Development of a Pan-Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primer Design
2.2. Preparation of Standard Templates
2.3. Reverse Transcription
2.4. SYBR Green qPCR
2.5. Analytical Sensitivity
2.6. Hydrolysis Probe-Based qPCR
2.7. Spiked Sample Panel
2.8. Field Sample Panel
3. Results
3.1. Analytical Sensitivity
3.1.1. Standard Templates
3.1.2. Titrated Cell Culture Virus
3.2. Spiked Sample Panel
3.3. Field Sample Panel
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kuhn, J.H.; Adkins, S.; Agwanda, B.R.; Al Kubrusli, R.; Alkhovsky, S.V.; Amarasinghe, G.K.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; et al. 2021 Taxonomic Update of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales. Arch. Virol. 2021, 166, 3513–3566. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.-D.; Chen, X.; Tian, J.-H.; Chen, L.-J.; Li, K.; Wang, W.; Eden, J.-S.; Shen, J.-J.; Liu, L.; et al. Author Correction: The Evolutionary History of Vertebrate RNA Viruses. Nature 2018, 561, E6. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, J.; Marzi, A.; Feldmann, H. Filoviruses: Ecology, Molecular Biology, and Evolution. In Advances in Virus Research; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 100, ISBN 9780128152010. [Google Scholar]
- Siegert, R.; Shu, H.-L.; Slenczka, W.; Peters, D.; Müller, G. Zur Ätiologie Einer Unbekannten, von Affen Ausgegangenen Menschlichen Infektionskrankheit. DMW—Dtsch. Med. Wochenschr. 1967, 92, 2341–2343. [Google Scholar] [CrossRef] [PubMed]
- Languon, S.; Quaye, O. Filovirus Disease Outbreaks: A Chronological Overview. Virol. Res. Treat. 2019, 10, 1178122X1984992. [Google Scholar] [CrossRef] [PubMed]
- Kamorudeen, R.T.; Adedokun, K.A.; Olarinmoye, A.O. Ebola Outbreak in West Africa, 2014–2016: Epidemic Timeline, Differential Diagnoses, Determining Factors, and Lessons for Future Response. J. Infect. Public Health 2020, 13, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Swanepoel, R. Experimental Inoculation of Plants and Animals with Ebola Virus. Emerg. Infect. Dis. 1996, 2, 321–325. [Google Scholar] [CrossRef]
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.-P.; Swanepoel, R. Fruit Bats as Reservoirs of Ebola Virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef]
- Swanepoel, R.; Smit, S.B.; Rollin, P.E.; Formenty, P.; Leman, P.A.; Kemp, A.; Burt, F.J.; Grobbelaar, A.A.; Croft, J.; Bausch, D.G.; et al. Studies of Reservoir Hosts for Marburg Virus. Emerg. Infect. Dis. 2007, 13, 1847–1851. [Google Scholar] [CrossRef]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.R.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L.; et al. Isolation of Genetically Diverse Marburg Viruses from Egyptian Fruit Bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef]
- Negredo, A.; Palacios, G.; Vázquez-Morón, S.; González, F.; Dopazo, H.; Molero, F.; Juste, J.; Quetglas, J.; Savji, N.; de la Cruz Martínez, M.; et al. Discovery of an Ebolavirus-Like Filovirus in Europe. PLoS Pathog. 2011, 7, e1002304. [Google Scholar] [CrossRef]
- Kemenesi, G.; Kurucz, K.; Dallos, B.; Zana, B.; Földes, F.; Boldogh, S.; Görföl, T.; Carroll, M.W.; Jakab, F. Re-Emergence of Lloviu Virus in Miniopterus schreibersii Bats, Hungary, 2016. Emerg. Microbes Infect. 2018, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kemenesi, G.; Tóth, G.E.; Mayora-Neto, M.; Scott, S.; Temperton, N.; Wright, E.; Mühlberger, E.; Hume, A.J.; Suder, E.L.; Zana, B.; et al. Isolation of Infectious Lloviu Virus from Schreiber’s Bats in Hungary. Nat. Commun. 2022, 13, 1706. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, T.; Anthony, S.J.; Gbakima, A.; Bird, B.H.; Bangura, J.; Tremeau-Bravard, A.; Belaganahalli, M.N.; Wells, H.L.; Dhanota, J.K.; Liang, E.; et al. Author Correction: The Discovery of Bombali Virus Adds Further Support for Bats as Hosts of Ebolaviruses. Nat. Microbiol. 2018, 3, 1486. [Google Scholar] [CrossRef] [PubMed]
- Lebarbenchon, C.; Goodman, S.M.; Hoarau, A.O.G.; Le Minter, G.; Dos Santos, A.; Schoeman, M.C.; Léculier, C.; Raoul, H.; Gudo, E.S.; Mavingui, P. Bombali ebolavirus in Mops Condylurus Bats (Molossidae), Mozambique. Emerg. Infect. Dis. 2022, 28, 2583–2585. [Google Scholar] [CrossRef]
- Forbes, K.M.; Webala, P.W.; Jääskeläinen, A.J.; Abdurahman, S.; Ogola, J.; Masika, M.M.; Kivistö, I.; Alburkat, H.; Plyusnin, I.; Levanov, L.; et al. Bombali Virus in Mops Condylurus Bat, Kenya. Emerg. Infect. Dis. 2019, 25, 955–957. [Google Scholar] [CrossRef]
- Yang, X.; Tan, C.W.; Anderson, D.E.; Jiang, R.; Li, B.; Zhang, W.; Zhu, Y.; Lim, X.F.; Zhou, P.; Liu, X.-L.; et al. Characterization of a Filovirus (Měnglà Virus) from Rousettus Bats in China. Nat. Microbiol. 2019, 4, 390–395. [Google Scholar] [CrossRef]
- Yang, X.-L.; Zhang, Y.-Z.; Jiang, R.-D.; Guo, H.; Zhang, W.; Li, B.; Wang, N.; Wang, L.; Waruhiu, C.; Zhou, J.-H.; et al. Genetically Diverse Filoviruses in Rousettus and Eonycteris Spp. Bats, China, 2009 and 2015. Emerg. Infect. Dis. 2017, 23, 482–486. [Google Scholar] [CrossRef]
- Jahrling, P.B.; Geisbert, T.W.; Johnson, E.D.; Peters, C.J.; Dalgard, D.W.; Hall, W.C. Preliminary Report: Isolation of Ebola Virus from Monkeys Imported to USA. Lancet 1990, 335, 502–505. [Google Scholar] [CrossRef]
- Jayme, S.I.; Field, H.E.; de Jong, C.; Olival, K.J.; Marsh, G.; Tagtag, A.M.; Hughes, T.; Bucad, A.C.; Barr, J.; Azul, R.R.; et al. Molecular Evidence of Ebola Reston Virus Infection in Philippine Bats. Virol. J. 2015, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.; Hayman, D. Filoviruses in Bats: Current Knowledge and Future Directions. Viruses 2014, 6, 1759–1788. [Google Scholar] [CrossRef]
- Le Guenno, B.; Formenty, P.; Wyers, M.; Gounon, P.; Walker, F.; Boesch, C. Isolation and Partial Characterisation of a New Strain of Ebola Virus. Lancet 1995, 345, 1271–1274. [Google Scholar] [CrossRef]
- Clark, D.J.; Tyson, J.; Sails, A.D.; Krishna, S.; Staines, H.M. The Current Landscape of Nucleic Acid Tests for Filovirus Detection. J. Clin. Virol. 2018, 103, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, A.J.; Sironen, T.; Diagne, C.T.; Diagne, M.M.; Faye, M.; Faye, O.; Faye, O.; Hewson, R.; Mölsä, M.; Weidmann, M.W.; et al. Development, Validation and Clinical Evaluation of a Broad-Range Pan-Filovirus RT-QPCR. J. Clin. Virol. 2019, 114, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Young, C.C.W.; Olival, K.J. Optimizing Viral Discovery in Bats. PLoS ONE 2016, 11, e0149237. [Google Scholar] [CrossRef] [PubMed]
- Simmons, N.B.; Cirranello, A.L. Bat Species of the World: A Taxonomic and Geographic Database. Available online: https://batnames.org/ (accessed on 9 September 2022).
- Markotter, W.; Coertse, J.; De Vries, L.; Geldenhuys, M.; Mortlock, M. Bat-borne Viruses in Africa: A Critical Review. J. Zool. 2020, 311, 77–98. [Google Scholar] [CrossRef]
- Giannini, N.P.; Gunnell, G.F.; Habersetzer, J.; Simmons, N.B. Early Evolution of Body Size in Bats. In Evolutionary History of Bats; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139045599. [Google Scholar]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Panning, M.; Laue, T.; Ölschlager, S.; Eickmann, M.; Becker, S.; Raith, S.; Courbot, M.G.; Nilsson, M.; Gopal, R.; Lundkvist, A.; et al. Diagnostic Reverse-Transcription Polymerase Chain Reaction Kit for Filoviruses Based on the Strain Collections of All European Biosafety Level 4 Laboratories. J. Infect. Dis. 2007, 196, S199–S204. [Google Scholar] [CrossRef]
- Paweska, J.T.; Jansen van Vuren, P.; Masumu, J.; Leman, P.A.; Grobbelaar, A.A.; Birkhead, M.; Clift, S.; Swanepoel, R.; Kemp, A. Virological and Serological Findings in Rousettus aegyptiacus Experimentally Inoculated with Vero Cells-Adapted Hogan Strain of Marburg Virus. PLoS ONE 2012, 7, e45479. [Google Scholar] [CrossRef]
- Mortlock, M.; Geldenhuys, M.; Dietrich, M.; Epstein, J.H.; Weyer, J.; Pawęska, J.T.; Markotter, W. Seasonal Shedding Patterns of Diverse Henipavirus-Related Paramyxoviruses in Egyptian Rousette Bats. Sci. Rep. 2021, 11, 24262. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Ebolvirus Disease Outbreaks. Available online: https://www.cdc.gov/vhf/ebola/outbreaks/index-2018.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fvhf%2Febola%2Foutbreaks%2Findex.html (accessed on 10 January 2023).
- History of Marburg Virus Disease (MVD) Outbreaks. Available online: https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html (accessed on 10 January 2023).
- Van Cakenberghe, V.; Seamark, E.C. (Eds.) African Chiroptera Report 2022; AfricanBats NPC: Pretoria, South Africa, 2022. [Google Scholar]
Virus | Species | Genus | Genbank Accession Number | Host | Country | Year |
---|---|---|---|---|---|---|
Bombali virus | Bombali ebolavirus | Ebolavirus | NC039345 | Mops condylurus | Sierra Leone | 2016 |
Bundibugyo virus | Bundibugyo ebolavirus | Ebolavirus | KC545396 | Homo sapiens | Democratic Republic of the Congo | 2012 |
Ebola virus | Zaire ebolavirus | Ebolavirus | MG572235 | Homo sapiens | Democratic Republic of the Congo | 1995 |
Lloviu virus | Lloviu cuevavirus | Cuevavirus | NC016144 | Miniopterus schrebersii | Spain | 2003 |
Marburg virus | Marburg marburgvirus | Marburgvirus | MG725616 | Rousettus aegyptiacus | South Africa | 2013 |
Měnglà virus | Mengla dianlovirus | Dianlovirus | KX371887 | Rousettus sp. | China | 2015 |
Reston virus | Reston ebolavirus | Ebolavirus | JX477165 | Swine | Philippines | 2009 |
Sudan virus | Sudan ebolavirus | Ebolavirus | KC545391 | Homo sapiens | Uganda | 2012 |
Täi Forest virus | Tai Forest ebolavirus | Ebolavirus | MH121167 | Homo sapiens | Cote d’Ivoire | 1994 |
Target | Primer/Probe | Sequence (5′-3′) 1 | Position on Genome 2 |
---|---|---|---|
Ebolavirus | FiloA2.4 | AGCATTTCCTAGCAATATGATGGT | 13340 |
Filo B | TGTGGTGGGTTATAATAATCACTGACATG | 13603 | |
FAMEBOg | FAM-CCAAAATCATCACTIGTGTGGTGCCA-BHQ1 | 13411 | |
Marburgvirus | FiloA2.3 | AAGCATTCCCTAGCAACATGATGGT | 13249 |
Filo B-Ra | GTGAGGAGGGCTATAAAAGTCACTGACATG | 13512 | |
FAMMBG | FAM-CCTATGCTTGCTGAATTGTGGTGCCA-BHQ1 | 13320 |
Sample Type | Count | Approach |
---|---|---|
Urine 1 | 410 | Non-invasive |
Fecal 2 | 422 | |
Oral swab | 65 | Non-destructive |
Rectal swab | 93 |
Copy Number | Bombali Virus | Bundibugyo Virus | Ebola Virus | Lloviu Virus | Marburg Virus | Měnglà Virus | Reston Virus | Sudan Virus | Taï Forest Virus |
---|---|---|---|---|---|---|---|---|---|
10−1 | Neg | Neg | Neg | Neg | Neg | Neg | Neg | Neg | Neg |
100 | 33.62 (0.36) | 39.29 (0.99) | 39.23 (0.75) | 40.17 1 | 41.98 (1.52) 2 | 37.55 (1.32) | 41.98 (1.52) 2 | 31.30 (0.40) | 43.59 1 |
101 | 33.26 (0.56) | 35.12 (1.77) | 35.55 (1.44) | 36.59 (3.25)2 | 39.35 (0.89) | 39.69 (1.28) | 37.54 (0.89) | 38.71 (3.92) | 37.84 (1.61) |
102 | 33.11 (1.02) | 39.98 (1.01) | 37.31 (0.51) | 31.22 (5.68) | 40.53 (4.83) | 38.93 (1.95) | 32.67 (4.83) | 31.92 (0.38) | 34.86 (0.50) |
103 | 35.06 (1.27) | 37.63 (0.32) | 35.59 (0.92) | 36.35 (2.58) | 34.46 (0.13) | 36.07 (1.68) | 40.54 (1.83) | 42.48 (0.53) | 34.34 (0.29) |
104 | 32.42 (0.26) | 33.92 (0.35) | 36.17 (1.41) | 35.53 (1.48) | 34.09 (0.37) | 38.18 (1.63) | 35.56 (0.08) | 37.29 (2.01) | 30.38 (0.22) |
105 | 30.62 (0.37) | 29.76 (0.28) | 30.98 (0.41) | 33.77 (3.22) | 30.39 (0.27) | 32.51 (1.1) | 31.34 (0.12) | 33.46 (0.46) | 26.42 (0.09) |
106 | 28.65 (0.23) | 25.65 (0.18) | 26.84 (0.17) | 35.29 (0.04) | 24.29 (0.34) | 29.59 (0.13) | 27.13 (0.14) | 30.51 (0.35) | 23.02 (0.15) |
107 | 25.62 (0.25) | 21.18 (0.50) | 23.09 (0.50) | 33.36 (0.41) | 20.40 (0.51) | 25.68 (0.14) | 23.31 (0.12) | 27.42 (0.82) | 18.24 (0.18) |
108 | 21.40 (0.24) | 17.84 (0.18) | 19.49 (0.47) | 29.21 (0.40) | 16.92 (0.43) | 22.47 (0.31) | 18.88 (0.04) | 22.37 (0.74) | 14.22 (0.26) |
109 | 15.50 (0.21) | 13.61 (0.47) | 16.01 (0.31) | 24.73 (0.80) | 11.26 (0.04) | 18.45 (0.24) | 14.63 (0.06) | 17.98 (0.74) | 10.23 (0.16) |
Virus | Limit of Detection (Copies/Reaction) | Correlation Coefficient (R2) |
---|---|---|
Bombali virus | 3 | 0.960 |
Bundibugyo virus | 3 | 0.998 |
Ebola virus | 3 | 0.998 |
Lloviu virus | 31.7 | 0.791 |
Marburg virus | 3 | 0.990 |
Měnglà virus | 3 | 0.998 |
Reston virus | 3 | 0.999 |
Sudan virus | 3 | 0.987 |
Taï Forest virus | 3 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coertse, J.; Mortlock, M.; Grobbelaar, A.; Moolla, N.; Markotter, W.; Weyer, J. Development of a Pan-Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses 2023, 15, 987. https://doi.org/10.3390/v15040987
Coertse J, Mortlock M, Grobbelaar A, Moolla N, Markotter W, Weyer J. Development of a Pan-Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses. 2023; 15(4):987. https://doi.org/10.3390/v15040987
Chicago/Turabian StyleCoertse, Jessica, Marinda Mortlock, Antoinette Grobbelaar, Naazneen Moolla, Wanda Markotter, and Jacqueline Weyer. 2023. "Development of a Pan-Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats" Viruses 15, no. 4: 987. https://doi.org/10.3390/v15040987
APA StyleCoertse, J., Mortlock, M., Grobbelaar, A., Moolla, N., Markotter, W., & Weyer, J. (2023). Development of a Pan-Filoviridae SYBR Green qPCR Assay for Biosurveillance Studies in Bats. Viruses, 15(4), 987. https://doi.org/10.3390/v15040987