Autoantibodies to Interferons in Infectious Diseases
Abstract
:1. Introduction
2. Production of aAbs
2.1. Types of aAbs
2.2. Anti-Cytokine aAbs
3. Role of IFNs and Anti-IFN aAbs in Infectious Diseases
3.1. IFNs in Infectious Diseases
3.2. aAbs against IFNs in Non-Infectious Diseases
3.3. aAbs against IFNs in Infectious Diseases
3.4. aAbs against IFN-I in COVID-19
4. Significance of the Production of aAbs against IFNs
4.1. Is There a Gender Bias for aAbs Production?
4.2. Are Infection-Related aAbs Associated to Immunosenescence?
4.3. Are aAbs Detected during Infections Dangerous or Protective?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casanova, J.L.; Abel, L. Mechanisms of viral inflammation and disease in humans. Science 2021, 374, 1080–1086. [Google Scholar] [CrossRef]
- Liston, A.; Humblet-Baron, S.; Duffy, D.; Goris, A. Human immune diversity: From evolution to modernity. Nat. Immunol. 2021, 22, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Katze, M.G.; He, Y.; Gale, M., Jr. Viruses and interferon: A fight for supremacy. Nat. Rev. Immunol. 2002, 2, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Elkon, K.; Casali, P. Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 2008, 4, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020, 370, eabd4585. [Google Scholar] [CrossRef]
- Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 2017, 17, 281–294. [Google Scholar] [CrossRef]
- Nagele, E.P.; Han, M.; Acharya, N.K.; DeMarshall, C.; Kosciuk, M.C.; Nagele, R.G. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE 2013, 8, e60726. [Google Scholar] [CrossRef]
- Oppezzo, P.; Dighiero, G. Autoanticorps, tolérance et auto-immunité [Autoantibodies, tolerance and autoimmunity]. Pathol. Biol. 2003, 51, 297–304. (In French) [Google Scholar] [CrossRef]
- Olson, J.K.; Croxford, J.L.; Calenoff, M.A.; Dal Canto, M.C.; Miller, S.D. A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Investig. 2001, 108, 311–318. [Google Scholar] [CrossRef]
- Fujinami, R.S.; Oldstone, M.B.; Wroblewska, Z.; Frankel, M.E.; Koprowski, H. Molecular mimicry in virus infection: Crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc. Natl. Acad. Sci. USA 1983, 80, 2346–2350. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Bowman, M.A.; Campbell, L.; Darrow, B.L.; Kaufman, D.L.; Maclaren, N.K. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Investig. 1994, 94, 2125–2129. [Google Scholar] [CrossRef] [PubMed]
- Fielder, M.; Pirt, S.J.; Tarpey, I.; Wilson, C.; Cunningham, P.; Ettelaie, C.; Binder, A.; Bansal, S.; Ebringer, A. Molecular mimicry and ankylosing spondylitis: Possible role of a novel sequence in pullulanase of Klebsiella pneumoniae. FEBS Lett. 1995, 369, 243–248. [Google Scholar] [CrossRef] [PubMed]
- McClain, M.T.; Heinlen, L.D.; Dennis, G.J.; Roebuck, J.; Harley, J.B.; James, J.A. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 2005, 11, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Doxey, A.C.; McConkey, B.J. Prediction of molecular mimicry candidates in human pathogenic bacteria. Virulence 2013, 4, 453–466. [Google Scholar] [CrossRef]
- Venigalla, S.S.K.; Premakumar, S.; Janakiraman, V. A possible role for autoimmunity through molecular mimicry in alphavirus mediated arthritis. Sci. Rep. 2020, 10, 938–950. [Google Scholar] [CrossRef]
- Haury, M.; Sundblad, A.; Grandien, A.; Barreau, C.; Coutinho, A.; Nobrega, A. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol. 1997, 27, 1557–1563. [Google Scholar] [CrossRef]
- Palma, J.; Tokarz-Deptuła, B.; Deptuła, J.; Deptuła, W. Natural antibodies—Facts known and unknown. Cent. Eur. J. Immunol. 2018, 43, 466–475. [Google Scholar] [CrossRef]
- Griffin, D.O.; Holodick, N.E.; Rothstein, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70−. J. Exp. Med. 2011, 208, 67–80. [Google Scholar] [CrossRef]
- Coutinho, A.; Kazatchkine, M.D.; Avrameas, S. Natural autoantibodies. Curr. Opin. Immunol. 1995, 7, 812–818. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Toubi, E. Protective autoantibodies: Role in homeostasis, clinical importance, and therapeutic potential. Arthritis Rheumatol. 2005, 52, 2599–2606. [Google Scholar] [CrossRef]
- Watanabe, M.; Uchida, K.; Nakagaki, K.; Trapnell, B.C.; Nakata, K. High avidity cytokine autoantibodies in health and disease: Pathogenesis and mechanisms. Cytokine Growth Factor Rev. 2010, 21, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Cappellano, G.; Orilieri, E.; Woldetsadik, A.D.; Boggio, E.; Soluri, M.F.; Comi, C.; Sblattero, D.; Chiocchetti, A.; Dianzani, U. Anti-cytokine autoantibodies in autoimmune diseases. Am. J. Clin. Exp. Immunol. 2012, 1, 136–146. [Google Scholar] [PubMed]
- Tabuchi, Y.; Shimoda, M.; Kagara, N.; Naoi, Y.; Tanei, T.; Shimomura, A.; Shimazu, K.; Kim, S.J.; Noguchi, S. Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. Breast Cancer Res. Treat. 2016, 157, 55–63. [Google Scholar] [CrossRef]
- Gillissen, M.A.; de Jong, G.; Kedde, M.; Yasuda, E.; Levie, S.E.; Moiset, G.; Hensbergen, P.J.; Bakker, A.Q.; Wagner, K.; Villaudy, J.; et al. Patient-derived antibody recognizes a unique CD43 epitope expressed on all AML and has antileukemia activity in mice. Blood Adv. 2017, 1, 1551–1564. [Google Scholar] [CrossRef] [PubMed]
- von Mensdorff-Pouilly, S.; Verstraeten, A.A.; Kenemans, P.; Snijdewint, F.G.; Kok, A.; Van Kamp, G.J.; Paul, M.A.; Van Diest, P.J.; Meijer, S.; Hilgers, J. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol. 2000, 18, 574–583. [Google Scholar] [CrossRef]
- Britschgi, M.; Olin, C.E.; Johns, H.T.; Takeda-Uchimura, Y.; LeMieux, M.C.; Rufibach, K.; Rajadas, J.; Zhang, H.; Tomooka, B.; Robinson, W.H.; et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2009, 106, 12145–12150. [Google Scholar] [CrossRef]
- Ercolini, A.M.; Miller, S.D. The role of infections in autoimmune disease. Clin. Exp. Immunol. 2009, 155, 1–15. [Google Scholar] [CrossRef]
- Kazarian, M.; Laird-Offringa, I.A. Small-cell lung cancer-associated autoantibodies: Potential applications to cancer diagnosis, early detection, and therapy. Mol. Cancer 2011, 10, 33–52. [Google Scholar] [CrossRef]
- Menconi, F.; Marcocci, C.; Marinò, M. Diagnosis and classification of Graves’ disease. Autoimmun. Rev. 2014, 13, 398–402. [Google Scholar] [CrossRef]
- De Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Conte, M.; Rosato, C.; Ciniglio Appiani, M.; de Vincentiis, M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev. 2016, 15, 1005–1011. [Google Scholar] [CrossRef]
- Leslie, R.D.; Palmer, J.; Schloot, N.C.; Lernmark, A. Diabetes at the crossroads: Relevance of disease classification to pathophysiology and treatment. Diabetologia 2016, 59, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, R.J.; Vanhoorelbeke, K.; Leypoldt, F.; Kaya, Z.; Bieber, K.; McLachlan, S.M.; Komorowski, L.; Luo, J.; Cabral-Marques, O.; Hammers, C.M.; et al. Mechanisms of autoantibody-induced pathology. Front. Immunol. 2017, 8, 603–645. [Google Scholar] [CrossRef] [PubMed]
- Meier, L.A.; Binstadt, B.A. The contribution of autoantibodies to inflammatory cardiovascular pathology. Front. Immunol. 2018, 9, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Ansari, R.; Rosen, L.B.; Lisco, A.; Gilden, D.; Holland, S.M.; Zerbe, C.S.; Bonomo, R.A.; Cohen, J.I. Primary and acquired immunodeficiencies associated with severe varicella-zoster virus infections. Clin. Infect. Dis. 2021, 73, e2705–e2712. [Google Scholar] [CrossRef]
- Ikeda, Y.; Toda, G.; Hashimoto, N.; Umeda, N.; Miyake, K.; Yamanaka, M.; Kurokowa, K. Naturally occurring anti-interferon-alpha 2a antibodies in patients with acute viral hepatitis. Clin. Exp. Immunol. 1991, 85, 80–84. [Google Scholar] [CrossRef]
- Hansen, M.B.; Svenson, M.; Bendtzen, K. Human anti-interleukin 1 alpha antibodies. Immunol. Lett. 1991, 30, 133–139. [Google Scholar] [CrossRef]
- Bayat, A.; Burbelo, P.D.; Browne, S.K.; Quinlivan, M.; Martinez, B.; Holland, S.M.; Buvanendran, A.; Kroin, J.S.; Mannes, A.J.; Breuer, J.; et al. Anti-cytokine autoantibodies in postherpetic neuralgia. J. Transl. Med. 2015, 13, 333–341. [Google Scholar] [CrossRef]
- Kärner, J.; Pihlap, M.; Ranki, A.; Krohn, K.; Trebusak Podkrajsek, K.; Bratanic, N.; Battelino, T.; Willcox, N.; Peterson, P.; Kisand, K. IL-6-specific autoantibodies among APECED and thymoma patients. Immun. Inflamm. Dis. 2016, 4, 235–243. [Google Scholar] [CrossRef]
- von Stemann, J.H.; Rigas, A.S.; Thørner, L.W.; Rasmussen, D.G.K.; Pedersen, O.B.; Rostgaard, K.; Erikstrup, C.; Ullum, H.; Hansen, M.B. Prevalence and correlation of cytokine-specific autoantibodies with epidemiological factors and C-reactive protein in 8,972 healthy individuals: Results from the Danish Blood Donor Study. PLoS ONE 2017, 12, e0179981. [Google Scholar] [CrossRef]
- Caruso, A.; Foresti, I.; Gribaudo, G.; Bonfanti, C.; Pollara, P.; Dolei, A.; Landolfo, S.; Turano, A. Anti-interferon-gamma antibodies in sera from HIV infected patients. J. Biol. Regul. Homeost. Agents 1989, 3, 8–12. [Google Scholar]
- Sunder-Plassmann, G.; Sedlacek, P.L.; Sunder-Plassmann, R.; Derfler, K.; Swoboda, K.; Fabrizii, V.; Hirschl, M.M.; Balcke, P. Anti-interleukin-1 alpha autoantibodies in hemodialysis patients. Kidney Int. 1991, 40, 787–791. [Google Scholar] [CrossRef]
- Takasaki, J.; Ogawa, Y. Anti-interleukin-8 autoantibody in the tracheobronchial aspirate of infants with chronic lung disease. Pediatr. Int. 2001, 43, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Tatouli, I.P.; Rosen, L.B.; Hasni, S.; Alevizos, I.; Manna, Z.G.; Rivera, J.; Jiang, C.; Siegel, R.M.; Holland, S.M.; et al. Distinct functions of autoantibodies against interferon in systemic lupus erythematosus: A comprehensive analysis of anticytokine autoantibodies in common rheumatic diseases. Arthritis Rheumatol. 2016, 68, 1677–1687. [Google Scholar] [CrossRef] [PubMed]
- Ku, C.L.; Chi, C.Y.; von Bernuth, H.; Doffinger, R. Autoantibodies against cytokines: Phenocopies of primary immunodeficiencies? Hum. Genet. 2020, 139, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.F.; Yang, C.D.; Cheng, X.B. Anti-interferon autoantibodies in adult-onset immunodeficiency syndrome and severe COVID-19 infection. Front. Immunol. 2021, 12, 788368. [Google Scholar] [CrossRef] [PubMed]
- Bost, K.L.; Hahn, B.H.; Saag, M.S.; Shaw, G.M.; Weigent, D.A.; Blalock, J.E. Individuals infected with HIV possess antibodies against IL-2. Immunology 1988, 65, 611–615. [Google Scholar] [PubMed]
- Salvator, H.; Cheng, A.; Rosen, L.B.; Williamson, P.R.; Bennett, J.E.; Kashyap, A.; Ding, L.; Kwon-Chung, K.J.; Namkoong, H.; Zerbe, C.S.; et al. Neutralizing GM-CSF autoantibodies in pulmonary alveolar proteinosis, cryptococcal meningitis and severe nocardiosis. Respir. Res. 2022, 23, 280–289. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Wang, S.Y.; Shih, H.P.; Tu, K.H.; Huang, W.C.; Ding, J.Y.; Lin, C.H.; Yeh, C.F.; Ho, M.W.; Chang, S.C.; et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J. Clin. Immunol. 2017, 37, 143–152. [Google Scholar] [CrossRef]
- Nanki, T.; Onoue, I.; Nagasaka, K.; Takayasu, A.; Ebisawa, M.; Hosoya, T.; Shirai, T.; Sugihara, T.; Hirata, S.; Kubota, T.; et al. Suppression of elevations in serum C reactive protein levels by anti-IL-6 autoantibodies in two patients with severe bacterial infections. Ann. Rheum. Dis. 2013, 72, 1100–1102. [Google Scholar] [CrossRef]
- Bloomfield, M.; Parackova, Z.; Cabelova, T.; Pospisilova, I.; Kabicek, P.; Houstkova, H.; Sediva, A. Anti-IL6 autoantibodies in an infant with CRP-less septic shock. Front. Immunol. 2019, 10, 2629–2635. [Google Scholar] [CrossRef]
- Ling, Y.; Puel, A. IL-17 and infections. Actas Dermosifiliogr. 2014, 105, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Feng, A.; Yang, E.Y.; Moore, A.R.; Dhingra, S.; Chang, S.E.; Yin, X.; Pi, R.; Mack, E.K.; Völkel, S.; Geßner, R.; et al. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight 2023, 8, e163150. [Google Scholar] [CrossRef] [PubMed]
- Negishi, H.; Taniguchi, T.; Yanai, H. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb. Perspect. Biol. 2018, 10, a028423. [Google Scholar] [CrossRef] [PubMed]
- GeneCards®: The Human Gene Database. Available online: https://www.genecards.org/Search/Keyword?queryString=interferon (accessed on 26 April 2023).
- Dell’Oste, V.; Biolatti, M.; Galitska, G.; Griffante, G.; Gugliesi, F.; Pasquero, S.; Zingoni, A.; Cerboni, C.; De Andrea, M. Tuning the orchestra: HCMV vs. innate immunity. Front. Microbiol. 2020, 11, 661–681. [Google Scholar] [CrossRef] [PubMed]
- Meylan, P.R.; Guatelli, J.C.; Munis, J.R.; Richman, D.D.; Kornbluth, R.S. Mechanisms for the inhibition of HIV replication by interferons-alpha, -beta, and -gamma in primary human macrophages. Virology 1993, 193, 138–148. [Google Scholar] [CrossRef]
- Baca-Regen, L.; Heinzinger, N.; Stevenson, M.; Gendelman, H.E. Alpha interferon-induced antiretroviral activities: Restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes. J. Virol. 1994, 68, 7559–7565. [Google Scholar] [CrossRef]
- Ranganath, N.; Sandstrom, T.S.; Fadel, S.; Côté, S.C.; Angel, J.B. Type I interferon responses are impaired in latently HIV infected cells. Retrovirology 2016, 13, 66–84. [Google Scholar] [CrossRef]
- Dupont, M.; Rousset, S.; Manh, T.V.; Monard, S.C.; Pingris, K.; Souriant, S.; Vahlas, Z.; Velez, T.; Poincloux, R.; Maridonneau-Parini, I.; et al. Dysregulation of the IFN-I signaling pathway by Mycobacterium tuberculosis leads to exacerbation of HIV-1 infection of macrophages. J. Leukoc. Biol. 2022, 112, 1329–1342. [Google Scholar] [CrossRef]
- Sandler, N.G.; Bosinger, S.E.; Estes, J.D.; Zhu, R.T.; Tharp, G.K.; Boritz, E.; Levin, D.; Wijeyesinghe, S.; Makamdop, K.N.; del Prete, G.Q.; et al. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature 2014, 511, 601–605. [Google Scholar] [CrossRef]
- Kovarik, P.; Castiglia, V.; Ivin, M.; Ebner, F. Type I interferons in bacterial infections: A balancing act. Front. Immunol. 2016, 7, 652–670. [Google Scholar] [CrossRef]
- Mundra, A.; Yegiazaryan, A.; Karsian, H.; Alsaigh, D.; Bonavida, V.; Frame, M.; May, N.; Gargaloyan, A.; Abnousian, A.; Venketaraman, V. Pathogenicity of type I interferons in mycobacterium tuberculosis. Int. J. Mol. Sci. 2023, 24, 3919. [Google Scholar] [CrossRef] [PubMed]
- Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts 2018, 9, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Rothfuchs, A.G.; Trumstedt, C.; Wigzell, H.; Rottenberg, M.E. Intracellular bacterial infection-induced IFN-gamma is critically but not solely dependent on Toll-like receptor 4-myeloid differentiation factor 88-IFN-alpha beta-STAT1 signaling. J. Immunol. 2004, 172, 6345–6353. [Google Scholar] [CrossRef] [PubMed]
- Green, A.M.; Difazio, R.; Flynn, J.L. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J. Immunol. 2013, 190, 270–277. [Google Scholar] [CrossRef]
- Naglak, E.K.; Morrison, S.G.; Morrison, R.P. IFNγ is required for optimal antibody-mediated immunity against genital chlamydia infection. Infect. Immun. 2016, 84, 3232–3242. [Google Scholar] [CrossRef]
- Beekhuizen, H.; van de Gevel, J.S. Gamma interferon confers resistance to infection with Staphylococcus aureus in human vascular endothelial cells by cooperative proinflammatory and enhanced intrinsic antibacterial activities. Infect. Immun. 2007, 75, 5615–5626. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J.; Triebold, K.J.; Dalton, D.K.; Stewart, T.A.; Bloom, B.R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993, 178, 2249–2254. [Google Scholar] [CrossRef]
- Krisnawati, D.I.; Liu, Y.C.; Lee, Y.J.; Wang, Y.T.; Chen, C.L.; Tseng, P.C.; Lin, C.F. Functional neutralization of anti-IFN-γ autoantibody in patients with nontuberculous mycobacteria infection. Sci. Rep. 2019, 9, 5682–5691. [Google Scholar] [CrossRef]
- Bao, S.; Beagley, K.W.; France, M.P.; Shen, J.; Husband, A.J. Interferon-gamma plays a critical role in intestinal immunity against Salmonella typhimurium infection. Immunology 2000, 99, 464–472. [Google Scholar] [CrossRef]
- Zenewicz, L.A.; Shen, H. Innate and adaptive immune responses to Listeria monocytogenes: A short overview. Microbes Infect. 2007, 9, 1208–1215. [Google Scholar] [CrossRef]
- Kokordelis, P.; Krämer, B.; Körner, C.; Boesecke, C.; Voigt, E.; Ingiliz, P.; Glässner, A.; Eisenhardt, M.; Wolter, F.; Kaczmarek, D.; et al. An effective interferon-gamma-mediated inhibition of hepatitis C virus replication by natural killer cells is associated with spontaneous clearance of acute hepatitis C in human immunodeficiency virus-positive patients. Hepatology 2014, 59, 814–827. [Google Scholar] [CrossRef] [PubMed]
- Baird, N.L.; Bowlin, J.L.; Hotz, T.J.; Cohrs, R.J.; Gilden, D. Interferon gamma prolongs survival of varicella-zoster virus-infected human neurons In vitro. J. Virol. 2015, 89, 7425–7427. [Google Scholar] [CrossRef] [PubMed]
- Prokunina-Olsson, L.; Muchmore, B.; Tang, W.; Pfeiffer, R.M.; Park, H.; Dickensheets, H.; Hergott, D.; Porter-Gill, P.; Mumy, A.; Kohaar, I.; et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 2013, 45, 164–171. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Durbin, J.E. Contribution of type III interferons to antiviral immunity: Location, location, location. J. Biol. Chem. 2017, 292, 7295–7303. [Google Scholar] [CrossRef]
- Espinosa, V.; Dutta, O.; McElrath, C.; Du, P.; Chang, Y.J.; Cicciarelli, B.; Pitler, A.; Whitehead, I.; Obar, J.J.; Durbin, J.E.; et al. Type III interferon is a critical regulator of innate antifungal immunity. Sci. Immunol. 2017, 2, eaan5357. [Google Scholar] [CrossRef] [PubMed]
- Stanifer, M.L.; Guo, C.; Doldan, P.; Boulant, S. Importance of type I and III interferons at respiratory and intestinal barrier surfaces. Front. Immunol. 2020, 11, 608645. [Google Scholar] [CrossRef]
- Devasthanam, A.S. Mechanisms underlying the inhibition of interferon signaling by viruses. Virulence 2014, 5, 270–277. [Google Scholar] [CrossRef]
- Pozzetto, B.; Mogensen, K.E.; Tovey, M.G.; Gresser, I. Characteristics of autoantibodies to human interferon in a patient with varicella-zoster disease. J. Infect. Dis. 1984, 150, 707–713. [Google Scholar] [CrossRef]
- Meager, A.; Visvalingam, K.; Peterson, P.; Möll, K.; Murumägi, A.; Krohn, K.; Eskelin, P.; Perheentupa, J.; Husebye, E.; Kadota, Y.; et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006, 3, e289. [Google Scholar] [CrossRef]
- Capra, R.; Sottini, A.; Cordioli, C.; Serana, F.; Chiarini, M.; Caimi, L.; Padovani, A.; Bergamaschi, R.; Imberti, L. IFNbeta bioavailability in multiple sclerosis patients: MxA versus antibody-detecting assays. J. Neuroimmunol. 2007, 189, 102–110. [Google Scholar] [CrossRef]
- Zhang, L.; Barker, J.M.; Babu, S.; Su, M.; Stenerson, M.; Cheng, M.; Shum, A.; Zamir, E.; Badolato, R.; Law, A.; et al. A robust immunoassay for anti-interferon autoantibodies that is highly specific for patients with autoimmune polyglandular syndrome type 1. Clin. Immunol. 2007, 125, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, B.E.; Wolff, A.S.; Bratland, E.; Kämpe, O.; Perheentupa, J.; Myhre, A.G.; Meager, A.; Purushothaman, R.; Ten, S.; Husebye, E.S. Radioimmunoassay for autoantibodies against interferon omega; its use in the diagnosis of autoimmune polyendocrine syndrome type I. Clin. Immunol. 2008, 129, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Mo, A.; Jutivorakool, K.; Pancholi, M.; Holland, S.M.; Browne, S.K. Determination of human anticytokine autoantibody profiles using a particle-based approach. J. Clin. Immunol. 2012, 32, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Breivik, L.; Oftedal, B.E.; Bøe Wolff, A.S.; Bratland, E.; Orlova, E.M.; Husebye, E.S. A novel cell-based assay for measuring neutralizing autoantibodies against type I interferons in patients with autoimmune polyendocrine syndrome type 1. Clin. Immunol. 2014, 153, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.M.; Price, J.V.; Barcenas-Morales, G.; Ceron-Gutierrez, L.; Davies, S.; Kumararatne, D.S.; Döffinger, R.; Utz, P.J. Protein microarrays identify disease-specific anti-cytokine autoantibody profiles in the landscape of immunodeficiency. J. Allergy Clin. Immunol. 2016, 137, 204–213.e3. [Google Scholar] [CrossRef]
- Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Manry, J.; Michailidis, E.; Hoffmann, H.H.; Eto, S.; Garcia-Prat, M.; et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 2021, 6, eabl4340. [Google Scholar] [CrossRef]
- Vallbracht, A.; Treuner, J.; Flehmig, B.; Joester, K.E.; Niethammer, D. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature 1981, 289, 496–497. [Google Scholar] [CrossRef]
- Prümmer, O.; Bunjes, D.; Wiesneth, M.; Arnold, R.; Porzsolt, F.; Heimpel, H. High-titre interferon-alpha antibodies in a patient with chronic graft-versus-host disease after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1994, 14, 483–486. [Google Scholar]
- Meager, A.; Wadhwa, M.; Dilger, P.; Bird, C.; Thorpe, R.; Newsom-Davis, J.; Willcox, N. Anti-cytokine autoantibodies in autoimmunity: Preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin. Exp. Immunol. 2003, 132, 128–136. [Google Scholar] [CrossRef]
- Shiono, H.; Wong, Y.L.; Matthews, I.; Liu, J.L.; Zhang, W.; Sims, G.; Meager, A.; Beeson, D.; Vincent, A.; Willcox, N. Spontaneous production of anti-IFN-alpha and anti-IL-12 autoantibodies by thymoma cells from myasthenia gravis patients suggests autoimmunization in the tumor. Int. Immunol. 2003, 15, 903–913. [Google Scholar] [CrossRef]
- Levin, M. Anti-interferon auto-antibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 2006, 3, e292. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.E.; Rosen, L.B.; Csomos, K.; Rosenberg, J.M.; Mathew, D.; Keszei, M.; Ujhazi, B.; Chen, K.; Lee, Y.N.; Tirosh, I.; et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J. Clin. Investig. 2015, 125, 4135–4148. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.M.; Maccari, M.E.; Barzaghi, F.; Allenspach, E.J.; Pignata, C.; Weber, G.; Torgerson, T.R.; Utz, P.J.; Bacchetta, R. Neutralizing anti-cytokine autoantibodies against interferon-α in immunodysregulation polyendocrinopathy enteropathy X-linked. Front. Immunol. 2018, 9, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Chawansuntati, K.; Rattanathammethee, K.; Wipasa, J. Minireview: Insights into anti-interferon-γ autoantibodies. Exp. Biol. Med. 2021, 246, 790–795. [Google Scholar] [CrossRef]
- Kiratikanon, S.; Phinyo, P.; Rujiwetpongstorn, R.; Patumanond, J.; Tungphaisal, V.; Mahanupab, P.; Chaiwarith, R.; Tovanabutra, N.; Chiewchanvit, S.; Chuamanochan, M. Adult-onset immunodeficiency due to anti-interferon-gamma autoantibody-associated Sweet syndrome: A distinctive entity. J. Dermatol. 2022, 49, 133–141. [Google Scholar] [CrossRef]
- Lin, C.H.; Chi, C.Y.; Shih, H.P.; Ding, J.Y.; Lo, C.C.; Wang, S.Y.; Kuo, C.Y.; Yeh, C.F.; Tu, K.H.; Liu, S.H.; et al. Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease. Nat. Med. 2016, 22, 994–1001. [Google Scholar] [CrossRef]
- Acosta, P.L.; Byrne, A.B.; Hijano, D.R.; Talarico, L.B. Human type I interferon antiviral effects in respiratory and reemerging viral infections. J. Immunol. Res. 2020, 2020, 1372494. [Google Scholar] [CrossRef]
- Mogensen, K.E.; Daubas, P.; Gresser, I.; Sereni, D.; Varet, B. Patient with circulating antibodies to alpha-interferon. Lancet 1981, 2, 1227–1228. [Google Scholar] [CrossRef]
- Leroy, V.; Baud, M.; de Traversay, C.; Maynard-Muet, M.; Lebon, P.; Zarski, J.P. Role of anti-interferon antibodies in breakthrough occurrence during alpha 2a and 2b therapy in patients with chronic hepatitis C. J. Hepatol. 1998, 28, 375–381. [Google Scholar] [CrossRef]
- Hoffmann, R.M.; Berg, T.; Teuber, G.; Prümmer, O.; Leifeld, L.; Jung, M.C.; Spengler, U.; Zeuzem, S.; Hopf, U.; Pape, G.R. Interferon-antibodies and the breakthrough phenomenon during ribavirin/interferon-alpha combination therapy and interferon-alpha monotherapy of patients with chronic hepatitis C. Z. Gastroenterol. 1999, 37, 715–723. [Google Scholar]
- Zhang, Q.; Pizzorno, A.; Miorin, L.; Bastard, P.; Gervais, A.; Le Voyer, T.; Bizien, L.; Manry, J.; Rosain, J.; Philippot, Q.; et al. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J. Exp. Med. 2022, 219, e20220514. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, F.; Alharbi, N.K.; Rosen, L.B.; Asiri, A.Y.; Assiri, A.M.; Balkhy, H.H.; Al Jeraisy, M.; Mandourah, Y.; AlJohani, S.; Al Harbi, S.; et al. Type I interferon autoantibodies in hospitalized patients with Middle East respiratory syndrome and association with outcomes and treatment effect of interferon beta-1b in MIRACLE clinical trial. Influenza Other Respir. Viruses 2023, 17, e13116. [Google Scholar] [CrossRef] [PubMed]
- Ghale, R.; Spottiswoode, N.; Anderson, M.S.; Mitchell, A.; Wang, G.; Calfee, C.S.; DeRisi, J.L.; Langelier, C.R. Prevalence of type-1 interferon autoantibodies in adults with non-COVID-19 acute respiratory failure. Respir. Res. 2022, 23, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Philippot, Q.; Bastard, P.; Puel, A.; Casanova, J.L.; Cobat, A.; Laouénan, C.; Tardivon, C.; Crestani, B.; Borie, R. No increased prevalence of autoantibodies neutralizing type I IFNs in idiopathic pulmonary fibrosis patients. Respir. Res. 2023, 24, 87–90. [Google Scholar] [CrossRef]
- Bastard, P.; Michailidis, E.; Hoffmann, H.H.; Chbihi, M.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Seeleuthner, Y.; Gervais, A.; Materna, M.; et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 2021, 218, e20202486. [Google Scholar] [CrossRef]
- Busnadiego, I.; Abela, I.A.; Frey, P.M.; Hofmaenner, D.A.; Scheier, T.C.; Schuepbach, R.A.; Buehler, P.K.; Brugger, S.D.; Hale, B.G. Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease. PLoS Biol. 2022, 20, e3001709. [Google Scholar] [CrossRef]
- Höflich, C.; Sabat, R.; Rosseau, S.; Temmesfeld, B.; Slevogt, H.; Döcke, W.D.; Grütz, G.; Meisel, C.; Halle, E.; Göbel, U.B.; et al. Naturally occurring anti-IFN-gamma autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood 2004, 103, 673–675. [Google Scholar] [CrossRef]
- Browne, S.K.; Burbelo, P.D.; Chetchotisakd, P.; Suputtamongkol, Y.; Kiertiburanakul, S.; Shaw, P.A.; Kirk, J.L.; Jutivorakool, K.; Zaman, R.; Ding, L.; et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 2012, 367, 725–734. [Google Scholar] [CrossRef]
- Aoki, A.; Sakagami, T.; Yoshizawa, K.; Shima, K.; Toyama, M.; Tanabe, Y.; Moro, H.; Aoki, N.; Watanabe, S.; Koya, T.; et al. Clinical significance of Interferon-γ neutralizing autoantibodies against disseminated nontuberculous mycobacterial disease. Clin. Infect. Dis. 2018, 66, 1239–1245. [Google Scholar] [CrossRef]
- Döffinger, R.; Helbert, M.R.; Barcenas-Morales, G.; Yang, K.; Dupuis, S.; Ceron-Gutierrez, L.; Espitia-Pinzon, C.; Barnes, N.; Bothamley, G.; Casanova, J.L.; et al. Autoantibodies to interferon-gamma in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. Clin. Infect. Dis. 2004, 38, e10-4. [Google Scholar] [CrossRef]
- Hong, G.H.; Ortega-Villa, A.M.; Hunsberger, S.; Chetchotisakd, P.; Anunnatsiri, S.; Mootsikapun, P.; Rosen, L.B.; Zerbe, C.S.; Holland, S.M. Natural history and evolution of anti-Interferon-γ autoantibody-associated immunodeficiency syndrome in Thailand and the United States. Clin. Infect. Dis. 2020, 71, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.K.; Liao, T.L.; Chang, S.H.; Yeo, K.J.; Chou, C.H.; Chen, D.Y. High-titer anti-interferon-γ neutralizing autoantibodies linked to opportunistic infections in patients with adult-onset still’s disease. Front. Med. (Lausanne) 2023, 9, 1097514. [Google Scholar] [CrossRef] [PubMed]
- Barcenas-Morales, G.; Cortes-Acevedo, P.; Doffinger, R. Anticytokine autoantibodies leading to infection: Early recognition, diagnosis and treatment options. Curr. Opin. Infect. Dis. 2019, 32, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Taur, P.D.; Gowri, V.; Pandrowala, A.A.; Iyengar, V.V.; Chougule, A.; Golwala, Z.; Chandak, S.; Agarwal, R.; Keni, P.; Dighe, N.; et al. Clinical and molecular findings in mendelian susceptibility to mycobacterial diseases: Experience from India. Front. Immunol. 2021, 12, 631298. [Google Scholar] [CrossRef] [PubMed]
- Worldmeter, COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/ (accessed on 26 April 2023).
- Mehta, O.P.; Bhandari, P.; Raut, A.; Kacimi, S.E.O.; Huy, N.T. Coronavirus Disease (COVID-19): Comprehensive review of clinical presentation. Front. Public Health 2021, 8, 582932. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Galani, I.E.; Rovina, N.; Lampropoulou, V.; Triantafyllia, V.; Manioudaki, M.; Pavlos, E.; Koukaki, E.; Fragkou, P.C.; Panou, V.; Rapti, V.; et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat. Immunol. 2021, 22, 32–40. [Google Scholar] [CrossRef]
- Pierangeli, A.; Gentile, M.; Oliveto, G.; Frasca, F.; Sorrentino, L.; Matera, L.; Nenna, R.; Viscido, A.; Fracella, M.; Petrarca, L.; et al. Comparison by age of the local interferon response to SARS-CoV-2 suggests a role for IFN-ε and -ω. Front. Immunol. 2022, 13, 873232. [Google Scholar] [CrossRef]
- Spiering, A.E.; de Vries, T.J. Why females do better: The X chromosomal TLR7 gene-dose effect in COVID-19. Front. Immunol. 2021, 12, 756262. [Google Scholar] [CrossRef]
- Puel, A.; Bastard, P.; Bustamante, J.; Casanova, J.L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 2022, 219, e20211387. [Google Scholar] [CrossRef] [PubMed]
- Arrestier, R.; Bastard, P.; Belmondo, T.; Voiriot, G.; Urbina, T.; Luyt, C.E.; Gervais, A.; Bizien, L.; Segaux, L.; Ben Ahmed, M.; et al. Auto-antibodies against type I IFNs in > 10% of critically ill COVID-19 patients: A prospective multicentre study. Ann. Intensive Care 2022, 12, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Bastard, P.; Vazquez, S.; Liu, J.; Laurie, M.T.; Wang, C.Y.; Gervais, A.; Le Voyer, T.; Bizien, L.; Zamecnik, C.; Philippot, Q.; et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Sci. Immunol. 2022, eabp8966. [Google Scholar] [CrossRef]
- Manry, J.; Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Michailidis, E.; Hoffmann, H.H.; Eto, S.; Garcia-Prat, M.; et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl. Acad. Sci. USA 2022, 119, e2200413119. [Google Scholar] [CrossRef]
- Acosta-Ampudia, Y.; Monsalve, D.M.; Rojas, M.; Rodríguez, Y.; Gallo, J.E.; Salazar-Uribe, J.C.; Santander, M.J.; Cala, M.P.; Zapata, W.; Zapata, M.I.; et al. COVID-19 convalescent plasma composition and immunological effects in severe patients. J. Autoimmun. 2021, 118, 102598. [Google Scholar] [CrossRef]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Jaycox, J.R.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Koning, R.; Bastard, P.; Casanova, J.L.; Brouwer, M.C.; van de Beek, D.; Amsterdam, U.M.C. COVID-19 Biobank Investigators. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 2021, 47, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Troya, J.; Bastard, P.; Planas-Serra, L.; Ryan, P.; Ruiz, M.; de Carranza, M.; Torres, J.; Martínez, A.; Abel, L.; Casanova, J.L.; et al. Neutralizing autoantibodies to type I IFNs in >10% of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J. Clin. Immunol. 2021, 41, 914–922. [Google Scholar] [CrossRef]
- Vazquez, S.E.; Bastard, P.; Kelly, K.; Gervais, A.; Norris, P.J.; Dumont, L.J.; Casanova, J.L.; Anderson, M.S.; DeRisi, J.L. Neu-tralizing autoantibodies to type I interferons in COVID-19 convalescent donor plasma. J. Clin. Immunol. 2021, 41, 1169–1171. [Google Scholar] [CrossRef]
- Lopez, J.; Mommert, M.; Mouton, W.; Pizzorno, A.; Brengel-Pesce, K.; Mezidi, M.; Villard, M.; Lina, B.; Richard, J.C.; Fassier, J.B.; et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J. Exp. Med. 2021, 218, e20211211. [Google Scholar] [CrossRef]
- Abers, M.S.; Rosen, L.B.; Delmonte, O.M.; Shaw, E.; Bastard, P.; Imberti, L.; Quaresima, V.; Biondi, A.; Bonfanti, P.; Casta-gnoli, R.; et al. Neutralizing type-I interferon autoantibodies are associated with delayed viral clearance and intensive care unit admission in patients with COVID-19. Immunol. Cell Biol. 2021, 99, 917–921. [Google Scholar] [CrossRef]
- Goncalves, D.; Mezidi, M.; Bastard, P.; Perret, M.; Saker, K.; Fabien, N.; Pescarmona, R.; Lombard, C.; Walzer, T.; Casanova, J.L.; et al. Antibodies against type I interferon: Detection and association with severe clinical outcome in COVID-19 patients. Clin. Transl. Immunol. 2021, 10, e1327. [Google Scholar] [CrossRef]
- Ziegler, C.G.K.; Miao, V.N.; Owings, A.H.; Navia, A.W.; Tang, Y.; Bromley, J.D.; Lotfy, P.; Sloan, M.; Laird, H.; Williams, H.B.; et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 2021, 184, 4713–4733.e22. [Google Scholar] [CrossRef]
- Chang, S.E.; Feng, A.; Meng, W.; Apostolidis, S.A.; Mack, E.; Artandi, M.; Barman, L.; Bennett, K.; Chakraborty, S.; Chang, I.; et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 2021, 12, 5417. [Google Scholar] [CrossRef]
- van der Wijst, M.G.P.; Vazquez, S.E.; Hartoularos, G.C.; Bastard, P.; Grant, T.; Bueno, R.; Lee, D.S.; Greenland, J.R.; Sun, Y.; Perez, R.; et al. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 2021, 13, eabh2624. [Google Scholar] [CrossRef]
- Solanich, X.; Rigo-Bonnin, R.; Gumucio, V.D.; Bastard, P.; Rosain, J.; Philippot, Q.; Perez-Fernandez, X.L.; Fuset-Cabanes, M.P.; Gordillo-Benitez, M.Á.; Suarez-Cuartin, G.; et al. Pre-existing autoantibodies neutralizing high concentrations of type I interferons in almost 10% of COVID-19 patients admitted to intensive care in Barcelona. J. Clin. Immunol. 2021, 41, 1733–1744. [Google Scholar] [CrossRef]
- Yee, D.; Tso, M.; Shaw, E.; Rosen, L.B.; Samuels, E.; Bastard, P.; Casanova, J.L.; Holland, S.M.; Su, H.C.; Richard, S.A.; et al. Type I interferon autoantibodies are detected in those with critical COVID-19, including a young female patient. Open Forum Infect. Dis. 2021, 8, S325–S326. [Google Scholar] [CrossRef]
- Savvateeva, E.; Filippova, M.; Valuev-Elliston, V.; Nuralieva, N.; Yukina, M.; Troshina, E.; Baklaushev, V.; Ivanov, A.; Gryadunov, D. Microarray-based detection of antibodies against SARS-CoV-2 proteins, common respiratory viruses and type I interferons. Viruses 2021, 13, 2553. [Google Scholar] [CrossRef]
- Carapito, R.; Li, R.; Helms, J.; Carapito, C.; Gujja, S.; Rolli, V.; Guimaraes, R.; Malagon-Lopez, J.; Spinnhirny, P.; Lederle, A.; et al. Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Sci. Transl. Med. 2022, 14, eabj7521. [Google Scholar] [CrossRef]
- Chauvineau-Grenier, A.; Bastard, P.; Servajean, A.; Gervais, A.; Rosain, J.; Jouanguy, E.; Cobat, A.; Casanova, J.L.; Rossi, B. Autoantibodies neutralizing type I interferons in 20% of COVID-19 deaths in a French hospital. J. Clin. Immunol. 2022, 42, 459–470. [Google Scholar] [CrossRef]
- Petrikov, S.S.; Borovkova, N.V.; Popugaev, K.A.; Storozheva, M.V.; Kvasnikov, A.M.; Godkov, M.A. Anti-interferon alpha autoantibodies and their significance in COVID-19. Russ. J. Inf. Immun. 2022, 12, 279–287. [Google Scholar] [CrossRef]
- Raadsen, M.P.; Gharbharan, A.; Jordans, C.C.E.; Mykytyn, A.Z.; Lamers, M.M.; van den Doel, P.B.; Endeman, H.; van den Akker, J.P.C.; GeurtsvanKessel, C.H.; Koopmans, M.P.G.; et al. Interferon-α2 auto-antibodies in convalescent plasma therapy for COVID-19. J. Clin. Immunol. 2022, 42, 232–239. [Google Scholar] [CrossRef]
- Steels, S.; Van Elslande, J.; Leuven COVID-Study Group; De Munter, P.; Bossuyt, X. Transient increase of pre-existing anti-IFN-α2 antibodies induced by SARS-CoV-2 infection. J. Clin. Immunol. 2022, 42, 742–745. [Google Scholar] [CrossRef]
- Frasca, F.; Scordio, M.; Santinelli, L.; Gabriele, L.; Gandini, O.; Criniti, A.; Pierangeli, A.; Angeloni, A.; Mastroianni, C.M.; d’Ettorre, G.; et al. Anti-IFN-α/-ω neutralizing antibodies from COVID-19 patients correlate with downregulation of IFN response and laboratory biomarkers of disease severity. Eur. J. Immunol. 2022, 52, 1120–1128. [Google Scholar] [CrossRef]
- Akbil, B.; Meyer, T.; Stubbemann, P.; Thibeault, C.; Staudacher, O.; Niemeyer, D.; Jansen, J.; Mühlemann, B.; Doehn, J.; Tabeling, C.; et al. Early and rapid identification of COVID-19 patients with neutralizing type I interferon auto-antibodies. J. Clin. Immunol. 2022, 42, 1111–1129. [Google Scholar] [CrossRef]
- Eto, S.; Nukui, Y.; Tsumura, M.; Nakagama, Y.; Kashimada, K.; Mizoguchi, Y.; Utsumi, T.; Taniguchi, M.; Sakura, F.; Noma, K.; et al. Neutralizing type I interferon autoantibodies in Japanese patients with severe COVID-19. J. Clin. Immunol. 2022, 42, 1360–1370. [Google Scholar] [CrossRef]
- Mathian, A.; Breillat, P.; Dorgham, K.; Bastard, P.; Charre, C.; Lhote, R.; Quentric, P.; Moyon, Q.; Mariaggi, A.A.; Mouries-Martin, S.; et al. Lower disease activity but higher risk of severe COVID-19 and herpes zoster in patients with systemic lupus erythematosus with pre-existing autoantibodies neutralising IFN-α. Ann. Rheum. Dis. 2022, 81, 1695–1703. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Q.; Li, H.; Jiang, H.; Xu, J.; Bergquist, R.; Qin, Z. Autoantibodies against type I interferons in COVID-19 infection: A systematic review and meta-analysis. Int. J. Infect. Dis. 2023, 130, 147–152. [Google Scholar] [CrossRef]
- Jiang, W.; Johnson, D.; Adekunle, R.; Heather, H.; Xu, W.; Cong, X.; Wu, X.; Fan, H.; Andersson, L.M.; Robertson, J.; et al. COVID-19 is associated with bystander polyclonal autoreactive B cell activation as reflected by a broad autoantibody production, but none is linked to disease severity. J. Med. Virol. 2023, 95, e28134. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention, Long COVID or Post-COVID Conditions. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 26 April 2023).
- Muri, J.; Cecchinato, V.; Cavalli, A.; Shanbhag, A.A.; Matkovic, M.; Biggiogero, M.; Maida, P.A.; Moritz, J.; Toscano, C.; Ghovehoud, E.; et al. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 2023, 24, 604–611. [Google Scholar] [CrossRef]
- Lavi, Y.; Vojdani, A.; Halpert, G.; Sharif, K.; Ostrinski, Y.; Zyskind, I.; Lattin, M.T.; Zimmerman, J.; Silverberg, J.I.; Rosenberg, A.Z.; et al. Dysregulated levels of circulating autoantibodies against neuronal and nervous system autoantigens in COVID-19 patients. Diagnostics 2023, 13, 687. [Google Scholar] [CrossRef]
- Mantovani, A.; Morrone, M.C.; Patrono, C.; Santoro, M.G.; Schiaffino, S.; Remuzzi, G.; Bussolati, G.; COVID-19 Commission of the Accademia Nazionale dei Lincei. Long Covid: Where we stand and challenges ahead. Cell Death Differ. 2022, 29, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.J.; Mitchell, A.; Wang, C.Y.; Takahashi, S.; Hoh, R.; Tai, V.; Durstenfeld, M.S.; Hsue, P.Y.; Kelly, J.D.; Martin, J.N. Low prevalence of interferon α autoantibodies in people experiencing symptoms of post-Coronavirus Disease 2019 (COVID-19) conditions, or long COVID. J. Infect Dis. 2023, 227, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.K.; Yeo, K.J.; Chang, S.H.; Liao, T.L.; Chou, C.H.; Lan, J.L.; Chang, C.K.; Chen, D.Y. The detectable anti-interferon-γ autoantibodies in COVID-19 patients may be associated with disease severity. Virol. J. 2023, 20, 33. [Google Scholar] [CrossRef]
- Credle, J.J.; Gunn, J.; Sangkhapreecha, P.; Monaco, D.R.; Zheng, X.A.; Tsai, H.J.; Wilbon, A.; Morgenlander, W.R.; Rastegar, A.; Dong, Y. Unbiased discovery of autoantibodies associated with severe COVID-19 via genome-scale self-assembled DNA-barcoded protein libraries. Nat. Biomed. Eng. 2022, 6, 992–1003. [Google Scholar] [CrossRef]
- Shome, M.; Chung, Y.; Chavan, R.; Park, J.G.; Qiu, J.; LaBaer, J. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 2022, 39, 110873. [Google Scholar] [CrossRef]
- Kronzer, V.L.; Bridges, S.L., Jr.; Davis, J.M., 3rd. Why women have more autoimmune diseases than men: An evolutionary perspective. Evol. Appl. 2020, 14, 629–633. [Google Scholar] [CrossRef]
- Fairweather, D.; Frisancho-Kiss, S.; Rose, N.R. Sex differences in autoimmune disease from a pathological perspective. Am. J. Pathol. 2008, 173, 600–609. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, H.; Wang, Z.; Zhang, X. Circulating natural antibodies to inflammatory cytokines are potential biomarkers for atherosclerosis. J. Inflamm. 2018, 15, 22–38. [Google Scholar] [CrossRef]
- Ataya, A.; Knight, V.; Carey, B.C.; Lee, E.; Tarling, E.J.; Wang, T. The role of GM-CSF autoantibodies in infection and autoimmune pulmonary alveolar proteinosis: A concise review. Front. Immunol. 2021, 12, 752856. [Google Scholar] [CrossRef]
- Browne, S.K.; Holland, S.M. Anticytokine autoantibodies in infectious diseases: Pathogenesis and mechanisms. Lancet Infect. Dis. 2010, 10, 875–885. [Google Scholar] [CrossRef]
- Liu, Y.; Ebinger, J.E.; Mostafa, R.; Budde, P.; Gajewski, J.; Walker, B.; Joung, S.; Wu, M.; Bräutigam, M.; Hesping, F.; et al. Paradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 infection. J. Transl. Med. 2021, 19, 524–537. [Google Scholar] [CrossRef]
- Wehbe, Z.; Hammoud, S.H.; Yassine, H.M.; Fardoun, M.; El-Yazbi, A.F.; Eid, A.H. Molecular and biological mechanisms underlying gender differences in COVID-19 severity and mortality. Front. Immunol. 2021, 12, 659339. [Google Scholar] [CrossRef]
- de Mol, J.; Kuiper, J.; Tsiantoulas, D.; Foks, A.C. The dynamics of B cell aging in health and disease. Front. Immunol. 2021, 12, 733566. [Google Scholar] [CrossRef]
- Cusick, M.F.; Libbey, J.E.; Fujinami, R.S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Allergy Immunol. 2012, 42, 102–111. [Google Scholar] [CrossRef]
- Ma, H.; Murphy, C.; Loscher, C.E.; O’Kennedy, R. Autoantibodies—Enemies, and/or potential allies? Front. Immunol. 2022, 13, 953726. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, X.; Zhang, Z.; Zhang, Q.; Zhao, Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell 2022, 21, e13671. [Google Scholar] [CrossRef]
- Ruan, P.; Wang, S.; Yang, M.; Wu, H. The ABC-associated immunosenescence and lifestyle interventions in autoimmune disease. Rheumatol. Immunol. Res. 2022, 3, 128–135. [Google Scholar] [CrossRef]
- Zhou, D.; Borsa, M.; Simon, A.K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021, 20, e13316. [Google Scholar] [CrossRef]
- Mouat, I.C.; Goldberg, E.; Horwitz, M.S. Age-associated B cells in autoimmune diseases. Cell. Mol. Life Sci. 2022, 79, 402–436. [Google Scholar] [CrossRef]
- Hooper, B.; Whittingham, S.; Mathews, J.D.; Mackay, I.R.; Curnow, D.H. Autoimmunity in a rural community. Clin. Exp. Immunol. 1972, 12, 79–87. [Google Scholar]
- Shu, S.; Nisengard, R.J.; Hale, W.L.; Beutner, E.H. Incidence and titers of antinuclear, antismooth muscle, and other autoantibodies in blood donors. J. Lab. Clin. Med. 1975, 86, 259–265. [Google Scholar]
- Comarmond, C.; Lorin, V.; Marques, C.; Maciejewski-Duval, A.; Joher, N.; Planchais, C.; Touzot, M.; Biard, L.; Hieu, T.; Quiniou, V.; et al. TLR9 signalling in HCV-associated atypical memory B cells triggers Th1 and rheumatoid factor autoantibody responses. J. Hepatol. 2019, 71, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Rubtsova, K.; Rubtsov, A.V.; van Dyk, L.F.; Kappler, J.W.; Marrack, P. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proc. Natl. Acad. Sci. USA 2013, 110, E3216–E3224. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.L.; Rosenthal, R.L.; Knox, J.J.; Myles, A.; Naradikian, M.S.; Madej, J.; Kostiv, M.; Rosenfeld, A.M.; Meng, W.; Christensen, S.R.; et al. The transcription factor T-bet resolves memory B cell subsets with distinct tissue distributions and antibody specificities in mice and humans. Immunity 2020, 52, 842–855.e6. [Google Scholar] [CrossRef]
- Austin, J.W.; Buckner, C.M.; Kardava, L.; Wang, W.; Zhang, X.; Melson, V.A.; Swanson, R.G.; Martins, A.J.; Zhou, J.Q.; Hoehn, K.B.; et al. Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Sci. Transl. Med. 2019, 11, eaax0904. [Google Scholar] [CrossRef]
- Woodruff, M.C.; Ramonell, R.P.; Nguyen, D.C.; Cashman, K.S.; Saini, A.S.; Haddad, N.S.; Ley, A.M.; Kyu, S.; Howell, J.C.; Ozturk, T.; et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 2020, 21, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Britanova, O.V.; Putintseva, E.V.; Shugay, M.; Merzlyak, E.M.; Turchaninova, M.A.; Staroverov, D.B.; Bolotin, D.A.; Lukyanov, S.; Bogdanova, E.A.; Mamedov, I.Z.; et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J. Immunol. 2014, 192, 2689–2698. [Google Scholar] [CrossRef]
- Hale, B.G. Autoantibodies targeting type I interferons: Prevalence, mechanisms of induction, and association with viral disease susceptibility. Eur. J. Immunol. 2023, e2250164. [Google Scholar] [CrossRef]
- Knight, V.; Merkel, P.A.; O’Sullivan, M.D. Anticytokine autoantibodies: Association with infection and immune dysregulation. Antibodies 2016, 5, 3. [Google Scholar] [CrossRef]
- Wolff, A.S.; Sarkadi, A.K.; Maródi, L.; Kärner, J.; Orlova, E.; Oftedal, B.E.; Kisand, K.; Oláh, E.; Meloni, A.; Myhre, A.G.; et al. Anti-cytokine autoantibodies preceding onset of autoimmune polyendocrine syndrome type I features in early childhood. J. Clin. Immunol. 2013, 33, 1341–1348. [Google Scholar] [CrossRef]
- Mourão, L.C.; Cardoso-Oliveira, G.P.; Braga, É.M. Autoantibodies and malaria: Where we stand? Insights into pathogenesis and protection. Front. Cell. Infect. Microbiol. 2020, 10, 262–272. [Google Scholar] [CrossRef]
- Ortona, E.; Malorni, W. Long COVID: To investigate immunological mechanisms and sex/gender related aspects as fundamental steps for tailored therapy. Eur. Respir. J. 2022, 59, 2102245. [Google Scholar] [CrossRef] [PubMed]
- Shaw, E.R.; Matzinger, P. Transient autoantibodies to danger signals. Front. Immunol. 2023, 14, 1046300. [Google Scholar] [CrossRef] [PubMed]
- Pagano, S.; Gaertner, H.; Cerini, F.; Mannic, T.; Satta, N.; Teixeira, P.C.; Cutler, P.; Mach, F.; Vuilleumier, N.; Hartley, O. The human autoantibody response to apolipoprotein A-I is focused on the C-terminal helix: A new rationale for diagnosis and treatment of cardiovascular disease? PLoS ONE 2015, 10, e0132780. [Google Scholar] [CrossRef] [PubMed]
- de Jonge, H.; Iamele, L.; Maggi, M.; Pessino, G.; Scotti, C. Anti-cancer auto-antibodies: Roles, applications and open issues. Cancers 2021, 13, 813. [Google Scholar] [CrossRef]
- Morgulchik, N.; Athanasopoulou, F.; Chu, E.; Lam, Y.; Kamaly, N. Potential therapeutic approaches for targeted inhibition of inflammatory cytokines following COVID-19 infection-induced cytokine storm. Interface Focus 2021, 12, 20210006. [Google Scholar] [CrossRef] [PubMed]
- Santer, D.M.; Li, D.; Ghosheh, Y.; Zahoor, M.A.; Prajapati, D.; Hansen, B.E.; Tyrrell, D.L.J.; Feld, J.J.; Gehring, A.J. Interferon-λ treatment accelerates SARS-CoV-2 clearance despite age-related delays in the induction of T cell immunity. Nat. Commun. 2022, 13, 6992–7004. [Google Scholar] [CrossRef] [PubMed]
- Metz-Zumaran, C.; Kee, C.; Doldan, P.; Guo, C.; Stanifer, M.L.; Boulant, S. Increased sensitivity of SARS-CoV-2 to type III interferon in human intestinal epithelial cells. J. Virol. 2022, 96, e0170521. [Google Scholar] [CrossRef] [PubMed]
Other Designation | Official Gene Definition | Chromosome | Protein | Receptor | |
---|---|---|---|---|---|
Type I IFNs | IFNAR1; IFNAR2 | ||||
IFN-alpha | IFN-α1, -α2, -α4, -α5, -α6, -α7, -α8, -α10, -α13, -α14, -α16, -α17, -α21 | IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA11P, IFNA12P, IFNA13, IFNA14, IFNA16, IFNA17, IFNA20P, IFNA21, IFNA22P | 9p21.3 | 19 kDa, 20 glycosylated, 165–166 a, 188–189 aa (human) | |
IFN-beta | IFN-β | IFNB1 | 20 kDa, 22 kDa glycosilated, 166 aa, 187 aa (human) | ||
IFN-omega | IFN-ω | IFNW1 | 22 kDa glycosilated, 187 aa, 195 aa (human) | ||
IFN-epsilon | IFN-ε | IFNE | 24.4 kDa, 187 aa, 208 aa (human) | ||
IFN-kappa | IFN-κ | IFNK | 19 kDa, 182 aa 207 aa (human) | ||
IFN-zeta | IFN-ζ (limitin) | 21.7 kDa glycosilated, 182 aa | |||
IFN-tau | IFN-τ | IFNT | 19–24 kDa, 172 aa | ||
IFN-nu | IFN-v | IFNNP1 | NA | ||
Type II IFN | 12q15 | 17 kDa, 115–175 aa, 166 aa (human) | IFNGR1; IFNGR2 | ||
IFN-gamma | IFN-γ | IFNG | |||
Type III IFNs | |||||
IFN-lamda | IFN-λ1 (IL-29) | IFNL1 | 19q13.2 | 21 kDa, 23–35 glycosilated, 200 aa (human) | IFNLR1; IL-10R2 |
IFN-λ2 (IL-28A) | IFNL2 | 22 kDa, 24 glycosilated, 200 aa (human) | |||
IFN-λ3 (IL-28B) | IFNL3 | 21 kDa, 24 glycosilated, 196 aa (human) | |||
IFN-λ4 | IFNL4 | 179 aa |
COVID-19 Gravity | Numbers | Country | IFN-I aAbs Tested | Neutralizing Activity against IFNs | Total | Percentage | Publication Year | Reference |
---|---|---|---|---|---|---|---|---|
Recovered | 19 | Colombia | IFN-α | No | 5 | 26.3 | 2021 | [127] |
Severe | 18 | IFN-α | No | 3 | 16.7 | |||
All | 172 | USA | IFN-α and IFN-ω | Yes | 9 | 5.2 | 2021 | [128] |
All | 210 | The Netherlands | IFN-α and IFN-ω | No | 35 | 17 | 2021 | [129] |
All | 35 | IFN-α and IFN-ω | Yes | 6 | 17 | |||
Severe | 47 | Spain | IFN-α and IFN-ω | 10 ng/mL | 5 | 10.6 | 2021 | [130] |
Critical | 16 | IFN-α and IFN-ω | 10 ng/mL | 3 | 18.7 | |||
Severe | 47 | IFN-β | 10 ng/mL | 0 | 0 | |||
Critical | 16 | IFN-β | 10 ng/mL | 0 | 0 | |||
Convalescent | 116 | USA | IFN-α | No | 4 | 3.0 | 2021 | [131] |
Convalescent | 116 | IFN-α and IFN-ω | 10 ng/mL | 2 | 1.5 | |||
Critical | 26 | France | IFN-α and IFN-ω | Yes | 8 | 30.7 | 2021 | [132] |
Severe | 44 | Italy | IFN-α, IFN-ω and IFN-β | Yes | 2 | 4.5 | 2021 | [133] |
Critical | 135 | Yes | 23 | 17 | ||||
Severe | 84 | France | IFN-α | No | 21 | 25 | 2021 | [134] |
IFN-α and IFN-ω | Yes | 15 | 18 | |||||
Severe | 623 | Consortium | IFN-α and IFN-ω | 10 ng/mL | 22 | 3.53 | 2021 | [87] |
Critical | 3136 | IFN-α and IFN-ω | 10 ng/mL | 307 | 9.8 | |||
Severe | 522 | IFN-α and IFN-ω | 100 pg/mL | 34 | 6.5 | |||
Critical | 3595 | IFN-α and IFN-ω | 100 pg/mL | 489 | 13.6 | |||
Severe | 187 | IFN-β | 10 ng/mL | 0 | 0 | |||
Critical | 1773 | IFN-β | 10 ng/mL | 23 | 1.3 | |||
All | 8 | USA | IFN-α and IFN-ω | No | 1 | 12.8 | 2021 | [135] |
N/A | 51 | USA and Germany | IFN-α | No | 23 | 45 | 2021 | [136] |
Severe | 102 | Several | IFN-α | 10 ng/mL | 6 | 6 | 2021 | [137] |
Critical | 26 | IFN-α | 10 ng/mL | 5 | 19 | |||
Critical | 275 | Spain | IFN-α and IFN-ω | no | 49 | 17.8 | 2021 | [138] |
Critical | 275 | 10 ng/mL | 26 | 9.5 | ||||
Severe | 49 | USA | IFN-α and IFN-ω | Yes | 4 | 8.2 | 2021 | [139] |
Critical | 86 | Russia | IFN-α and IFN-ω | No | 9 | 10.5 | 2021 | [140] |
Critical | 47 | France | IFN-α and IFN-ω | Yes | 2 | 4.2 | 2022 | [141] |
Critical | 139 | France | IFN-α and IFN-ω | no | 107 | 77 | 2022 | [142] |
IFN-α and IFN-ω | 10 ng and 100 pg/mL | 11 | 7.9 | |||||
IFN-β | 10 ng/mL | 0 | 0 | |||||
Deceased | 11 | IFN-α, IFN-ω | 10 ng/mL | 6 | 55 | |||
Severe | 70 | Russia | IFN-α | no | 13 | 18 | 2022 | [143] |
Severe | 97 | The Netherlands | IFN-α | Yes | 7 | 7 | 2022 | [144] |
Fatal | 38 | Yes | 5 | 13 | ||||
Severe | 52 | Belgium | IFN-α | ? | 8 | 15.3 | 2022 | [145] |
All | 360 | Italy | IFN-α | No | 27 | 7.5 | 2022 | [146] |
IFN-α | Yes | 13 | 3.6 | |||||
IFN-β | No | 37 | 10.3 | |||||
IFN-β | Yes | 1 | 0.3 | |||||
Critical | 237 | Germany | IFN-α and IFN-ω | Yes | 18 | 7.5 | 2022 | [147] |
Severe | 235 | Japan | IFN-α and IFN-ω | 10 ng/mL | 5 | 2.1 | 2022 | [148] |
Critical | 170 | IFN-α and IFN-ω | 10 ng/mL | 10 | 5.9 | |||
Severe | 235 | IFN-α and IFN-ω | 100 pg/mL | 6 | 2.6 | |||
Critical | 170 | IFN-α and IFN-ω | 100 pg/mL | 18 | 10.6 | |||
Critical | 103 | Switzerland | IFN-α and IFN-ω | yes | 11 | 10.7 | 2022 | [107] |
IFN-β | yes | 0 | 0 | |||||
Severe/ critical in SLE | 16 | France | IFN-α | 102 pg/mL | 4 | 25 | 2022 | [149] |
13 | IFN-ω | 102 pg/mL | 4 | 31 | ||||
12 | IFN-β | 104 pg/mL | 2 | 17 | ||||
Critical | 925 | France | IFN-α and IFN-ω | Yes | 96 | 10.3 | 2022 | [124] |
Males | Females | p-Value | |
---|---|---|---|
Critical patients, number (%) | 219 (52) | 130 (45) | 0.092 |
Age (years), mean (±SD) | 72 ± 13 | 75 ± 12 | 0.023 |
Age (years) range | 40–98 | 38–99 | - |
Anti-IFN-I aAbs, number (%) | 28 (13) | 16 (12) | 1.000 |
Age (years), mean (±SD) | 75 ± 10 | 78 ± 14 | 0.332 |
Deceased, number (%) | 10 (36) | 8 (50) | 0.525 |
ICU | 14 (50) | 3 (19) | 0.057 |
Days of hospitalization, mean (±SD) | 27 ± 20 | 23 ± 16 | 0.477 |
Vaccinated for SARS-CoV-2, number (%) | 14 (50) | 10 (63) | 0.534 |
Cardiovascular diseases | 13 (46) | 5 (31) | 0.361 |
Hypertension | 13 (46) | 8 (50) | 1.000 |
Dyslipidemia | 8 (29) | 0 (0) | 0.036 |
Diabetes | 11 (39) | 2 (13) | 0.089 |
Solid tumor | 5 (18) | 4 (25) | 0.702 |
Neurologic diseases | 6 (21) | 6 (38) | 0.303 |
COVID-19 complications | 25 (89) | 14 (88) | 1.000 |
Acute respiratory distress syndrome | 25 (89) | 14 (88) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiros-Roldan, E.; Sottini, A.; Signorini, S.G.; Serana, F.; Tiecco, G.; Imberti, L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023, 15, 1215. https://doi.org/10.3390/v15051215
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses. 2023; 15(5):1215. https://doi.org/10.3390/v15051215
Chicago/Turabian StyleQuiros-Roldan, Eugenia, Alessandra Sottini, Simona Giulia Signorini, Federico Serana, Giorgio Tiecco, and Luisa Imberti. 2023. "Autoantibodies to Interferons in Infectious Diseases" Viruses 15, no. 5: 1215. https://doi.org/10.3390/v15051215
APA StyleQuiros-Roldan, E., Sottini, A., Signorini, S. G., Serana, F., Tiecco, G., & Imberti, L. (2023). Autoantibodies to Interferons in Infectious Diseases. Viruses, 15(5), 1215. https://doi.org/10.3390/v15051215