Antiviral Activity of Acetylsalicylic Acid against Bunyamwera Virus in Cell Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Models
2.2. Cells, Virus and Drugs
2.3. Cytotoxicity Assays
2.4. Viral Infection and Antiviral Activity
2.5. Western Blot
2.6. Immunofluorescence and Confocal Microscopy
2.7. Transmission Electron Microscopy (TEM)
2.8. Quantification and Statistical Analysis
3. Results
3.1. Antiviral Selection by Molecular Modeling
3.2. Antiviral Activity in Cells Infected with BUNV
3.3. Effect of ASA on Viral Titer and Viral Protein Expression
3.4. Distribution of Viral Gc and N Proteins in Cells Treated with ASA
3.5. Effect of ASA on the Morphology of Viral Structures and Cellular Organelles
3.6. Recovery of Cell Morphology and BUNV Infection after Elimination of ASA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Prioritizing Diseases for Research and Development in Emergency Contexts. Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 5 April 2023).
- Buxeraud, J.; Faure, S.; Fougere, E. Nirmatrelvir/ritonavir (Paxlovid(R)), a treatment for COVID-19. Actual. Pharm. 2022, 61, 10–12. [Google Scholar] [PubMed]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martin-Quiros, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, F.; Agarwal, A.; Rochwerg, B.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; Macdonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef] [PubMed]
- Schafer, A.; Martinez, D.R.; Won, J.J.; Meganck, R.M.; Moreira, F.R.; Brown, A.J.; Gully, K.L.; Zweigart, M.R.; Conrad, W.S.; May, S.R.; et al. Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice. Sci. Transl. Med. 2022, 14, eabm3410. [Google Scholar] [CrossRef]
- Horne, K.M.; Vanlandingham, D.L. Bunyavirus-vector interactions. Viruses 2014, 6, 4373–4397. [Google Scholar] [CrossRef] [Green Version]
- Fontana, J.; Lopez-Montero, N.; Elliott, R.M.; Fernandez, J.J.; Risco, C. The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell Microbiol. 2008, 10, 2012–2028. [Google Scholar] [CrossRef]
- Mackenzie, J. Wrapping things up about virus RNA replication. Traffic 2005, 6, 967–977. [Google Scholar] [CrossRef]
- Salanueva, I.J.; Novoa, R.R.; Cabezas, P.; Lopez-Iglesias, C.; Carrascosa, J.L.; Elliott, R.M.; Risco, C. Polymorphism and structural maturation of bunyamwera virus in Golgi and post-Golgi compartments. J. Virol. 2003, 77, 1368–1381. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, J.; Gao, G.F.; Tien, P.; Liu, W. Bunyavirales ribonucleoproteins: The viral replication and transcription machinery. Crit. Rev. Microbiol. 2018, 44, 522–540. [Google Scholar] [CrossRef]
- Novoa, R.R.; Calderita, G.; Arranz, R.; Fontana, J.; Granzow, H.; Risco, C. Virus factories: Associations of cell organelles for viral replication and morphogenesis. Biol. Cell 2005, 97, 147–172. [Google Scholar] [CrossRef]
- Garcia-Serradilla, M.; Risco, C.; Pacheco, B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res. 2019, 264, 22–31. [Google Scholar] [CrossRef]
- Buhler, K.J.; Dibernardo, A.; Pilfold, N.W.; Harms, N.J.; Fenton, H.; Carriere, S.; Kelly, A.; Schwantje, H.; Aguilar, X.F.; Leclerc, L.M.; et al. Widespread Exposure to Mosquitoborne California Serogroup Viruses in Caribou, Arctic Fox, Red Fox, and Polar Bears, Canada. Emerg. Infect. Dis. 2023, 29, 54–63. [Google Scholar] [CrossRef]
- Ciota, A.T.; Keyel, A.C. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019, 11, 1013. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Deng, F.; Wang, H.; Ning, Y. Crimean-Congo Hemorrhagic Fever Virus: Current Advances and Future Prospects of Antiviral Strategies. Viruses 2021, 13, 1195. [Google Scholar] [CrossRef]
- Dutuze, M.F.; Nzayirambaho, M.; Mores, C.N.; Christofferson, R.C. A Review of Bunyamwera, Batai, and Ngari Viruses: Understudied Orthobunyaviruses With Potential One Health Implications. Front. Vet. Sci. 2018, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Edridge, A.W.D.; van der Hoek, L. Emerging orthobunyaviruses associated with CNS disease. PLoS Negl. Trop. Dis. 2020, 14, e0008856. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.B.; Peterson, K.E. Throw out the Map: Neuropathogenesis of the Globally Expanding California Serogroup of Orthobunyaviruses. Viruses 2019, 11, 794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, S.; Yang, L.; Cao, P.; Lu, J. Severe fever with thrombocytopenia syndrome virus: A highly lethal bunyavirus. Crit. Rev. Microbiol. 2021, 47, 112–125. [Google Scholar] [CrossRef]
- Ter Horst, S.; Conceicao-Neto, N.; Neyts, J.; Rocha-Pereira, J. Structural and functional similarities in bunyaviruses: Perspectives for pan-bunya antivirals. Rev. Med. Virol. 2019, 29, e2039. [Google Scholar] [CrossRef]
- Bivacqua, R.; Barreca, M.; Spano, V.; Raimondi, M.V.; Romeo, I.; Alcaro, S.; Andrei, G.; Barraja, P.; Montalbano, A. Insight into non-nucleoside triazole-based systems as viral polymerases inhibitors. Eur. J. Med. Chem. 2023, 249, 115136. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Orta, C.; Arias, A.; Escarmis, C.; Verdaguer, N. A comparison of viral RNA-dependent RNA polymerases. Curr. Opin. Struct. Biol. 2006, 16, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Reguera, J.; Weber, F.; Cusack, S. Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog. 2010, 6, e1001101. [Google Scholar] [CrossRef]
- Dias, A.; Bouvier, D.; Crepin, T.; McCarthy, A.A.; Hart, D.J.; Baudin, F.; Cusack, S.; Ruigrok, R.W. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009, 458, 914–918. [Google Scholar] [CrossRef]
- Olschewski, S.; Cusack, S.; Rosenthal, M. The Cap-Snatching Mechanism of Bunyaviruses. Trends Microbiol. 2020, 28, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.; Lessoued, S.; Meier, K.; Devignot, S.; Barata-Garcia, S.; Mate, M.; Bragagnolo, G.; Weber, F.; Rosenthal, M.; Reguera, J. Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res. 2019, 47, 10914–10930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reguera, J.; Gerlach, P.; Rosenthal, M.; Gaudon, S.; Coscia, F.; Gunther, S.; Cusack, S. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathog. 2016, 12, e1005636. [Google Scholar] [CrossRef] [Green Version]
- Banegas-Luna, A.J.; Ceron-Carrasco, J.P.; Puertas-Martin, S.; Perez-Sanchez, H. BRUSELAS: HPC Generic and Customizable Software Architecture for 3D Ligand-Based Virtual Screening of Large Molecular Databases. J. Chem. Inf. Model. 2019, 59, 2805–2817. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36, D901–D906. [Google Scholar] [CrossRef] [PubMed]
- BioMolTech®. Lead Finder™, 6.0.1.; BioMolTech: Toronto, ON, Canada. Available online: http://www.cresset-group.com/lead-finder/(accessed on 5 April 2023).
- Cresset®. Flare™, Litlington: Cambridgeshire, UK. Available online: http://www.cresset-group.com/flare/(accessed on 5 April 2023).
- Bauer, M.R.; Mackey, M.D. Electrostatic Complementarity as a Fast and Effective Tool to Optimize Binding and Selectivity of Protein-Ligand Complexes. J. Med. Chem. 2019, 62, 3036–3050. [Google Scholar] [CrossRef]
- Cheeseright, T.; Mackey, M.; Rose, S.; Vinter, A. Molecular field extrema as descriptors of biological activity: Definition and validation. J. Chem. Inf. Model. 2006, 46, 665–676. [Google Scholar] [CrossRef]
- Kuhn, M.; Firth-Clark, S.; Tosco, P.; Mey, A.; Mackey, M.; Michel, J. Assessment of Binding Affinity via Alchemical Free-Energy Calculations. J. Chem. Inf. Model. 2020, 60, 3120–3130. [Google Scholar] [CrossRef]
- Diallo, B.N.; Swart, T.; Hoppe, H.C.; Tastan Bishop, O.; Lobb, K. Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through pr.roteome scale computational drug discovery and in vitro assay. Sci. Rep. 2021, 11, 1413. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chan, J.F.; den-Haan, H.; Chik, K.K.; Zhang, A.J.; Chan, C.C.; Poon, V.K.; Yip, C.C.; Mak, W.W.; Zhu, Z.; et al. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral. Res. 2017, 145, 33–43. [Google Scholar] [CrossRef]
- Watret, G.E.; Pringle, C.R.; Elliott, R.M. Synthesis of bunyavirus-specific proteins in a continuous cell line (XTC-2) derived from Xenopus laevis. J. Gen. Virol. 1985, 66 Pt 3, 473–482. [Google Scholar] [CrossRef]
- Tolosa, L.; Donato, M.T.; Gomez-Lechon, M.J. General Cytotoxicity Assessment by Means of the MTT Assay. Methods Mol. Biol. 2015, 1250, 333–348. [Google Scholar]
- Lappin, D.F.; Nakitare, G.W.; Palfreyman, J.W.; Elliott, R.M. Localization of Bunyamwera bunyavirus G1 glycoprotein to the Golgi requires association with G2 but not with NSm. J. Gen. Virol. 1994, 75 Pt 12, 3441–3451. [Google Scholar] [CrossRef] [PubMed]
- Eifan, S.A.; Elliott, R.M. Mutational analysis of the Bunyamwera orthobunyavirus nucleocapsid protein gene. J. Virol. 2009, 83, 11307–11317. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Model List of Essential Medicines-22nd List. 2021. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02 (accessed on 5 April 2023).
- Desborough, M.J.R.; Keeling, D.M. The aspirin story-from willow to wonder drug. Br. J. Haematol. 2017, 177, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Algra, A.M.; Rothwell, P.M. Effects of regular aspirin on long-term cancer incidence and metastasis: A systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012, 13, 518–527. [Google Scholar] [CrossRef]
- Li, X.; Wu, S.; Yu, Y. Aspirin Use and the Incidence of Hepatocellular Carcinoma in Patients With Hepatitis B Virus or Hepatitis C Virus Infection: A Meta-Analysis of Cohort Studies. Front. Med. 2020, 7, 569759. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Wilson, M.; Elwin, C.E.; Norrving, B.; Algra, A.; Warlow, C.P.; Meade, T.W. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 2010, 376, 1741–1750. [Google Scholar] [CrossRef]
- Liao, C.L.; Lin, Y.L.; Wu, B.C.; Tsao, C.H.; Wang, M.C.; Liu, C.I.; Huang, Y.L.; Chen, J.H.; Wang, J.P.; Chen, L.K. Salicylates inhibit flavivirus replication independently of blocking nuclear factor kappa B activation. J. Virol. 2001, 75, 7828–7839. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Murillo, K.; Rincon-Sanchez, A.R.; Martinez-Rodriguez, H.; Bosques-Padilla, F.; Ramos-Jimenez, J.; Barrera-Saldana, H.A.; Rojkind, M.; Rivas-Estilla, A.M. Acetylsalicylic acid inhibits hepatitis C virus RNA and protein expression through cyclooxygenase 2 signaling pathways. Hepatology 2008, 47, 1462–1472. [Google Scholar] [CrossRef]
- Glatthaar-Saalmuller, B.; Mair, K.H.; Saalmuller, A. Antiviral activity of aspirin against RNA viruses of the respiratory tract-an in vitro study. Influenza Other Respir. Viruses 2017, 11, 85–92. [Google Scholar] [CrossRef]
- Song, M.S.; Kumar, G.; Shadrick, W.R.; Zhou, W.; Jeevan, T.; Li, Z.; Slavish, P.J.; Fabrizio, T.P.; Yoon, S.W.; Webb, T.R.; et al. Identification and characte…erization of influenza variants resistant to a viral endonuclease inhibitor. Proc. Natl. Acad. Sci. USA 2016, 113, 3669–3674. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.N.; Marti, S.; Castillo, R.; Andres, J.; Moliner, V.; Tunon, I.; Silla, E. A quantum mechanic/molecular mechanic study of the wild-type and N155S mutant HIV-1 integrase complexed with diketo acid. Biophys. J. 2008, 94, 2443–2451. [Google Scholar] [CrossRef] [Green Version]
- Corona, A.; di Leva, F.S.; Rigogliuso, G.; Pescatori, L.; Madia, V.N.; Subra, F.; Delelis, O.; Esposito, F.; Cadeddu, M.; Costi, R.; et al. New insights into the interaction between pyrrolyl diketoacids and HIV-1 integrase active site and comparison with RNase H. Antivir. Res. 2016, 134, 236–243. [Google Scholar] [CrossRef]
- Fernandez-Garcia, Y.; Horst, S.T.; Bassetto, M.; Brancale, A.; Neyts, J.; Rogolino, D.; Sechi, M.; Carcelli, M.; Gunther, S.; Rocha-Pereira, J. Diketo acids inhibit the cap-snatching endonuclease of several Bunyavirales. Antivir. Res. 2020, 183, 104947. [Google Scholar] [CrossRef]
- Kuang, W.; Zhang, H.; Cai, Y.; Zhang, G.; Deng, F.; Li, H.; Zhou, Y.; Wang, M.; Gong, P.; Guo, Y.; et al. Structural and Biochemical Basis for Development of Diketo Acid Inhibitors Targeting the Cap-Snatching Endonuclease of the Ebinur Lake Virus (Order: Bunyavirales). J. Virol. 2022, 96, e0217321. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Serradilla, M.; Risco, C. Light and electron microscopy imaging unveils new aspects of the antiviral capacity of silver nanoparticles in bunyavirus-infected cells. Virus Res. 2021, 302, 198444. [Google Scholar] [CrossRef]
- Arif, H.; Aggarwal, S. Salicylic Acid (Aspirin). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
Virus | Disease | Distribution | Reservoir | Vector | ASA |
---|---|---|---|---|---|
La Crosse | Childhood encephalitis | North, Central and South America | Small mammals (chipmunks and squirrels) | Mosquitoes | Yes |
Cache Valley virus | Fever, encephalitis, meningitis | North and Central America | Deer, cattle, horses and sheep | N.I. | Yes |
Toscana virus | Meningitis, encephalitis | Mediterranean region of Western Europe (Portugal, Spain, France, Greece and Croatia), Cyprus and Turkey | Possibly migratory birds and domestic animals | Sandflies | Yes |
Uukuniemi virus | Fever, headache, muscle and joint pain | Scandinavia | N.I. | Ticks | Yes |
Schmallenberg | Congenital malformations and abortion in livestock | Belgium, Germany, France, Italy, Luxemburg, the Netherlands, Spain and United Kingdom | N.I. | Possibly mosquitoes and midges | Yes |
RVFV | Acute and febrile illness with few severe cases (neurological disorders, partial or complete blindness, hemorrhagic fever or thrombosis) High mortality and abortion in domestic ruminants | Africa, Saudi Arabia and Yemen | Livestock (cattle, sheep, goats, buffalos and camels) | Mosquitoes | No |
CCHFV | Hemorrhagic fever | Eastern and Southern Europe, Northwestern China, Africa, the Middle East and the Indian subcontinent | Wild and domestic animals | Ticks | No |
Lassa Fever virus | Hemorrhagic fever | Endemic in parts of West Africa including Sierra Leone, Liberia, Guinea and Nigeria | Multimammate rat | Multimammate rat | No |
SFTSV (Dabie bandavirus) | Hemorrhagic fever Severe fever with thrombocytopenia | Northwest and central China, Japan, South Korea, Vietnam and Taiwan | N.I. | Ticks | No |
Hantaan | Hemorrhagic fever with renal syndrome (Old World) Hantavirus pulmonary syndrome (New World) | Europe and Asia North and South America | Rodents | Rodents | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Sánchez, S.Y.; Cerón-Carrasco, J.P.; Risco, C.; Fernández de Castro, I. Antiviral Activity of Acetylsalicylic Acid against Bunyamwera Virus in Cell Culture. Viruses 2023, 15, 948. https://doi.org/10.3390/v15040948
Fernández-Sánchez SY, Cerón-Carrasco JP, Risco C, Fernández de Castro I. Antiviral Activity of Acetylsalicylic Acid against Bunyamwera Virus in Cell Culture. Viruses. 2023; 15(4):948. https://doi.org/10.3390/v15040948
Chicago/Turabian StyleFernández-Sánchez, Sara Yolanda, José P. Cerón-Carrasco, Cristina Risco, and Isabel Fernández de Castro. 2023. "Antiviral Activity of Acetylsalicylic Acid against Bunyamwera Virus in Cell Culture" Viruses 15, no. 4: 948. https://doi.org/10.3390/v15040948
APA StyleFernández-Sánchez, S. Y., Cerón-Carrasco, J. P., Risco, C., & Fernández de Castro, I. (2023). Antiviral Activity of Acetylsalicylic Acid against Bunyamwera Virus in Cell Culture. Viruses, 15(4), 948. https://doi.org/10.3390/v15040948