Elevated Antibody Titers to Epstein–Barr Virus and Cytomegalovirus in Patients with Drug-Induced Lupus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Patient Sera
2.3. Quantification of Antibodies in Serum by Enzyme-Linked Immunosorbent Assay
2.4. Quantification of Total IgG in Serum Samples
2.5. Statistics
3. Results
3.1. Detection of EA/D IgG and CMV pp52 IgG in Serum Samples of Lupus-Associated Diseases and Healthy Controls
3.2. Corrected IgG Concentrations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maple, P.A.C. Cytomegalovirus and Epstein–Barr Virus Associations with Neurological Diseases and the Need for Vaccine Development. Vaccines 2020, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Houen, G.; Trier, N.H. Epstein-Barr Virus and systemic autoimmune diseases. Front. Immunol. 2021, 11, 587380. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1964, 7335, 702. [Google Scholar] [CrossRef]
- Bakkalci, D.; Jia, Y.; Winter, J.R.; Lewis, J.E.A.; Taylor, G.S.; Stagg, H.R. Risk factor for Epstein-Barr virus-associated cancers a systematic review, critical appraisal and mapping of the epidemiological evidence. J. Glob. Health 2020, 10, 010405. [Google Scholar] [CrossRef] [PubMed]
- James, J.A.; Neas, B.R.; Moser, K.L.; Hall, T.; Bruner, G.R.; Sestak, A.L.; Harley, J.B. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 2001, 44, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Notarte, K.I.; Senanayake, S.; Macaranas, I.; Albano, P.M.; Mundo, L.; Fennell, E.; Leoncini, L.; Murray, P. MicroRNA and other non-coding RNAs in Epstein-Barr virus-associated cancers. Cancers 2021, 13, 3909. [Google Scholar] [CrossRef]
- Draborg, A.; Izarzugaza, J.M.G.; Houen, G. How compelling are the data for Epstein-Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr. Opin. Rheumatol. 2016, 28, 398–404. [Google Scholar] [CrossRef]
- Ascherio, A.; Munger, K.L. EBV and autoimmunity. Curr. Top. Microbiol. Immunol. 2015, 390, 365–385. [Google Scholar]
- Houen, G.; Trier, N.H.; Frederiksen, J.L. Epstein-Barr Virus and multiple sclerosis. Front. Immunol. 2020, 11, 587078. [Google Scholar] [CrossRef]
- Rostgaard, K.; Balfour, H.H., Jr.; Jarret, R.; Erikstrup, C.; Pedersen, O.; Ullum, H.; Nielsen, L.P.; Voldstedlund, M.; Hjalgrim, H. Primary Epstein-Barr virus infection with and without infectious mononucleosis. PLoS ONE 2019, 14, e0226436. [Google Scholar] [CrossRef]
- Trier, N.H.; Holm, B.E.; Heiden, J.; Slot, O.; Locht, H.; Lindegaard, H.; Svendsen, A.; Nielsen, C.T.; Jacobsen, S.; Theander, E.; et al. Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis. Sci. Rep. 2018, 8, 3684. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.; Izarzugaza, J.; Chailyan, A.; Marcatili, P.; Houen, G. Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands—Relation to Rheumatoid Arthritis. Int. J. Mol. Sci. 2018, 19, 317. [Google Scholar] [CrossRef] [PubMed]
- Wreghitt, T.G.; Teare, E.L.; Sule, O.; Devi, R.; Rice, P. Cytomegalovirus infection in immunocompetent patients. Clin. Infect. Dis. 2003, 37, 1603–1606. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Sasaki, Y.; Maeda, T.; Komatsu, F.; Suzuki, T.; Urita, Y. Clinical differentiation of infectious mononucleosis that is caused by Epstein-Barr virus or cytomegalovirus: A single-center case-control study in Japan. J. Infect. Chemother. 2019, 25, 431–436. [Google Scholar] [CrossRef]
- Gianella, S.; Massanella, M.; Wertheim, J.O.; Smith, D.M. The sordid affair between human herpesvirus and HIV. J. Infect. Dis. 2015, 212, 845–852. [Google Scholar] [CrossRef]
- Kusne, S.; Shapiro, R.; Fung, J. Prevention and treatment of cytomegalovirus infection in organ transplant recipients. Transpl. Infect. Dis. 1999, 1, 187–203. [Google Scholar] [CrossRef]
- Limaye, A.P.; Kirby, K.A.; Rubenfeld, G.D.; Leisenring, W.M.; Bulger, E.M.; Neff, M.J.; Gibran, N.S.; Huang, M.L.; Santo Hayes, T.K.; Corey, L.; et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 2008, 300, 413–422. [Google Scholar] [CrossRef]
- Gugliesi, F.; Pasquero, S.; Griffante, G.; Scutera, S.; Albano, C.; Pacheco, S.F.C.; Riva, G.; Dell’Oste, V.; Biolatti, M. Human Cytomegalovirus and Autoimmune Diseases: Where Are We? Viruses 2021, 13, 260. [Google Scholar] [CrossRef]
- Rasmussen, N.S.; Draborg, A.H.; Nielsen, C.T.; Jacobsen, S.; Houen, G. Antibodies to early EBV, CMV, and HHV6 antigens in systemic lupus erythematosus patients. Scand. J. Rheumatol. 2015, 44, 143–149. [Google Scholar] [CrossRef]
- Hanlon, P.; Avenell, A.; Aucott, L.; Vickers, M.A. Systematic review and meta-analysis if the sero-epidemiological association between Epstein-Barr virus and systemic lupus erythematosus. Arthritis Res. Ther. 2014, 16, R3. [Google Scholar] [CrossRef]
- Dubey, S.; Rodrigues, C.; Nikam, C.; Samant, R. A study of CMV infection in SLE patients. Indian. J. Rheumatol. 2014, 9 (Suppl. 1), S33. [Google Scholar] [CrossRef]
- Chang, C.; Gershwin, M.E. Drug-induced lupus erythematosus: Incidence, management and prevention. Drug Saf. 2011, 34, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.F.; Jordan, N.; D’Cruz, D.P. Systemic lupus erythematosus. Clin. Med. 2017, 17, 78–83. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sawalha, A.H. Drug-induced lupus erythematosus: An update on drugs and mechanisms. Curr. Opin. Rheumatol. 2018, 30, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.L. Drug-induced lupus. Toxicology 2005, 209, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.L. Drug-induced lupus. Expert. Opin. Drug Saf. 2015, 14, 361–378. [Google Scholar] [CrossRef]
- Reinhardt, D.J.; Waldron, J.M. Lupus erythematosus-like syndrome complicating hydralazine (apresoline) therapy. J. Am. Med. Assoc. 1954, 155, 1491–1492. [Google Scholar] [CrossRef]
- Bojinca, V.C.; Bojinca, M.; Gheorghe, M.; Birceanu, A.; Iosif, C.I.; Balanescu, S.M.; Balanescu, A.R. Stevens-Johnsons syndrome or drug-induced lupus—A clinical dilemma: A case report and review of the literature. Biomed. Rep. 2018, 9, 37–41. [Google Scholar] [CrossRef]
- Araújo-Fernández, S.; Ahijón-Lana, M.; Isenberg, D.A. Drug-induced lupus: Including anti-tumour necrosis factor and interferon induced. Lupus 2014, 23, 545–553. [Google Scholar] [CrossRef]
- Schlienger, R.G.; Bircher, A.J.; Meier, C.R. Minocycline-induced lupus. A systematic review. Dermatology 2000, 200, 223–231. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Anti-DNA and autoantibodies. Curr. Opin. Rheumatol. 2000, 12, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.S.; De la Harpe Golden, P.; D’Arcy, C.; Lally, A. Drug-induced lupus erythematosus secondary to pirfenidone. Br. J. Dermatol. 2018, 178, 1437–1438. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.L. Identifying drug-induced lupus. Neurol. USA Pharm. 2011, 1, 37. [Google Scholar]
- Sarkar, R.; Paul, R.; Pandey, R.; Roy, D.; Sau, T.J.; Mani, A.; Ruia, A.V.; Mondal, J. Drug-induced Lupus Presenting with Myocarditis. J. Assoc. Physicians India 2017, 65, 110. [Google Scholar]
- Vasoo, S. Drug-induced lupus: An update. Lupus 2006, 15, 757–761. [Google Scholar] [CrossRef]
- Batchelor, R.J.; Welsh, K.I.; Tinoco, R.M.; Dollery, C.T.; Hughes, G.R.; Bernstein, R.; Ryan, P.; Naish, P.F.; Aber, G.M.; Bing, R.F.; et al. Hydralazine-induced systemic lupus erythematosus: Influence of HLA-DR and sex on susceptibility. Lancet 1980, 1, 1107–1109. [Google Scholar] [CrossRef]
- Speirs, C.; Fielder, A.H.; Chapel, H.; Davey, N.J.; Batchelor, J.R. Complement system protein C4 and susceptibility to hydralazine-induced systemic lupus erythematosus. Lancet 1989, 1, 922–924. [Google Scholar] [CrossRef]
- Gunnarsson, I.; Nordmark, B.; Hassan Bakri, A.; Gröndal, G.; Larsson, P.; Forslid, J.; Klareskog, L.; Ringertz, B. Development of lupus-related side-effects in patients with early RA during sulphasalazine treatment-the role of IL-10 and HLA. Rheumatology 2000, 39, 886–893. [Google Scholar] [CrossRef]
- Laursen, I.A.; Blou, L.; Sullivan, J.S.; Bang, P.; Balstrup, F.; Houen, G. Development, manufacturing and characterization of a highly purified, liquid immunoglobulin g preparation from human plasma. Transfus. Med. Hemother. 2014, 41, 205–212. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Sobhy, N.; Niazy, M.H.; Kama, A. Lymphopenia in systemic lupus erythematosus patients: Is it more than a laboratory finding? Egypt. Rheumatol. 2020, 42, 23–26. [Google Scholar] [CrossRef]
- Münz, C. Cytotoxicity in Epstein Barr virus specific immune control. Curr. Opin. Virol. 2021, 46, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.; Sauce, D.; Deback, C.; Arnaud, L.; Mathian, A.; Miyara, M.; Boutolleau, D.; Parizot, C.; Dorgham, K.; Papagno, L.; et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog. 2011, 7, e1002328. [Google Scholar] [CrossRef] [PubMed]
- Doaty, S.; Agrawal, H.; Bauer, E.; Furst, D.E. Infection and Lupus: Which Causes Which? Curr. Rheumatol. Rep. 2016, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Draborg, A.H.; Duus, K.; Houen, G. Epstein-Barr virus in systemic autoimmune diseases. Clin. Dev. Immunol. 2013, 2013, 535738. [Google Scholar] [CrossRef]
- Tsokos, G.C.; Magrath, I.T.; Balow, J.E. Epstein-Barr virus induces normal B cell responses but defective suppressor T cell responses in patients with systemic lupus erythematosus. J. Immunol. 1983, 131, 1797–1801. [Google Scholar] [CrossRef]
- Berner, B.R.; Tary-Lehmann, M.; Yonkers, N.L.; Askari, A.D.; Lehmann, P.V.; Anthony, D.D. Phenotypic and functional analysis of EBV-specific memory CD8 cells in SLE. Cell. Immunol. 2005, 235, 29–38. [Google Scholar] [CrossRef]
- Thorley-Lawson, D.A. Epstein-Barr virus: Exploiting the immune system. Nat. Rev. Immunol. 2001, 1, 75–82. [Google Scholar] [CrossRef]
- Henderson, S.; Huen, D.; Rove, M.; Dawson, C.; Johnson, G.; Rickinson, A. Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc. Natl. Acad. Sci. USA 1993, 90, 8479–8483. [Google Scholar] [CrossRef]
- Wucherpfennig, K.W. Mechanisms for the induction of autoimmunity by infectious agents. J. Clin. Investig. 2001, 108, 1097–1104. [Google Scholar] [CrossRef]
SLE | DIL | DIV | HCs | |
---|---|---|---|---|
No. of individuals | 30 | 40 | 20 | 40 |
Average age (years) [range] | 38.4 [22–65] | - | - | 38.5 [25–72] |
% females | 96 | - | - | 78 |
% ds DNA antibody-positive | 100 | 7.5 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knudsen, J.; Trier, N.H.; Draborg, A.H.; Nielsen, C.T.; Jacobsen, S.; Højrup, P.; Houen, G. Elevated Antibody Titers to Epstein–Barr Virus and Cytomegalovirus in Patients with Drug-Induced Lupus. Viruses 2023, 15, 986. https://doi.org/10.3390/v15040986
Knudsen J, Trier NH, Draborg AH, Nielsen CT, Jacobsen S, Højrup P, Houen G. Elevated Antibody Titers to Epstein–Barr Virus and Cytomegalovirus in Patients with Drug-Induced Lupus. Viruses. 2023; 15(4):986. https://doi.org/10.3390/v15040986
Chicago/Turabian StyleKnudsen, Julie, Nicole Hartwig Trier, Anette Holck Draborg, Christoffer Tandrup Nielsen, Søren Jacobsen, Peter Højrup, and Gunnar Houen. 2023. "Elevated Antibody Titers to Epstein–Barr Virus and Cytomegalovirus in Patients with Drug-Induced Lupus" Viruses 15, no. 4: 986. https://doi.org/10.3390/v15040986
APA StyleKnudsen, J., Trier, N. H., Draborg, A. H., Nielsen, C. T., Jacobsen, S., Højrup, P., & Houen, G. (2023). Elevated Antibody Titers to Epstein–Barr Virus and Cytomegalovirus in Patients with Drug-Induced Lupus. Viruses, 15(4), 986. https://doi.org/10.3390/v15040986