SARS-CoV-2 Detection and Culture in Different Biological Specimens from Immunocompetent and Immunosuppressed COVID-19 Patients Infected with Two Different Viral Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Laboratory Tests and Sample Collection
2.2.1. Sample Collection
2.2.2. Virus Identification: RNA Extraction, PCR Amplification
2.2.3. Real-Time PCR for SARS-CoV-2
2.2.4. Viral Culture
2.2.5. SARS-CoV-2 Whole-Genome Sequencing
2.2.6. Co-Infection with Influenza A and B Virus and Syncytial Respiratory Virus (SRV)
2.3. Definitions
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puhach, O.; Meyer, B.; Eckerle, I. SARS-CoV-2 viral load and shedding kinetics. Nat. Rev. Microbiol. 2023, 21, 147–161. [Google Scholar] [CrossRef]
- Néant, N.; Lingas, G.; Le Hingrat, Q.; Ghosn, J.; Engelmann, I.; Lepiller, Q.; Gaymard, A.; Ferré, V.; Hartard, C.; Plantier, J.C.; et al. French COVID Cohort Investigators and French Cohort Study groups. Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort. Proc. Natl. Acad. Sci. USA 2021, 118, e2017962118. [Google Scholar] [CrossRef] [PubMed]
- Fajnzylber, J.; Regan, J.; Coxen, K.; Corry, H.; Wong, C.; Rosenthal, A.; Worrall, D.; Giguel, F.; Piechocka-Trocha, A.; Atyeo, C.; et al. Massachusetts consortium for pathogen readiness. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun. 2020, 11, 5493. [Google Scholar] [CrossRef]
- Zheng, S.; Fan, J.; Yu, F.; Feng, B.; Lou, B.; Zou, Q.; Xie, G.; Lin, S.; Wang, R.; Yang, X.; et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January–March 2020: Retrospective cohort study. BMJ 2020, 369, m1443. [Google Scholar] [CrossRef] [PubMed]
- Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2021, 2, e13–e22. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Liu, J.; Xu, W.; Luo, Q.; Chen, D.; Lei, Z.; Huang, Z.; Li, X.; Deng, K.; Lin, B.; et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J. Med. Virol. 2020, 92, 1676–1680. [Google Scholar] [CrossRef]
- Pérez-Bartolomé, F.; Sánchez-Quirós, J. Ocular manifestations of SARS-CoV-2: Literature review. Arch. Soc. Esp. Oftalmol. 2021, 96, 32–40. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, X.; Chen, C.; Jiang, D.; Liu, X.; Zhou, Y.; Huang, C.; Zhou, Y.; Guan, Z.; Ding, C.; et al. Characteristics of viral shedding time in SARS-CoV-2 infections: A systematic review and meta-analysis. Front. Public Health 2021, 9, 652842. [Google Scholar] [CrossRef]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef]
- Jeong, H.W.; Kim, S.M.; Kim, H.S.; Kim, Y.I.; Kim, J.H.; Cho, J.Y.; Kim, S.H.; Kang, H.; Kim, S.G.; Park, S.J.; et al. Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clin. Microbiol. Infect. 2020, 26, 1520–1524. [Google Scholar] [CrossRef]
- Cerrada-Romero, C.; Berastegui-Cabrera, J.; Camacho-Martínez, P.; Goikoetxea-Aguirre, J.; Pérez-Palacios, P.; Santibáñez, S.; José Blanco-Vidal, M.; Valiente, A.; Alba, J.; Rodríguez-Álvarez, R.; et al. Excretion and viability of SARS-CoV-2 in feces and its association with the clinical outcome of COVID-19. Sci. Rep. 2022, 12, 7397. [Google Scholar] [CrossRef] [PubMed]
- Dergham, J.; Delerce, J.; Bedotto, M.; La Scola, B.; Moal, V. Isolation of viable SARS-CoV-2 Virus from feces of an immunocompromised patient suggesting a possible fecal mode of transmission. J. Clin. Med. 2021, 10, 2696. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Sun, J.; Xu, Y.; Li, F.; Huang, X.; Li, H.; Zhao, J.; Huang, J.; Zhao, J. Infectious SARS-CoV-2 in feces of patient with severe COVID-19. Emerg. Infect. Dis. 2020, 26, 1920–1922. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, A.; Li, H.; Zheng, K.; Zhuang, Z.; Chen, Z.; Shi, Y.; Zhang, Z.; Chen, S.B.; Liu, X.; et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg. Microbes Infect. 2020, 9, 991–993. [Google Scholar] [CrossRef] [PubMed]
- Colavita, F.; Lapa, D.; Carletti, F.; Lalle, E.; Bordi, L.; Marsella, P.; Nicastri, E.; Bevilacqua, N.; Giancola, M.L.; Corpolongo, A.; et al. SARS-CoV-2 isolation from ocular secretions of a patient with COVID-19 in Italy with prolonged viral RNA detection. Ann. Intern. Med. 2020, 173, 242–243. [Google Scholar] [CrossRef]
- Leal, F.E.; Mendes-Correa, M.C.; Buss, L.F.; Costa, S.F.; Bizario, J.C.S.; de Souza, S.R.P.; Thomaz, O.; Tozetto-Mendoza, T.R.; Villas-Boas, L.S.; de Oliveira-da Silva, L.C.; et al. Clinical features and natural history of the first 2073 suspected COVID-19 cases in the Corona São Caetano primary care programme: A prospective cohort study. BMJ Open 2021, 11, e042745. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. EuroSurveillance 2020, 25, 2000045, Erratum in EuroSurveillance 2020, 26. [Google Scholar] [CrossRef]
- Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 2020, 66, 549–555. [Google Scholar] [CrossRef]
- Mendes-Correa, M.C.; Tozetto-Mendoza, T.R.; Freire, W.S.; Paiao, H.G.O.; Ferraz, A.B.C.; Mamana, A.C.; Ferreira, N.E.; de Paula, A.V.; Felix, A.C.; Romano, C.M.; et al. Torquetenovirus in saliva: A potential biomarker for SARS-CoV-2 infection? PLoS ONE 2021, 16, e0256357. [Google Scholar] [CrossRef]
- Emery, S.L.; Erdman, D.D.; Bowen, M.D.; Newton, B.R.; Winchell, J.M.; Meyer, R.F.; Tong, S.; Cook, B.T.; Holloway, B.P.; McCaustland, K.A.; et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg. Infect. Dis. 2004, 10, 311–316. [Google Scholar] [CrossRef]
- Lima, L.R.; Silva, A.P.; Schmidt-Chanasit, J.; Paula, V.S. Diagnosis of human herpes virus 1 and 2 (HHV-1 and HHV-2): Use of a synthetic standard curve for absolute quantification by real time polymerase chain reaction. Mem. Inst. Oswaldo Cruz 2017, 112, 220–223. [Google Scholar] [CrossRef]
- Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.D.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T.; et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021, 372, 815–821. [Google Scholar] [CrossRef]
- Rambaut, A.; Holmes, E.C.; O’Toole, Á.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 2020, 5, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Candido, D.S.; Claro, I.M.; de Jesus, J.G.; Souza, W.M.; Moreira, F.R.R.; Dellicour, S.; Mellan, T.A.; du Plessis, L.; Pereira, R.H.M.; Sales, F.C.S.; et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 2020, 369, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Nicolete, V.C.; Rodrigues, P.T.; Fernandes, A.R.J.; Corder, R.M.; Tonini, J.; Buss, L.F.; Sales, F.C.; Faria, N.R.; Sabino, E.C.; Castro, M.C.; et al. Epidemiology of COVID-19 after emergence of SARS-CoV-2 gamma variant, Brazilian Amazon, 2020–2021. Emerg. Infect. Dis. 2022, 28, 709–712. [Google Scholar] [CrossRef]
- Sabino, E.C.; Buss, L.F.; Carvalho, M.P.S.; Prete, C.A., Jr.; Crispim, M.A.E.; Fraiji, N.A.; Pereira, R.H.M.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.U.G.; et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 2021, 397, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.W. Broad diversity of viable bacteria in ‘sterile’ (0.2 microm) filtered water. Res. Microbiol. 2004, 155, 688–691. [Google Scholar] [CrossRef]
- Araujo, D.B.; Machado, R.R.G.; Amgarten, D.E.; Malta, F.M.; de Araujo, G.G.; Monteiro, C.O.; Candido, E.D.; Soares, C.P.; de Menezes, F.G.; Pires, A.C.C.; et al. SARS-CoV-2 isolation from the first reported patients in Brazil and establishment of a coordinated task network. Mem. Inst. Oswaldo Cruz 2020, 115, e200342. [Google Scholar] [CrossRef]
- Ge, X.Y.; Li, J.L.; Yang, X.L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef]
- Tallmadge, R.L.; Laverack, M.; Cronk, B.; Venugopalan, R.; Martins, M.; Zhang, X.; Elvinger, F.; Plocharczyk, E.; Diel, D.G. Viral RNA load and infectivity of SARS-CoV-2 in paired respiratory and oral specimens from symptomatic, asymptomatic, or postsymptomatic individuals. Microbiol. Spectr. 2022, 10, e0226421. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef]
- Ke, R.; Martinez, P.P.; Smith, R.L.; Gibson, L.L.; Mirza, A.; Conte, M.; Gallagher, N.; Luo, C.H.; Jarrett, J.; Zhou, R.; et al. Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial heterogeneity in infectiousness. Nat. Microbiol. 2022, 7, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Choudhary, M.C.; Regan, J.; Sparks, J.A.; Padera, R.F.; Qiu, X.; Solomon, I.H.; Kuo, H.H.; Boucau, J.; Bowman, K.; et al. Persistence and evolution of SARS-CoV-2 in an Immunocompromised Host. N. Engl. J. Med. 2020, 383, 2291–2293. [Google Scholar] [CrossRef] [PubMed]
- Sung, A.; Bailey, A.L.; Stewart, H.B.; McDonald, D.; Wallace, M.A.; Peacock, K.; Miller, C.; Reske, K.A.; O’Neil, C.A.; Fraser, V.J.; et al. Isolation of SARS-CoV-2 in viral cell culture in immunocompromised patients with persistently positive RT-PCR results. Front. Cell Infect. Microbiol. 2022, 12, 804175. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Cui, C.; Shin, K.R.; Bae, J.Y.; Kweon, O.J.; Lee, M.K.; Choi, S.H.; Jung, S.Y.; Park, M.S.; Chung, J.W. Duration of culturable SARS-CoV-2 in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 671–673. [Google Scholar] [CrossRef]
- Avanzato, V.A.; Matson, M.J.; Seifert, S.N.; Pryce, R.; Williamson, B.N.; Anzick, S.L.; Barbian, K.; Judson, S.D.; Fischer, E.R.; Martens, C.; et al. Case study: Prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer. Cell 2020, 183, 1901–1912.e9. [Google Scholar] [CrossRef]
- Cunha, M.D.P.; Vilela, A.P.P.; Molina, C.V.; Acuña, S.M.; Muxel, S.M.; Barroso, V.M.; Baroni, S.; Gomes de Oliveira, L.; Angelo, Y.S.; Peron, J.P.S.; et al. Atypical prolonged viral shedding with intra-host SARS-CoV-2 evolution in a mildly affected symptomatic patient. Front. Med. 2021, 8, 760170. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef]
- O’Connell, P.; Aldhamen, Y.A. Systemic innate and adaptive immune responses to SARS-CoV-2 as it relates to other coronaviruses. Hum. Vaccin Immunother. 2020, 16, 2980–2991. [Google Scholar] [CrossRef]
- Yang, B.; Fan, J.; Huang, J.; Guo, E.; Fu, Y.; Liu, S.; Xiao, R.; Liu, C.; Lu, F.; Qin, T.; et al. Clinical and molecular characteristics of COVID-19 patients with persistent SARS-CoV-2 infection. Nat. Commun. 2021, 12, 3501. [Google Scholar] [CrossRef] [PubMed]
- Okita, Y.; Morita, T.; Kumanogoh, A. Duration of SARS-CoV-2 RNA positivity from various specimens and clinical characteristics in patients with COVID-19: A systematic review and meta-analysis. Inflamm. Regen. 2022, 42, 16. [Google Scholar] [CrossRef] [PubMed]
- Folgueira, M.D.; Luczkowiak, J.; Lasala, F.; Pérez-Rivilla, A.; Delgado, R. Prolonged SARS-CoV-2 cell culture replication in respiratory samples from patients with severe COVID-19. Clin. Microbiol. Infect. 2021, 27, 886–891. [Google Scholar] [CrossRef]
- Dadras, O.; Afsahi, A.M.; Pashaei, Z.; Mojdeganlou, H.; Karimi, A.; Habibi, P.; Barzegary, A.; Fakhfouri, A.; Mirzapour, P.; Janfaza, N.; et al. The relationship between COVID-19 viral load and disease severity: A systematic review. Immun. Inflamm. Dis. 2022, 10, e580. [Google Scholar] [CrossRef] [PubMed]
- Kawasuji, H.; Morinaga, Y.; Tani, H.; Yoshida, Y.; Takegoshi, Y.; Kaneda, M.; Murai, Y.; Kimoto, K.; Ueno, A.; Miyajima, Y.; et al. SARS-CoV-2 RNAemia with a higher nasopharyngeal viral load is strongly associated with disease severity and mortality in patients with COVID-19. J. Med. Virol. 2022, 94, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, J.F.; Germain, M.; Delage, G.; O’Brien, S.; Drews, S.J.; Lewin, A. Risk of transmission of severe acute respiratory syndrome coronavirus 2 by transfusion: A literature review. Transfusion 2020, 60, 3046–3054. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, G.; Long, X.; Hou, H.; Wei, J.; Cao, Y.; Tan, J.; Liu, W.; Huang, L.; Meng, F.; et al. Dynamics of blood viral load is strongly associated with clinical outcomes in coronavirus disease 2019 (COVID-19) patients: A prospective cohort study. J. Mol. Diagn. 2021, 23, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Kumar, D.; Moinuddin, I.; Bryson, A.; Kashi, Z.; Kimball, P.; Levy, M.; Kamal, L.; King, A.; Gupta, G. Coronavirus disease 2019 viremia, serologies, and clinical course in a case series of transplant recipients. Transplant Proc. 2020, 52, 2637–2641. [Google Scholar] [CrossRef] [PubMed]
- Roshandel, M.R.; Nateqi, M.; Lak, R.; Aavani, P.; Sari Motlagh, R.; FShariat, S.; Aghaei Badr, T.; Sfakianos, J.; Kaplan, S.A.; Tewari, A.K. Diagnostic and methodological evaluation of studies on the urinary shedding of SARS-CoV-2, compared to stool and serum: A systematic review and meta-analysis. Cell Mol. Biol. 2020, 66, 148–156. [Google Scholar] [CrossRef]
- Morone, G.; Palomba, A.; Iosa, M.; Caporaso, T.; De Angelis, D.; Venturiero, V.; Savo, A.; Coiro, P.; Carbone, D.; Gimigliano, F.; et al. Incidence and persistence of viral shedding in COVID-19 post-acute patients with negativized pharyngeal swab: A systematic review. Front. Med. 2020, 7, 562. [Google Scholar] [CrossRef]
- United States Centers for Disease Control and Prevention. Ending Isolation and Precautions for People with COVID-19: Interim Guidance. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html (accessed on 3 March 2023).
Oligo | Description | Sequence 5′-3′ |
---|---|---|
Forward | HKU-NF | 5′-TAA TCA GAC AAG GAA CTG ATT A-3′ |
Reverse | HKU-NR | 5′-CGA AGG TGT GAC TTC CAT G-3′ |
Probe | HKU-NP | format 5′-Cy5/TAO/3′-IABkRQ): 5′-GC AAA TTG TGC AAT TTG CGG-3′ |
Curve | Synthetic | 5′-ttcgtCGAAGGTGTGACTTCCATGcgtatCCGCAAATTGCACAATTTGC atgcgtAATCAGTTCCTTGTCTGATTActgata-3′ |
Forward | E-Sarberco F1 | 5′- ACA GGT ACG TTA ATA GTT AAT AGC GT-3′ |
Reverse | E-sarberco-R2 | 5′-ATA TTG CAG CAG TAC GCA CAC A-3′ |
Probe | E_sarberco P1 | format 5′-VIC/ZEN/3′IABkFQ: 5′- ACA CTA GCC ATC CTT ACT GCG CTT CG-3′ |
Curve | Synthetic | 5′-ttcgtATATTGCAGCAGTACGCACACcgtatCGAAGCGCAGTAAGGA TGGCTAGTGTatgcgtACGCTATTAACTATTAACGTACCTGTctgata-3′ |
Characteristic | Immunocompetent | Immunosuppressed | p Value |
---|---|---|---|
N = 98 | N = 25 | ||
Mean age (SD) | 42.7 (14.5) | 57.4 (14.0) | <0.0001 |
Gender | |||
% male | 33.7% | 56.0% | 0.0636 |
% female | 66.3% | 44.0% | |
Mean body mass index (SD) | 27.4 (5.5) | 24.9 (5.4) | 0.0402 |
Infecting SARS-CoV-2 strain (%) | |||
B1 | 51 (52.0%) | 14 (56.0%) | |
Gamma | 47 (48.0%) | 11 (44.0%) | |
Mean log10 viral load (SD) | 5.6 (1.3) | 4.0 (1.9) | 0.0014 |
Site | Immunocompetent | Immunosuppressed | |||
---|---|---|---|---|---|
No. Submitted to | No. B1 | No. Submitted to | No. B1 | ||
RNA Extraction | Positive (%) | RNA Extraction | Positive (%) | p Value | |
Nasal | 246 | 88 (35.8%) | 35 | 16 (45.7%) | 0.2664 |
Saliva | 235 | 14 (6.0%) | 35 | 9 (25.7%) | 0.0008 |
Urine | 244 | 0 | 35 | 4 (11.7%) | 0.0002 |
Anal | 219 | 2 (0.9%) | 35 | 2 (5.7%) | 0.0928 |
Blood | 244 | 1 (0.4%) | 34 | 6 (17.6%) | 0.0001 |
Total * | 1188 | 105 (8.8%) | 174 | 37 (21.3%) | 0.0001 |
Site | Immunocompetent | Immunosuppressed | |||
---|---|---|---|---|---|
No. Submitted to | No. Gamma | No. Submitted to | No. Gamma | ||
RNA Extraction | Positive (%) | RNA Extraction | Positive (%) | p Value | |
Nasal | 236 | 100 (42.4%) | 40 | 25 (62.5%) | 0.0248 |
Saliva | 224 | 6 (2.7%) | 33 | 20 (60.6%) | 0.0001 |
Urine | 146 | 1 (0.7%) | 39 | 16 (41.0%) | 0.0001 |
Anal | 144 | 8 (5.6%) | 39 | 2 (5.1%) | 1.000 |
Blood | 144 | 14 (9.9%) | 40 | 11 (27.5%) | 0.0075 |
Total * | 894 | 129 (14.6%) | 191 | 74 (38.7%) | 0.0001 |
Site | Immunocompetent | Immunosuppressed | |||
---|---|---|---|---|---|
No. Submitted to | No. B1 | No. Submitted to | No. B1 | ||
Viral Culture | Positive (%) | Viral Culture | Positive (%) | p Value | |
Nasal | 76 | 3 (3.9%) | 13 | 5 (38.5%) | 0.0014 |
Saliva | 9 | 1 (11.1%) | 8 | 3 (37.5%) | 0.2941 |
Urine | 0 | 0 | 4 | 0 | |
Anal | 2 | 0 | 2 | 0 | |
Blood | 1 | 0 | 5 | 0 | |
Total | 88 | 4 (4.5%) | 32 | 8 (25.0%) | 0.0026 |
Site | Immunocompetent | Immunosuppressed | |||
---|---|---|---|---|---|
No. Submitted to | No. Gamma | No. Submitted to | No. Gamma | ||
Viral Culture | Positive (%) | Viral Culture | Positive (%) | p Value | |
Nasal | 84 | 0 | 20 | 6 (30.0%) | 0.0001 |
Saliva | 5 | 0 | 16 | 0 | |
Urine | 1 | 0 | 13 | 0 | |
Anal | 5 | 0 | 2 | 0 | |
Blood | 13 | 0 | 9 | 0 | |
Total | 108 | 0 | 60 | 6 (10.0%) | 0.0018 |
Site | Days Virus Positive | |
---|---|---|
Immunocompetent | Immunosuppressed | |
Nasal | 10-50 | 10-212 |
Saliva | 10-40 | 10-191 |
Urine | 10-16 | 10-191 |
Anal | 10-21 | 10-177 |
Blood | 10-38 | 10-177 |
Virus | Site | No. Positive/No. Tested (%) | ||||
---|---|---|---|---|---|---|
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | ||
B1 | nasal | 36/49 (73.5) | 20/48 (41.7) | 16/50 (32.0) | 9/48 (18.8) | 7/43 (16.3) b |
Gamma | 35/46 (76.1) | 26/47 (55.3) | 17/45 (37.8) | 9/38 (23.7) | 12/37 (32.4) b | |
B1 | saliva | 8/38 (21.1) a | 2/43 (4.7) | 0/49 | 3/45 (6.7) | 1/39 (2.6) c |
Gamma | 2/44 (4.5) | 1/41 (2.4) | 1/35 (2.9) | 1/41 (2.4) | 1/32 (3.1) | |
B1 | urine | 0/45 | 0/51 | 0/48 | NT | NT |
Gamma | 0/43 | 1/46 (2.2) | 0/41 | NT | NT | |
B1 | anal | 1/51 (2.0) | 1/34 (2.9) | 0/37 | NT | NT |
Gamma | 5/39 (12.8) | 2/42 (4.8) | 0/40 d | NT | NT | |
B1 | blood | 1/51 (2.0) | 0/17 | 0/1 | NT | NT |
Gamma | 5/43 (11.6) | 5/45 (11.1) | 4/44 (9.1) | NT | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes-Correa, M.C.; Salomão, M.C.; Ghilardi, F.; Tozetto-Mendoza, T.R.; Santos Villas-Boas, L.; de Paula, A.V.; Paiao, H.G.O.; da Costa, A.C.; Leal, F.E.; Ferraz, A.d.B.C.; et al. SARS-CoV-2 Detection and Culture in Different Biological Specimens from Immunocompetent and Immunosuppressed COVID-19 Patients Infected with Two Different Viral Strains. Viruses 2023, 15, 1270. https://doi.org/10.3390/v15061270
Mendes-Correa MC, Salomão MC, Ghilardi F, Tozetto-Mendoza TR, Santos Villas-Boas L, de Paula AV, Paiao HGO, da Costa AC, Leal FE, Ferraz AdBC, et al. SARS-CoV-2 Detection and Culture in Different Biological Specimens from Immunocompetent and Immunosuppressed COVID-19 Patients Infected with Two Different Viral Strains. Viruses. 2023; 15(6):1270. https://doi.org/10.3390/v15061270
Chicago/Turabian StyleMendes-Correa, Maria Cássia, Matias Chiarastelli Salomão, Fábio Ghilardi, Tania Regina Tozetto-Mendoza, Lucy Santos Villas-Boas, Anderson Vicente de Paula, Heuder Gustavo Oliveira Paiao, Antonio Charlys da Costa, Fábio E. Leal, Andrea de Barros Coscelli Ferraz, and et al. 2023. "SARS-CoV-2 Detection and Culture in Different Biological Specimens from Immunocompetent and Immunosuppressed COVID-19 Patients Infected with Two Different Viral Strains" Viruses 15, no. 6: 1270. https://doi.org/10.3390/v15061270
APA StyleMendes-Correa, M. C., Salomão, M. C., Ghilardi, F., Tozetto-Mendoza, T. R., Santos Villas-Boas, L., de Paula, A. V., Paiao, H. G. O., da Costa, A. C., Leal, F. E., Ferraz, A. d. B. C., Sales, F. C. S., Claro, I. M., Ferreira, N. E., Pereira, G. M., da Silva, A. R., Jr., Freire, W., Espinoza, E. P. S., Manuli, E. R., Romano, C. M., ... Witkin, S. S. (2023). SARS-CoV-2 Detection and Culture in Different Biological Specimens from Immunocompetent and Immunosuppressed COVID-19 Patients Infected with Two Different Viral Strains. Viruses, 15(6), 1270. https://doi.org/10.3390/v15061270