Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives
Abstract
:1. Introduction
2. Phages
2.1. History
2.2. Properties and Applications
- High specificity to their host;
- Self-replication (low dosages that will multiply as long as the host exists);
- Effectiveness in low doses;
- Safety;
- Easy and low-cost isolation and propagation (abundant in nature);
- Extension of food shelf life, avoiding bacterial contamination;
- Maintenance of food organoleptic properties (i.e., structure, taste, colour, odour) when using purified phages.
2.3. Consumer Perception and Legal Framework
Manufacturer | Product | Application | Target Bacteria | Regulatory |
---|---|---|---|---|
Micreos Food Safety (Wageningen, The Netherlands) https://phageguard.com/ (accessed on 2 March 2023) | Phageguard Listex | Food | L. monocytogenes | FDA, GRAS Notice (GRN) 198/218; Food Standards Australia New Zealand (FSANZ); EFSA; Swiss BAG; Israel Ministry of Health; Health Canada |
Phageguard S | Food | Salmonella | FDA, GRN 468; FSANZ; Swiss BAG; Israel Ministry of Health; Health Canada | |
PhageGuard E. | Food | E. coli | FDA, GRN 757 | |
Intralytix Ltd. (Columbia, SC, USA) www.intralytix.com (accessed on 2 March 2023) | ListShield | Food | L. monocytogenes | FDA, 21 Code of Federal Regulations (CFR) 172.785; FDA, GRN 528; United States Environmental Protection Agency (EPA) Reg. No. 74234-1; Israel Ministry of Health; Health Canada |
SalmoFresh | Food | Salmonella | FDA, GRN 435; United States Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Directive 7120.1; Israel Ministry of Health; Health Canada | |
ShigaShield | Food | Shigella spp. | FDA, GRN 672 | |
Ecoshield PX | Food | E. coli | FDA, Food Contact Notification (FCN) 1018; Israel Ministry of Health; Health Canada | |
SalmoLyse | Pet food | Salmonella | FDA, GRN 834, FCN 1018; Israel Ministry of Health; Health Canada | |
ListPhage | Pet food | L. monocytogenes | - | |
Ecolicide | Pet food | E. coli O157:H7 | USDA, FSIS Directive 7120.1 | |
Omnilytics Ltd. (Sandy, UT, USA) https://www.omnilytics.com/ (accessed on 2 March 2023) | Agriphage | Phyto | Xanthomonas campestris pv. Vesicatoria | EPA Reg. No. 67986-1 |
Agriphage CMM | Phyto | Clavibacter michiganensis subsp. Michiganensis | EPA Reg. No. 67986-6 | |
Agriphage-Fire Blight | Phyto | Erwinia amylovora | EPA Reg. No. 67986-8 | |
Agriphage-citrus canker | Phyto | X. citri subsp. Citri | EPA Reg. No. 67986-9 | |
ECLYPSE-STEC | Food | E. coli | FDA, GRN 82 | |
Phagelux (Nanjing, China) http://www.phageluxagrihealth.com/ (accessed on 2 March 2023) | Agriphage | Phyto | X. campestris pv. vesicatoria, Pseudomonas syringae pv. tomato | EPA Reg. No. 67986-1 |
SalmoPro | Food | Salmonella spp. | FDA, GRN 752, GRN 603 | |
Fixed phage (Glasgow, UK) https://www.fixed-phage.com/ (accessed on 2 March 2023) | safePHIX | Food | E. coli | - |
agriPHIX | Phyto | Salmonella | - | |
Passport Food safety solutions (West Des Moines, IA, USA) https://ahfoodchain.com/ (accessed on 2 March 2023) | Finalyse | Food | E. coli O157:H7 | USDA, FSIS Directive 7120.1 |
APS Biocontrol (Dundee, UK) https://www.apsbiocontrol.com/products (accessed on 2 March 2023) | Biolyse | Phyto | Erwinia, Pectobacterium, Pseudomonas | - |
Gum Products International’s (Newmarket, ON, Canada) https://www.gpiglobal.com/ (accessed on 2 March 2023) | GPI Biotech VAM-S | Food | S. enterica | FDA, GRN 917 |
Fink Tec GmbH (Hamm, Germany) https://www.finktec.com/solutions-for-industry/applied-phage (accessed on 2 March 2023) | Secure Shield E1 | Food | E. coli | FDA, GRN 724 |
3. Phage Delivery Systems with Potential Use in Food Applications
3.1. Extrusion
3.2. Emulsification
3.3. Spray Drying
3.4. Electrospinning
3.5. Coatings and Films
4. Phage Delivery Systems Used in Food Products
4.1. Emulsification
4.2. Coatings and Films
Phage | Main Microorganism | Material(s) | Delivery System | Food Product Application | Phage Titre in Delivery System | Control Bacterial Log | Bacterial Log Variation * | Ref. |
---|---|---|---|---|---|---|---|---|
φIBB-PF7A | P. fluorescens | Alginate | Film | Chicken fillets | 105 PFU/cm2 | 106 CFU/cm2 | ≈0.5 log reduction after 2 days ≈3 log increase after 7 days | [2] |
JS25 | S. aureus | Alginate | Microcapsule | Fresh milk Liquid egg white Broth | 109 PFU/mg (2 g/kg) | 103 CFU/g | After 12 days at 4 °C and 20 °C Fresh milk—3 log (complete reduction) Liquid egg white—3 log (complete reduction) Broth—3 log (complete reduction) | [29] |
Felix O1 | S. Typhimurium | Xanthan on polylactic acid (PLA) | Coating on film | Precooked sliced turkey | 109 PFU/mL | 103 CFU/cm2 | S. Typhimurium 0.832 log reduction at 4 °C 1.3 log reduction at 10 °C L. monocytogenes 6.31 log reduction at 4 °C 1.52 log reduction at 10 °C | [106] |
A511 | L. monocytogenes | Xanthan gum on PLA | Coating on film | Precooked sliced turkey | 109 PFU/mL | 106–107 CFU/cm2 | 6.79 log reduction at 4 °C 2.17 log reduction at 10 °C | |
S. Enteritidis F5–4 S. Typhimurium L2–1 S. Typhimurium ICB1–1 | S. Enteritidis S. Typhimurium | WPC Carboxymethyl cellulose (CMC) Chitosan Alginate | Coating | Strawberries | 108 PFU/mL ** | 105 CFU/g | After 5 days at 4 °C WPC—3.1 log reduction CMC—1.4 log reduction Chitosan—2.0 log reduction Sodium alginate—1.9 log reduction | [108] |
vB_EcoMH2W | E. coli O157:H7 | Chitosan | Coating | Tomato | 106 PFU/mL | 106 CFU/g | 3 log reduction | [30] |
T4 | E. coli O157:H7 H17130 | PCL | Film | Beef | 109 PFU/mL (Value of the solution used) | 105 CFU/mL | After 5 days at 10 °C Chemically functionalized film—1 log reduction Physically adsorbed film—≈ no reduction | [107] |
phiIPLA-RODI stock | S. aureus IPLA1 | Gelatine | Coatings Films | Cheese | 1.75 × 108 PFU/mL (GF1) 1.16 × 108 PFU/mL (GF2) 6.35 × 107 PFU/mL (GF3) | 106 CFU/mL | After 6 days at 4 °C GF1 coating—≈1.5 log reduction GF2 coating—≈1.5 log reduction GF3 coating—≈1.5 log reduction GF1 film—2 log reduction GF2 film—≈0.5 log reduction GF3 film—≈0.5 log reduction | [109] |
T7 | E. coli BL21 | WPI, beeswax | Coating | Cucumbers Apple Tomatoes | 107 PFU/mL | Sliced cucumbers 105 CFU/sample Cut apple 108 CFU/sample Tomato 105 CFU/sample | Sliced cucumbers—0 log—no reduction Cut apple—2 log reduction Tomato—≈1.5 log reduction | [110] |
Myoviridae DT1 to DT6 | E. coli DH5α E. coli EPEC E. coli non-O157 STEC E. coli O157 STEC | WPC | Film | Meat | 5.2 × 107 PFU/film | E. coli DH5α ≈ 102 CFU/mL E. coli EPEC 103 CFU/mL E. coli non-O157 STEC 102 CFU/mL E. coli O157 STEC 102 CFU/mL | After 24 h at 4 °C E. coli DH5α—2 log reduction E. coli EPEC—≈no reduction E. coli non-O157 STEC—≈no reduction E. coli O157 STEC—2 log reduction After 24 h at 24 °C E. coli DH5α—increase ≈ 1.5 log E. coli EPEC—increase ≈ 5.5 log E. coli non-O157 STEC—increase ≈ 4.5 log E. coli O157 STEC increase ≈ 4 log | [111] |
E. coli isolated phage | E. coli O157:H7 | PLL | Liposome | Pork | 0.8 × 1010 PFU/mL | ≈103 CFU/g | After 15 days at 4 °C—≈0.5 log reduction After 15 days at 12 °C—≈0.5 log reduction After 15 days at 25 °C—≈0.1 log reduction | [104] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cerqueira, M.A.; Costa, M.J.; Rivera, M.C.; Ramos, O.L.; Vicente, A.A. Flavouring and Coating Technologies for Preservation and Processing of Foods. In Conventional and Advanced Food Processing Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2014; Volume 9781118406, ISBN 9781118406281. [Google Scholar]
- Alves, D.; Marques, A.; Milho, C.; Costa, M.J.; Pastrana, L.M.; Cerqueira, M.A.; Sillankorva, S.M. Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. Int. J. Food Microbiol. 2019, 291, 121–127. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Foodborne Diseases. Available online: https://www.who.int/health-topics/foodborne-diseases#tab=tab_1 (accessed on 13 February 2023).
- Cagri, A.; Ustunol, Z.; Ryser, E.T. Antimicrobial Edible Films and Coatings. J. Food Prot. 2004, 67, 833–848. [Google Scholar] [CrossRef] [PubMed]
- López-Cuevas, O.; Medrano-Félix, J.A.; Castro-Del Campo, N.; Chaidez, C. Bacteriophage applications for fresh produce food safety. Int. J. Environ. Health Res. 2019, 31, 687–702. [Google Scholar] [CrossRef]
- USDA What Are Spoilage Bacteria? Available online: https://ask.usda.gov/s/article/What-are-spoilage-bacteria (accessed on 6 October 2021).
- Hussain, W.; Ullah, M.W.; Farooq, U.; Aziz, A.; Wang, S. Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens. Bioelectron. 2021, 177, 112973. [Google Scholar] [CrossRef]
- Ahovan, Z.A.; Hashemi, A.; De Plano, L.M.; Gholipourmalekabadi, M.; Seifalian, A. Bacteriophage based biosensors: Trends, outcomes and challenges. Nanomaterials 2020, 10, 501. [Google Scholar] [CrossRef]
- Commission of the European Communities Commission Regulation (EC). No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, L338, 1–26. [Google Scholar]
- WHO Estimating the Burden of Foodborne Diseases.pdf. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 6 October 2021).
- European Food Safety Authority (EFSA). Foodborne Outbreaks Report 2021|EFSA. Available online: https://www.efsa.europa.eu/en/microstrategy/FBO-dashboard (accessed on 8 February 2023).
- U.S. Food & Drug Administration Investigations of Foodborne Illness Outbreaks|FDA. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/investigations-foodborne-illness-outbreaks (accessed on 8 February 2023).
- USDA, E. Cost Estimates of Foodborne Illnesses. Available online: https://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses/cost-estimates-of-foodborne-illnesses/ (accessed on 6 October 2021).
- Joe Whitworth UK Foodborne Illness Burden Estimated at £9 Billion. Available online: https://www.foodsafetynews.com/2020/03/uk-foodborne-illness-burden-estimated-at-9-billion/ (accessed on 6 October 2021).
- Australian National University the Annual Cost of Foodborne Illness in Australia Final Report. Available online: https://www.foodstandards.gov.au/publications/Documents/ANU Foodborne Disease Final Report.pdf (accessed on 6 February 2023).
- Bhattacharya, S. Conventional and Advanced Food Processing Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 9781118406281. [Google Scholar]
- Choramo, A. A Review on Chemical and Physical Methods of Controlling Microbial Growth. Community Med. Public Health Care 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Fellows, P.J. Pasteurisation. In Food Processing Technology; Fellows, P.J., Ed.; Woodhead Publishing: Sawston, UK, 2009; pp. 381–395. ISBN 978-1-84569-216-2. [Google Scholar]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef]
- Leung, V.; Szewczyk, A.; Chau, J.; Hosseini-doust, Z.; Groves, L.; Hawsawi, H.; Anany, H.; Griffiths, M.W.; Ali, M.; Filipe, C.D.M. Long-Term Preservation of Bacteriophage Antimicrobials Using Sugar Glasses. ACS Biomater. Sci. Eng. 2017, 4, 3802–3808. [Google Scholar] [CrossRef]
- Royer, S.; Morais, A.P.; da Fonseca Batistão, D.W. Phage therapy as strategy to face post-antibiotic era: A guide to beginners and experts. Arch. Microbiol. 2021, 203, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.M. Natural Food Antimicrobials: Recent Trends in Their Use, Limitations, and Opportunities for Their Applications in Food Preservation. In Natural and Bio-Based Antimicrobials for Food Applications; Fan, X., Ngo, H., Wu, C., Eds.; ACS Publications: Washington, DC, USA, 2018; pp. 25–43. [Google Scholar]
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef]
- Martínez, B.; García, P.; Rodríguez, A. Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Curr. Opin. Biotechnol. 2019, 56, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, L. Encapsulated natural antimicrobials: A promising way to reduce microbial growth in different food systems. Food Control 2021, 123, 107678. [Google Scholar] [CrossRef]
- Vonasek, E.; Le, P.; Nitin, N. Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocoll. 2014, 37, 7–13. [Google Scholar] [CrossRef]
- García-Anaya, M.C.; Sepúlveda, D.R.; Rios-Velasco, C.; Zamudio-Flores, P.B.; Sáenz-Mendoza, A.I.; Acosta-Muñiz, C.H. The role of food compounds and emerging technologies on phage stability. Innov. Food Sci. Emerg. Technol. 2020, 64, 102436. [Google Scholar] [CrossRef]
- Men, L.; Mengyuan, S.; Wen, X.; Hui, Z. Release characteristic of JS25 phage microcapsules and biological control effect on liquid food. Trans. Chin. Soc. Agric. Eng. 2018, 34, 294–300. [Google Scholar]
- Amarillas, L.; Lightbourn-Rojas, L.; Angulo-Gaxiola, A.K.; Basilio Heredia, J.; González-Robles, A.; León-Félix, J. The antibacterial effect of chitosan-based edible coating incorporated with a lytic bacteriophage against Escherichia coli O157:H7 on the surface of tomatoes. J. Food Saf. 2018, 38, e12571. [Google Scholar] [CrossRef]
- de Melo, A.G.; Levesque, S.; Moineau, S. Phages as friends and enemies in food processing. Curr. Opin. Biotechnol. 2018, 49, 185–190. [Google Scholar] [CrossRef]
- Hagens, S.; Offerhaus, M.L. Bacteriophages—New weapons for food safety. Food Technol. 2008, 62, 46–54. [Google Scholar]
- García, P.; Martínez, B.; Obeso, J.M.; Rodríguez, A. Bacteriophages and their application in food safety. Lett. Appl. Microbiol. 2008, 47, 479–485. [Google Scholar] [CrossRef]
- Pinto, G.; Almeida, C.; Azeredo, J. Bacteriophages to control Shiga toxin-producing E. coli–safety and regulatory challenges. Crit. Rev. Biotechnol. 2020, 40, 1081–1097. [Google Scholar] [CrossRef]
- Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef] [PubMed]
- Cooper, I.R. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption. J. Microbiol. Methods 2016, 130, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Hagens, S.; Loessner, M. Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations. Curr. Pharm. Biotechnol. 2010, 11, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Żbikowska, K.; Michalczuk, M.; Dolka, B. The use of bacteriophages in the poultry industry. Animals 2020, 10, 872. [Google Scholar] [CrossRef]
- Sillankorva, S.M.; Oliveira, H.; Azeredo, J. Bacteriophages and their role in food safety. Int. J. Microbiol. 2012, 2012, 863945. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses (ICTV). Current ICTV Taxonomy Release|ICTV. Available online: https://ictv.global/taxonomy (accessed on 4 May 2023).
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef]
- Turner, D.; Shkoporov, A.N.; Lood, C.; Millard, A.D.; Dutilh, B.E.; Alfenas-Zerbini, P.; van Zyl, L.J.; Aziz, R.K.; Oksanen, H.M.; Poranen, M.M.; et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023, 168, 74. [Google Scholar] [CrossRef]
- Pinto, A.M.; Silva, M.D.; Pastrana, L.M.; Bañobre-López, M.; Sillankorva, S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol. Rev. 2021, 45, fuab019. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Svircev, A.; Roach, D.; Castle, A. Framing the Future with Bacteriophages in Agriculture. Viruses 2018, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Łusiak-Szelachowska, M.; Weber-Dabrowska, B.; Żaczek, M.; Borysowski, J.; Górski, A. The Presence of Bacteriophages in the Human Body: Good, Bad or Neutral? Microorganisms 2020, 8, 2012. [Google Scholar] [CrossRef]
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Lavilla, M.; Domingo-Calap, P.; Sevilla-Navarro, S.; Lasagabaster, A. Natural Killers: Opportunities and Challenges for the Use of Bacteriophages in Microbial Food Safety from the One Health Perspective. Foods 2023, 12, 552. [Google Scholar] [CrossRef]
- Choinska-Pulit, A.; Mitula, P.; Sliwka, P.; Laba, W.; Skaradzinska, A. Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol. 2015, 45, 212–221. [Google Scholar] [CrossRef]
- Vikram, A.; Tokman, J.I.; Woolston, J.; Sulakvelidze, A. Phage Biocontrol Improves Food Safety by Significantly Reducing the Level and Prevalence of Escherichia coli O157:H7 in Various Foods. J. Food Prot. 2020, 83, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Washizaki, A.; Yonesaki, T.; Otsuka, Y. Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. Microbiologyopen 2016, 5, 1003–1015. [Google Scholar] [CrossRef]
- Perera, M.N.; Abuladze, T.; Li, M.; Woolston, J.; Sulakvelidze, A. Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol. 2015, 52, 42–48. [Google Scholar] [CrossRef]
- Truchado, P.; Elsser-Gravesen, A.; Gil, M.I.; Allende, A. Post-process treatments are effective strategies to reduce Listeria monocytogenes on the surface of leafy greens: A pilot study. Int. J. Food Microbiol. 2020, 313, 108390. [Google Scholar] [CrossRef]
- Sun, Z.; Mandlaa; Wen, H.; Ma, L.; Chen Id, Z. Isolation, characterization and application of bacteriophage PSDA-2 against Salmonella Typhimurium in chilled mutton. PLoS ONE 2022, 17, e0262946. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.T.; Tang, C.; Kennedy, A.; Talwar, S.; Khan, S.A. Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll. 2014, 35, 36–50. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef]
- Unesco Unesco Science Report 2021. Available online: https://www.unesco.org/reports/science/2021/en (accessed on 6 October 2021).
- Smith, A.; Parrino, L.; Vrbos, D.; Nicolini, G.; Bucchi, M.; Carr, M.; Chen, J.; Dendler, L.; Krishnaswamy, K.; Lecchini, D.; et al. Communicating to and engaging with the public in regulatory science. EFSA J. 2019, 17, e170717. [Google Scholar] [CrossRef] [PubMed]
- American Association for the Advancement of Science (AAAS). Why Public Engagement Matters. Available online: https://www.aaas.org/resources/communication-toolkit/what-public-engagement (accessed on 6 October 2021).
- Dempster, G. The communication of scientific research in news media: Contemporary challenges and opportunities. J. Sci. Commun. 2020, 19, C06. [Google Scholar] [CrossRef]
- Fernández, L.; Gutiérrez, D.; Rodríguez, A.; García, P. Application of bacteriophages in the agro-food sector: A long way toward approval. Front. Cell. Infect. Microbiol. 2018, 8, 296. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Encapsulation systems for antimicrobial food packaging components: An update. Molecules 2020, 25, 1134. [Google Scholar] [CrossRef]
- Sam Mehmet European Court of Justice Enables Use of Natural Phages against Listeria. Available online: https://www.newfoodmagazine.com/news/97091/european-court-of-justice-enables-use-of-natural-phages-against-listeria/ (accessed on 6 October 2021).
- Połaska, M.; Sokołowska, B. Bacteriophages—A new hope or a huge problem in the food industry. AIMS Microbiol. 2019, 5, 324–347. [Google Scholar] [CrossRef]
- Huang, K.; Nitin, N. Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture 2019, 502, 18–25. [Google Scholar] [CrossRef]
- Kailasapathy, K. Bioencapsulation Technologies for Incorporating Bioactive Components into Functional Foods. In Advances in Food Biotechnology; Ravishankar Rai, V., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 311–334. ISBN 9781118864463. [Google Scholar]
- Salalha, W.; Kuhn, J.; Dror, Y.; Zussman, E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology 2006, 17, 4675–4681. [Google Scholar] [CrossRef]
- Balcão, V.M.; Glasser, C.A.; Chaud, M.V.; del Fiol, F.S.; Tubino, M.; Vila, M.M.D.C. Biomimetic aqueous-core lipid nanoballoons integrating a multiple emulsion formulation: A suitable housing system for viable lytic bacteriophages. Colloids Surf. B Biointerfaces 2014, 123, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhang, Z.; Xu, R.; Cai, P.; Kristensen, P.; Chen, M.; Huang, Y. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2018, 106, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Menendez, E.; Fernandez, L.; Gutierrez, D.; Rodríguez, A.; Martínez, B.; GarcíaI, P. Comparative analysis of different preservation techniques for the storage of Staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS ONE 2018, 13, e0205728. [Google Scholar] [CrossRef] [PubMed]
- Fern, I.; Mat, J.I. Biopolymers for Edible Films and Coatings in Food Applications. In Biopolymers—New Materials for Sustainable Films and Coatings; Plackett, D., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 1–33. ISBN 9780470683415. [Google Scholar]
- Lone, A.; Anany, H.; Hakeem, M.; Aguis, L.; Avdjian, A.C.; Bouget, M.; Atashi, A.; Brovko, L.; Rochefort, D.; Griffiths, M.W. Development of prototypes of bioactive packaging materials based on immobilized bacteriophages for control of growth of bacterial pathogens in foods. Int. J. Food Microbiol. 2016, 217, 49–58. [Google Scholar] [CrossRef] [PubMed]
- de Dicastillo, C.L.; Settier-Ramírez, L.; Gavara, R.; Hernández-Muñoz, P.; Carballo, G.L. Development of Biodegradable Films Loaded with Phages with Antilisterial Properties. Polymers 2021, 13, 327. [Google Scholar] [CrossRef]
- Yang, Y.; Du, H.; Zou, G.; Song, Z.; Zhou, Y.; Li, H.; Tan, C.; Chen, H.; Fischetti, V.A.; Li, J. Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: A review. J. Control. Release 2023, 353, 634–649. [Google Scholar] [CrossRef]
- Samtlebe, M.; Ergin, F.; Wagner, N.; Neve, H.; Küçükçetin, A.; Franz, C.M.A.P.; Heller, K.J.; Hinrichs, J.; Atamer, Z. Carrier systems for bacteriophages to supplement food systems: Encapsulation and controlled release to modulate the human gut microbiota. LWT - Food Sci. Technol. 2016, 68, 334–340. [Google Scholar] [CrossRef]
- Dini, C.; Islan, G.A.; de Urraza, P.J.; Castro, G.R. Novel biopolymer matrices for microencapsulation of phages: Enhanced protection against acidity and protease activity. Macromol. Biosci. 2012, 12, 1200–1208. [Google Scholar] [CrossRef]
- Silva Batalha, L.; Pardini Gontijo, M.T.; Vianna Novaes de Carvalho Teixeira, A.; Meireles Gouvêa Boggione, D.; Soto Lopez, M.E.; Renon Eller, M.; Santos Mendonça, R.C. Encapsulation in alginate-polymers improves stability and allows controlled release of the UFV-AREG1 bacteriophage. Food Res. Int. 2021, 139, 109947. [Google Scholar] [CrossRef]
- Vivek, K.; Mishra, S.; Pradhan, R.C.; Nagarajan, M.; Kumar, P.K.; Singh, S.S.; Manvi, D.; Gowda, N.N. A comprehensive review on microencapsulation of probiotics: Technology, carriers and current trends. Appl. Food Res. 2023, 3, 100248. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, X.; Sabour, P.M.; Chambers, J.R.; Wang, Q. Preparation and characterization of dry powder bacteriophage K for intestinal delivery through oral administration. LWT-Food Sci. Technol. 2015, 60, 263–270. [Google Scholar] [CrossRef]
- Rahimzadeh, G.; Saeedi, M.; Moosazadeh, M.; Hashemi, S.M.H.; Babaei, A.; Rezai, M.S.; Kamel, K.; Asare-Addo, K.; Nokhodchi, A. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Walstra, P.; Science, C.; Agent, A.; Strength, T.; Preparation, S. Emulsion. In Handbook of Adhesives and Surface Preparation; William Andrew: New York, NY, USA, 2011. [Google Scholar]
- Jiménez-Colmenero, F. Potential applications of multiple emulsions in the development of healthy and functional foods. Food Res. Int. 2013, 52, 64–74. [Google Scholar] [CrossRef]
- Vinner, G.K.; Richards, K.; Leppanen, M.; Sagona, A.P.; Malik, D.J. Microencapsulation of enteric bacteriophages in a pH-Responsive solid oral dosage formulation using a scalable membrane emulsification process. Pharmaceutics 2019, 11, 475. [Google Scholar] [CrossRef]
- Moon, S.H.; Waite-Cusic, J.; Huang, E. Control of Salmonella in chicken meat using a combination of a commercial bacteriophage and plant-based essential oils. Food Control 2020, 110, 106984. [Google Scholar] [CrossRef]
- Vinner, G.K.; Rezaie-Yazdi, Z.; Leppanen, M.; Stapley, A.G.F.; Leaper, M.C.; Malik, D.J. Microencapsulation of Salmonella-specific bacteriophage felix o1 using spray-drying in a ph-responsive formulation and direct compression tableting of powders into a solid oral dosage form. Pharmaceuticals 2019, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Arpagaus, C. A Novel Laboratory-Scale Spray Dryer to Produce Nanoparticles. Dry. Technol. 2012, 30, 1113–1121. [Google Scholar] [CrossRef]
- Chang, R.Y.; Wong, J.; Mathai, A.; Morales, S.; Kutter, E.; Britton, W.; Li, J.; Chan, H.K. Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection. Eur. J. Pharm. Biopharm. 2017, 121, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Ghosh, D. The Stabilizing Excipients in Dry State Therapeutic Phage Formulations. AAPS PharmSciTech 2020, 21, 133. [Google Scholar] [CrossRef]
- Vandenheuvel, D.; Meeus, J.; Lavigne, R.; Van Den Mooter, G. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix. Int. J. Pharm. 2014, 472, 202–205. [Google Scholar] [CrossRef]
- Costa, M.J.; Ramos, P.E.; Fuciños, P.; Teixeira, J.A.; Pastrana, L.M.; Cerqueira, M.A. Development of Bio-Based Nanostructured Systems by Electrohydrodynamic Processes. In Nanotechnology Applications in the Food Industry; Vittal, R.R., Bai, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–20. ISBN 9781498784832. [Google Scholar]
- Vonasek, E.; Lu, P.; Nitin, Y.H. Bacteriophages immobilized on electrospun cellulose microfibers by non-specific adsorption, protein—Ligand binding, and electrostatic interactions. Cellulose 2017, 24, 4581–4589. [Google Scholar] [CrossRef]
- Costa, M.J.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Characterization of PHBV films loaded with FO1 bacteriophage using polyvinyl alcohol-based nanofibers and coatings: A comparative study. Innov. Food Sci. Emerg. Technol. 2021, 69, 102646. [Google Scholar] [CrossRef]
- Zargari, A.; Gill, P.; Rahimzadeh, G.; Ghadami, F.; Rafati, A.; Ebrahimnejad, P. Aloe vera Nanofibers Contained Pseudomonas Bacteriophages Fabrication, Characterization, and Biofunction. Bionanoscience 2022, 12, 1125–1135. [Google Scholar] [CrossRef]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Kamali, S.; Yavarmanesh, M.; Habibi Najafi, M.B.; Koocheki, A. Development of whey protein concentrate/pullulan composite films containing bacteriophage A511: Functional properties and anti-Listerial effects during storage. Food Packag. Shelf Life 2022, 33, 100902. [Google Scholar] [CrossRef]
- Alves, D.; Cerqueira, M.A.; Pastrana, L.M.; Sillankorva, S. Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Res. Int. 2020, 128, 108791. [Google Scholar] [CrossRef] [PubMed]
- Boggione, D.M.G.; Batalha, L.S.; Gontijo, M.T.P.; Lopez, M.E.S.; Teixeira, A.V.N.C.; Santos, I.J.B.; Mendonça, R.C.S. Evaluation of microencapsulation of the UFV-AREG1 bacteriophage in alginate-Ca microcapsules using microfluidic devices. Colloids Surf. B Biointerfaces 2017, 158, 182–189. [Google Scholar] [CrossRef]
- Korehei, R.; Kadla, J.F. Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr. Polym. 2014, 100, 150–157. [Google Scholar] [CrossRef]
- Śliwka, P.; Mituła, P.; Mituła, A.; Skaradziński, G.; Choińska-Pulit, A.; Niezgoda, N.; Weber-Dąbrowska, B.; Żaczek, M.; Skaradzińska, A. Encapsulation of bacteriophage T4 in mannitol-alginate dry macrospheres and survival in simulated gastrointestinal conditions. LWT 2019, 99, 238–243. [Google Scholar] [CrossRef]
- El Haddad, L.; Lemay, M.J.; Khalil, G.E.; Moineau, S.; Champagne, C.P. Microencapsulation of a Staphylococcus phage for concentration and long-term storage. Food Microbiol. 2018, 76, 304–309. [Google Scholar] [CrossRef]
- González-Menéndez, E.; Fernández, L.; Gutiérrez, D.; Pando, D.; Martínez, B.; Rodríguez, A.; García, P. Strategies to Encapsulate the Staphylococcus aureus. Viruses 2018, 10, 495. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, R.; Zhang, P.; Zhang, H.; Zhou, Y.; Bao, H. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages. Viruses 2015, 7, 4836–4853. [Google Scholar] [CrossRef]
- Cui, H.; Yuan, L.; Lin, L. Novel chitosan fi lm embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr. Polym. 2017, 177, 156–164. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.; Cui, H. Inactivation of Escherichia coli O157:H7 treated by poly-L-lysine-coated bacteriophages liposomes in pork. J. Food Saf. 2018, 38, e12535. [Google Scholar] [CrossRef]
- Gouvêa, D.M.; Mendonça, R.C.S.; Lopez, M.E.S.; Batalha, L.S. Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT-Food Sci. Technol. 2016, 67, 159–166. [Google Scholar] [CrossRef]
- Radford, D.; Guild, B.; Strange, P.; Ahmed, R.; Lim, L.; Balamurugan, S. Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly (lactic acid) fi lms. Food Microbiol. 2017, 66, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Yoo, D.S.; Chang, Y.; Kim, S.Y.; Han, J. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem. 2021, 346, 128883. [Google Scholar] [CrossRef] [PubMed]
- Sezer, B.; Kubra, E.; Hakki, I. The use of bacteriophage-based edible coatings for the biocontrol of Salmonella in strawberries. Food Control 2022, 135, 108812. [Google Scholar] [CrossRef]
- Weng, S.; López, A.; Sáez-Orviz, S.; Marcet, I.; García, P.; Rendueles, M.; Díaz, M. Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus. Food Control 2021, 121, 107666. [Google Scholar] [CrossRef]
- Vonasek, E.L.; Choi, A.H.; Sanchez, J., Jr.; Nitin, N. Incorporating Phage Therapy into WPI Dip Coatings for Applications on Fresh Whole and Cut Fruit and Vegetable Surfaces. J. Food Sci. 2018, 83, 1871–1879. [Google Scholar] [CrossRef]
- Tomat, D.; Soazo, M.; Verdini, R.; Casabonne, C.; Aquili, V.; Balagué, C.; Quiberoni, A. Evaluation of an WPC edible film added with a cocktail of six lytic phages against foodborne pathogens such as enteropathogenic and Shigatoxigenic Escherichia coli. LWT 2019, 113, 108316. [Google Scholar] [CrossRef]
Phage | Polymer(s) | Delivery System(s) | Main Microorganism(s) | Conditions | Phage Initial Titre | Phage Final Titre | Ref. |
---|---|---|---|---|---|---|---|
EC5 and φ135 | Alginate | Films produced by casting microcapsules produced by emulsification | E. coli S. Enteritidis | Sample—2 × 2 cm2 film Solution—2 mL SM buffer Time—45 min Temperature—Room temperature (RT) | EC4—109 PFU/cm2 φ135—109 PFU/cm2 | 106 PFU/cm2—EC4 106–107 PFU/cm2—φ135 | [96] |
UFV-AREG1 | Alginate | Microcapsules produced by extrusion | E. coli O157:H7 | Sample—Microcapsule suspension Solution—Broken-microsphere solution (MBS) Time—Few minutes (until dissolution) Temperature—RT * | 106 PFU/mL | 105 PFU/mL | [97] |
T4 | Polyethylene oxide(PEO)/cellulose diacetate | Nanofiber produced by electrospinning | E. coli | Sample—1 g nanofiber Solution—10 mL SM buffer Shaking—120 rpm Temperature—RT * Time—10 min | 108 PFU/mL | 107–108 PFU/mL | [98] |
T4 | Alginate | Dry macrospheres produced by extrusion | E. coli DSM-613 | Sample—1 g phage-loaded beads Solution—99 mL MBS Time—180 min Temperature—37 °C | ≈1010 PFU/mL | >109 PFU/mL | [99] |
T7 | Cellulose acetate Chitosan Poly(ethyleneimine) (PEI) | Microfibers produced by electrospinning | E. coli BL21 | Sample—1 cm microfiber disk Solution—2 mL water Time—24 h Temperature—RT | 105–106 PFU/mL | 105–106 PFU/mL | [91] |
K1F | Eudragit S100/Alginate | Microcapsules produced by emulsification | E. coli EV36-RFP | Sample—1 g phage loaded beads Solution—99 mL MBS Time—180 min Temperature—37 °C | ≈109 PFU/mL | ≈109 PFU/g | [83] |
T7 Vibrio phage (#11985-B1) | WPI | Coating | E. coli BL21 Vibrio spp. (#11985) | Sample—1 coated fish pellet Solution—1 mL maximum recovery diluent (MRD) Time—2 min + 1 min vortex Temperature—RT * | 107 PFU/mL | ≈105 PFU/pellet | [65] |
A551 | WPC/Pullulan | Composite films produced by casting | L. ivanovii L. monocytogenes | Sample—15 mm diameter disk film Solution—1 mL water Time—5 min Temperature—25 °C | 109 PFU/mL | 105 PFU/cm2—70WPC:30PULL 106 PFU/cm2—50WPC:50PULL 107 PFU/cm2—30WPC:70PULL | [95] |
Listex P100 | Alginate/Gelatine Sodium caseinate PVOH | Films produced by casting | L. monocytogenes | Sample—15 mm diameter disk film Solution—1 mL water Time—5 min | 109 PFU/15 g of film forming solution | N/A | [73] |
JS25 | Alginate | Microcapsule produced by extrusion | Staphylococcus aureus | Sample—5 g Freeze dried microcapsules Pre-hydration—15 mL SM Buffer, 37 °C, 24 h Solution—45 mL microsphere-broken solution (MB) Time—1 h Temperature—20 °C | 1012 PFU/g | 109 PFU/mg | [29] |
P008 | Alginate, WPI | Capsules produced by emulsification Capsules produced by extrusion | L. lactis subsp. lactis biovar. diacetylactis F7/2 | Sample—1 g capsules Solution—9 mL 50 mM sodium citrate, 200 mM sodium hydrogen carbonate and 50 mM Tris-HCl (pH 7.5) Time—15 min Temperature—37 °C | 1012 PFU/mL | 109 PFU/g | [75] |
Felix O1 | Polyhydroxybutyrate/polyhydroxyvaleratePHBV/PVOH | Films produced by casting Nanofibers produced by electrospinning | S. Enteritidis | Sample—25 cm2 film or nanofiber Solution—10 mL SM buffer Time—1 h Shaking—120 rpm Temperature—25 °C | 108 PFU/mL 107 PFU/mL | 106 PFU/mL 106 PFU/mL | [92] |
Phage Team1 | Alginate | Micro-beads produced by extrusion | S. aureus | Sample—Beads Solution—20 g/L trisodium citrate Shaking—Stomacher 1 min Time—15 min Temperature—25 °C | 109 PFU/mL | 109 PFU/mL—Fresh 109 PFU/mL—Frozen 104 PFU/mL—Lyophilised | [100] |
phiIPLA-RODI | Lipo-NTM Nio-NTM Phospholipon 90G | Nanovesicles produced by emulsification | S. aureus | Sample—Centrifuged 1.5 mL of niosomes/transfersomes/liposomes Solution—PBS (washing) 30 µL chloroform, SM Buffer up to 1.5 mL Temperature—4 °C Time—15 min (final centrifugation) Centrifugation—10,000 rpm | 108 PFU/mL | 0.5 to 1 log loss—108 PFU/mL Liposome 1.2 log loss—107 PFU/mL Niosome 1.3 log loss—107 PFU/mL Transfersome | [101] |
phiIPLA-RODI | Alginate | Microcapsules produced by extrusion | S. aureus | Sample—1 g microcapsules Solution—9 mL, 0.1 M sodium citrate Temperature—RT * Time—20 min | 109 PFU/mL | 106 PFU/mL | [70] |
Phage cocktail | Chitosan | Nanoparticles produced by extrusion | S. enterica Shigella flexneri E. coli | Entrapment efficiency Centrifugation—19.980 g, 30 min Filtration—pore size 0.22 µm | 1010 PFU/mL | 109 PFU/mL | [80] |
phi-2/2 | Softisan/LutrolF68 | Nanovesicles produced by emulsification | S. Enteritidis | Sample—1000 µL emulsion nanovesicles Solution—20 µL chloroform Temperature—RT * Time—5 s vortex + 10 min centrifugation | 109 PFU/mL | Low activity | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, M.J.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses 2023, 15, 1271. https://doi.org/10.3390/v15061271
Costa MJ, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses. 2023; 15(6):1271. https://doi.org/10.3390/v15061271
Chicago/Turabian StyleCosta, Maria J., Lorenzo M. Pastrana, José A. Teixeira, Sanna M. Sillankorva, and Miguel A. Cerqueira. 2023. "Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives" Viruses 15, no. 6: 1271. https://doi.org/10.3390/v15061271
APA StyleCosta, M. J., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2023). Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses, 15(6), 1271. https://doi.org/10.3390/v15061271