; Fredericksen, B.L. Differential Induction of CCL5 by Pathogenic and Non-Pathogenic Strains of West Nile Virus in Brain Endothelial Cells and Astrocytes. J. Gen. Virol. 2014, 95, 862–867. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Chen, R.; Wang, X.; Hu, K.; Huang, L.; Lu, M.; Hu, Q. CCL19 and CCR7 Expression, Signaling Pathways, and Adjuvant Functions in Viral Infection and Prevention. Front. Cell Dev. Biol. 2019, 7, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, S.; Reyes-Aldasoro, C.C.; Candel, S.; Renshaw, S.A.; Mulero, V.; Calado, Â. Cxcl8 (IL-8) Mediates Neutrophil Recruitment and Behavior in the Zebrafish Inflammatory Response. J. Immunol. 2013, 190, 4349–4359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goczalik, I.; Ulbricht, E.; Hollborn, M.; Raap, M.; Uhlmann, S.; Weick, M.; Pannicke, T.; Wiedemann, P.; Bringmann, A.; Reichenbach, A.; et al. Expression of CXCL8, CXCR1, and CXCR2 in Neurons and Glial Cells of the Human and Rabbit Retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4578–4589. [Google Scholar] [CrossRef] [Green Version]
- Mikolka, P.; Kopincova, J.; Kosutova, P.; Kolomaznik, M.; Calkovska, A.; Mokra, D. Anti-IL-8 Antibody Potentiates the Effect of Exogenous Surfactant in Respiratory Failure Caused by Meconium Aspiration. Exp. Lung Res. 2018, 44, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Suen, W.W.; Uddin, M.J.; Wang, W.; Brown, V.; Adney, D.R.; Broad, N.; Prow, N.A.; Bowen, R.A.; Hall, R.A.; Bielefeldt-Ohmann, H. Experimental West Nile Virus Infection in Rabbits: An Alternative Model for Studying Induction of Disease and Virus Control. Pathogens 2015, 4, 529–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suen, W.W.; Imoda, M.; Thomas, A.W.; Nasir, N.N.B.M.; Tearnsing, N.; Wang, W.; Bielefeldt-Ohmann, H. An Acute Stress Model in New Zealand White Rabbits Exhibits Altered Immune Response to Infection with West Nile Virus. Pathogens 2019, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Koubourli, D.V.; Yaparla, A.; Popovic, M.; Grayfer, L. Amphibian (Xenopus laevis) Interleukin-8 (CXCL8): A Perspective on the Evolutionary Divergence of Granulocyte Chemotaxis. Front. Immunol. 2018, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.E.; Mezzapelle, R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front. Immunol. 2020, 11, 2109. [Google Scholar] [CrossRef]
- Lee, M.; Lee, Y.; Song, J.; Lee, J.; Chang, S.Y. Tissue-Specific Role of CX3 CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018, 18, e5. [Google Scholar] [CrossRef]
- Koh, W.L.; Ng, M.L. Molecular Mechanisms of West Nile Virus Pathogenesis in Brain Cells. Emerg. Infect. Dis. 2005, 11, 629–632. [Google Scholar] [CrossRef]
- Zakharova, M.; Ziegler, H.K. Paradoxical Anti-Inflammatory Actions of TNF-α: Inhibition of IL-12 and IL-23 via TNF Receptor 1 in Macrophages and Dendritic Cells. J. Immunol. 2005, 175, 5024–5033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, G.; Luo, H.; Pang, L.; Peng, B.; Winkelmann, E.; McGruder, B.; Hesse, J.; Whiteman, M.; Campbell, G.; Milligan, G.N.; et al. Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice. J. Virol. 2016, 90, 1333–1344. [Google Scholar] [CrossRef] [Green Version]
- Machain-Williams, C.; Reagan, K.; Wang, T.; Zeidner, N.S.; Blair, C.D. Immunization with Culex Tarsalis Mosquito Salivary Gland Extract Modulates West Nile Virus Infection. Viral. Immunol. 2013, 26, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Survival Following Lethal WNV Challenge 1 | Role in WNV Pathogenesis 1 | References | |
---|---|---|---|
Interleukins | |||
IL-1 β | + | Langerhans cell migration to the draining LNs. Protective CNS-intrinsic immune response and leukocytes migration to the CNS. Synaptic deficits and spatial learning defects during recovery. | [16,18,32,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] |
IL-6 | N.E. | N/A | [19,20,52,65,66,67,68,69,70,71,72,73,74,75] |
IL-10 | − | Viral replication in the periphery and in the CNS and downregulation of IL-12/23 p40 and TNF-α in the CNS. | [19,32,61,64,68,73,76,77,78,79] |
IL-12 | N.E. | No role of IL-12 p35 in brain infiltration or homing of leukocytes. | [66,70,76,80,81,82,83,84] |
IL-17 A | + | CD8+T cell cytotoxicity. | [43,76,85] |
IL-22 | − | WNV entry into the CNS via neutrophils Intrinsic control of viral replication in the brain CXCL1, CXCL5 and Cxcr2 expression in the brain | [42,61,76,86] |
IL-23 | + | Brain infiltration and homing of leukocytes | [76,82] |
CC chemokines | |||
CCL2 | +/− | Monocytes migration and differentiation into DCs in the skin and LNs. Monocytosis and monocytes trafficking to the brain. | [19,20,32,44,45,47,56,64,65,69,76,77,84,85,87,88,89,90,91,92] |
CCL7 | + | Monocytosis, recruitment of neutrophils and CD8+ T cells into the CNS Viral clearance from the brain. | [44,45,47,76,85,91] |
C chemokine receptors | |||
Ccr2 | + | Monocytosis, monocytes migration to the brain and viral clearance from the CNS. | [44,76] |
Ccr5 | + | Leukocyte trafficking to the CNS/control of the BBB permeabilityViral clearance in the brain | [32,93] |
Ccr7 | + | DCs and T cell trafficking to the LNs Control of WNV-infected myeloid cells infiltration into the CNS. | [46] |
CX chemokine | |||
CXCL10 | + | Recruitment of CD8+ T-cells into the CNS. | [19,20,32,47,48,49,56,57,64,65,68,70,71,75,76,77,80,84,85,87,88,91,92,94,95,96,97,98] |
CX chemokine receptors | |||
Cxcr2 | − | N/A | [49] |
Cxcr3 | + | CD8+ T cells control of WNV infection within the cerebellum | [48,99] |
Cxcr4 | − | Downregulation of T cells trafficking to the brain | [100] |
CX3C Chemokine | |||
CX3CL1 | N.E. | Monocytes (microglial precursor) recruitment to the brain. | [32] |
CX3C Chemokine receptor | |||
Cx3cr1 | N.E. | N/A | [32,46,90] |
Tumor necrosis factor superfamily ligands | |||
TNF-α | +/− | No effect in Langerhans cell migration to the draining lymph nodes. Regulation of leukocyte infiltration in the CNS. Down-regulation of neuronal Cxcr3 and subsequent neuronal apoptosis. | [17,19,20,32,52,55,57,61,62,64,65,66,67,68,69,70,72,73,74,75,76,77,84,87,88,95,99,101,102,103,104,105,106,107,108] |
TRAIL | + | CD8+ T cells-mediated viral clearance in the CNS. | [38,69,109] |
FasL | +/N.E. | CD8+ T cells-mediated viral clearance in the CNS. | [39,59,76,77,110] |
CD40L | + | Efficient production of neutralizing antibodies, trafficking of CD8+ T cells into the brain, and control of WNV replication in the CNS. | [111] |
BAFF | + | Viral clearance from sera, spleen, and brain. | [41,112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benzarti, E.; Murray, K.O.; Ronca, S.E. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023, 15, 806. https://doi.org/10.3390/v15030806
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses. 2023; 15(3):806. https://doi.org/10.3390/v15030806
Chicago/Turabian StyleBenzarti, Emna, Kristy O. Murray, and Shannon E. Ronca. 2023. "Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection" Viruses 15, no. 3: 806. https://doi.org/10.3390/v15030806
APA StyleBenzarti, E., Murray, K. O., & Ronca, S. E. (2023). Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses, 15(3), 806. https://doi.org/10.3390/v15030806