A Comprehensive Phylogenetic Analysis of SARS-CoV-2: Utilizing a Novel and Convenient In-House RT-PCR Method for Characterization without Virus Culture and BSL-3 Facilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects Acquisition and Processing
2.2. RNA Extraction, PCR Conditions, and Sequencing
2.3. Phylogenetic Analysis
2.4. Statistical Analysis
3. Results
3.1. Epidemiological Information
3.2. Both Swab and Plasma Specimens Can Be Performed and Detected by Commercial RT-qPCR
3.3. Condensed Extraction of Total RNA Is Useful for Detection by In-House RT-PCR without Viral Culture
3.4. Codon and Amino Acid Usage Patterns
3.5. Phylogenetic Trees
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, G.; Liu, D. SARS-like virus in the Middle East: A truly bat-related coronavirus causing human diseases. Protein Cell 2012, 3, 803–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus Infections-More Than Just the Common Cold. JAMA 2020, 323, 707–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 15 June 2023).
- Bogoch, I.I.; Watts, A.; Thomas-Bachli, A.; Huber, C.; Kraemer, M.U.G.; Khan, K. Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel. J. Travel Med. 2020, 27, taaa008. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.Y.; Huang, A.S. Proactive and blended approach for COVID-19 control in Taiwan. Biochem. Biophys. Res. Commun. 2021, 538, 238–243. [Google Scholar] [CrossRef]
- Dai, C.Y.; Dai, T.H.; Ho, H.Y.; Ho, C.K. The strategies for the coronavirus disease 2019 (COVID-19) in Taiwan: A different tale. J. Infect. 2021, 82, e43–e44. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Heckert, R.A.; Reed, J.C.; Gmuender, F.K.; Ellis, M.; Tonui, W. International Biosafety and Biosecurity Challenges: Suggestions for Developing Sustainable Capacity in Low-resource Countries. Appl. Biosaf. 2011, 16, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Yeh, K.B.; Tabynov, K.; Parekh, F.K.; Mombo, I.; Parker, K.; Tabynov, K.; Bradrick, S.S.; Tseng, A.S.; Yang, J.R.; Gardiner, L.; et al. Significance of High-Containment Biological Laboratories Performing Work During the COVID-19 Pandemic: Biosafety Level-3 and -4 Labs. Front. Bioeng. Biotechnol. 2021, 9, 720315. [Google Scholar] [CrossRef]
- Chan, J.F.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Igloi, Z.; Leven, M.; Abdel-Karem Abou-Nouar, Z.; Weller, B.; Matheeussen, V.; Coppens, J.; Koopmans, M.; Molenkamp, R. Comparison of commercial realtime reverse transcription PCR assays for the detection of SARS-CoV-2. J. Clin. Virol. 2020, 129, 104510. [Google Scholar] [CrossRef]
- Rogers, A.A.; Baumann, R.E.; Borillo, G.A.; Kagan, R.M.; Batterman, H.J.; Galdzicka, M.M.; Marlowe, E.M. Evaluation of Transport Media and Specimen Transport Conditions for the Detection of SARS-CoV-2 by Use of Real-Time Reverse Transcription-PCR. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef]
- SoRelle, J.A.; Frame, I.; Falcon, A.; Jacob, J.; Wagenfuehr, J.; Mitui, M.; Park, J.Y.; Filkins, L. Clinical Validation of a SARS-CoV-2 Real-Time Reverse Transcription PCR Assay Targeting the Nucleocapsid Gene. J. Appl. Lab. Med. 2020, 5, 889–896. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Laboratory Biosafety Guidance Related to the Novel Coronavirus (2019-nCoV). Available online: https://www.who.int/docs/default-source/coronaviruse/laboratory-biosafety-novel-coronavirus-version-1-1.pdf?sfvrsn=912a9847_2 (accessed on 19 June 2023).
- Centers for Disease Control and Prevention (CDC). Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Coronavirus Disease 2019 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/lab-biosafety-guidelines.html (accessed on 19 June 2023).
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002. [Google Scholar] [CrossRef]
- Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. Virol. 1999, 73, 152–160. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Fineschi, S.; Taurchini, D.; Villani, F.; Vendramin, G.G. Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol. Ecol. 2000, 9, 1495–1503. [Google Scholar] [CrossRef]
- Yang, J.; Petitjean, S.J.L.; Koehler, M.; Zhang, Q.; Dumitru, A.C.; Chen, W.; Derclaye, S.; Vincent, S.P.; Soumillion, P.; Alsteens, D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 2020, 11, 4541. [Google Scholar] [CrossRef]
- Li, X.; Giorgi, E.E.; Marichannegowda, M.H.; Foley, B.; Xiao, C.; Kong, X.P.; Chen, Y.; Gnanakaran, S.; Korber, B.; Gao, F. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci. Adv. 2020, 6, eabb9153. [Google Scholar] [CrossRef]
- Hughes, E.C.; Amat, J.A.R.; Haney, J.; Parr, Y.A.; Logan, N.; Palmateer, N.; Nickbakhsh, S.; Ho, A.; Cherepanov, P.; Rosa, A.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Serosurveillance in a Patient Population Reveals Differences in Virus Exposure and Antibody-Mediated Immunity According to Host Demography and Healthcare Setting. J. Infect. Dis. 2021, 223, 971–980. [Google Scholar] [CrossRef]
- Galipeau, Y.; Greig, M.; Liu, G.; Driedger, M.; Langlois, M.A. Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Front. Immunol. 2020, 11, 610688. [Google Scholar] [CrossRef]
- Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 2020, 323, 2249–2251. [Google Scholar] [CrossRef]
- Garg, J.; Singh, V.; Pandey, P.; Verma, A.; Sen, M.; Das, A.; Agarwal, J. Evaluation of sample pooling for diagnosis of COVID-19 by real time-PCR: A resource-saving combat strategy. J. Med. Virol. 2021, 93, 1526–1531. [Google Scholar] [CrossRef]
- Nasr, M.C.; Geerling, E.; Pinto, A.K. Impact of Obesity on Vaccination to SARS-CoV-2. Front. Endocrinol. 2022, 13, 898810. [Google Scholar] [CrossRef]
- Bwire, G.M.; Majigo, M.V.; Njiro, B.J.; Mawazo, A. Detection profile of SARS-CoV-2 using RT-PCR in different types of clinical specimens: A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 719–725. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.M.; Sam, I.C.; Chong, J.; Kahar Bador, M.; Ponnampalavanar, S.; Syed Omar, S.F.; Kamarulzaman, A.; Munusamy, V.; Wong, C.K.; Jamaluddin, F.H.; et al. SARS-CoV-2 lineage B.6 was the major contributor to early pandemic transmission in Malaysia. PLoS Negl. Trop. Dis. 2020, 14, e0008744. [Google Scholar] [CrossRef]
- Emam, M.; Oweda, M.; Antunes, A.; El-Hadidi, M. Positive selection as a key player for SARS-CoV-2 pathogenicity: Insights into ORF1ab, S and E genes. Virus Res. 2021, 302, 198472. [Google Scholar] [CrossRef]
- Velazquez-Salinas, L.; Zarate, S.; Eberl, S.; Gladue, D.P.; Novella, I.; Borca, M.V. Positive Selection of ORF1ab, ORF3a, and ORF8 Genes Drives the Early Evolutionary Trends of SARS-CoV-2 During the 2020 COVID-19 Pandemic. Front. Microbiol. 2020, 11, 550674. [Google Scholar] [CrossRef]
- Baez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antivir. Res. 2015, 115, 21–38. [Google Scholar] [CrossRef]
- Amin, S.A.; Banerjee, S.; Ghosh, K.; Gayen, S.; Jha, T. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorg. Med. Chem. 2021, 29, 115860. [Google Scholar] [CrossRef]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe COVID-19. N. Engl. J. Med. 2020, 382, 1787–1799. [Google Scholar] [CrossRef]
Specimens a | Total RNA (ng/µL) | RT-PCR Performed | The Ct Value of RT-qPCR b | |||
---|---|---|---|---|---|---|
E | RdRP-R2 | N | RNase P | |||
#P1-S_20200214 | 122.1 | V | 33.48 (+) | 33.97 (+) | − (−) | 27.27 (+) |
#P1-P_20200207 | 44.4 | − (−) | − (−) | − (−) | 32.39 (+) | |
#P1-P_20200211 | 36.5 | − (−) | − (−) | − (−) | 31.82 (+) | |
#P2-P_202003xx | 48.6 | − (−) | − (−) | − (−) | 29.53 (+) | |
#P2-P_20200325 | 134.3 | − (−) | − (−) | − (−) | 26.47 (+) | |
#P2-P_20200330 | 93.8 | − (−) | − (−) | − (−) | 31.71 (+) | |
#P2-P_20200402 | 149.6 | − (−) | − (−) | − (−) | 31.29 (+) | |
#P2-P_20200406 | 68.9 | V | 37.05 (+) | − (−) | − (−) | 28.06 (+) |
#P2-P_20200410 | 82.0 | − (−) | − (−) | − (−) | 27.51 (+) | |
#P7-S_20200423 | 113.7 | V | 20.93 (+) | 22.32 (+) | 25.58 (+) | 24.55 (+) |
#P7-P_20200423 | 42.6 | − (−) | − (−) | − (−) | 32.08 (+) | |
#P7-P_20200427 | 110.4 | − (−) | − (−) | − (−) | 28.73 (+) | |
#P7-P_20200430 | 70.0 | − (−) | − (−) | − (−) | 31.19 (+) | |
#P7-P_20200504 | 53.2 | − (−) | − (−) | − (−) | 32.42 (+) | |
#P7-P_20200507 | 74.4 | − (−) | − (−) | − (−) | 30.28 (+) | |
#P7-P_20200511 | 76.9 | − (−) | − (−) | − (−) | 33.15 (+) | |
#P8-S_20200427 | 140.1 | − (−) | − (−) | − (−) | 25.75 (+) | |
#P8-P_20200427 | 120.0 | − (−) | − (−) | − (−) | 27.44 (+) | |
#P8-P_20200430 | 87.6 | − (−) | − (−) | − (−) | 30.82 (+) | |
#P8-P_20200504 | 117.5 | − (−) | − (−) | − (−) | 31.36 (+) | |
#P8-P_20200507 | 125.6 | − (−) | − (−) | − (−) | 28.91 (+) | |
#P8-P_20200511 | 97.4 | − (−) | − (−) | − (−) | 31.20 (+) | |
#P9-S_20200427 | 112.3 | − (−) | − (−) | − (−) | 27.74 (+) | |
#P9-P_20200427 | 125.4 | − (−) | − (−) | − (−) | − (−) | |
#P9-P_20200430 | 60.6 | − (−) | − (−) | − (−) | 30.10 (+) | |
#P9-P_20200504 | 62.9 | − (−) | − (−) | − (−) | 30.95 (+) | |
#P9-P_20200507 | 37.4 | − (−) | − (−) | − (−) | 31.15 (+) | |
#P10-S_20200427 | 150.6 | V | 17.50 (+) | 22.59 (+) | 19.14 (+) | 23.89 (+) |
#P10-P_20200427 | 51.3 | − (−) | − (−) | − (−) | − (−) | |
#P10-P_20200430 | 35.2 | − (−) | − (−) | − (−) | 31.44 (+) | |
#P10-P_20200504 | 42.8 | − (−) | − (−) | − (−) | 32.62 (+) | |
#P10-P_20200507 | 22.7 | − (−) | − (−) | − (−) | 32.40 (+) | |
#P10-P_20200511 | 34.4 | − (−) | − (−) | − (−) | 33.00 (+) | |
#P11-S_20200427 | 140.0 | − (−) | − (−) | − (−) | 27.33 (+) | |
#P11-P_20200427 | 72.1 | − (−) | − (−) | − (−) | 29.43 (+) | |
#P11-P_20200430 | 71.8 | − (−) | − (−) | − (−) | 30.82 (+) | |
#P11-P_20200504 | 25.9 | − (−) | − (−) | − (−) | 33.52 (+) | |
#P12-S_20200427 | 140.9 | − (−) | − (−) | − (−) | 24.14 (+) | |
#P12-P_20200427 | 33.5 | − (−) | − (−) | − (−) | 30.22 (+) | |
#P12-P_20200430 | 42.3 | − (−) | − (−) | − (−) | 28.93 (+) | |
#P12-P_20200511 | 108.9 | − (−) | − (−) | − (−) | 31.19 (+) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-J.; Huang, J.C.; Yang, C.-P.; Hsu, K.-F.; Liu, H.-F. A Comprehensive Phylogenetic Analysis of SARS-CoV-2: Utilizing a Novel and Convenient In-House RT-PCR Method for Characterization without Virus Culture and BSL-3 Facilities. Viruses 2023, 15, 1562. https://doi.org/10.3390/v15071562
Chen Y-J, Huang JC, Yang C-P, Hsu K-F, Liu H-F. A Comprehensive Phylogenetic Analysis of SARS-CoV-2: Utilizing a Novel and Convenient In-House RT-PCR Method for Characterization without Virus Culture and BSL-3 Facilities. Viruses. 2023; 15(7):1562. https://doi.org/10.3390/v15071562
Chicago/Turabian StyleChen, Yen-Ju, Jason C. Huang, Ching-Ping Yang, Kuo-Feng Hsu, and Hsin-Fu Liu. 2023. "A Comprehensive Phylogenetic Analysis of SARS-CoV-2: Utilizing a Novel and Convenient In-House RT-PCR Method for Characterization without Virus Culture and BSL-3 Facilities" Viruses 15, no. 7: 1562. https://doi.org/10.3390/v15071562
APA StyleChen, Y. -J., Huang, J. C., Yang, C. -P., Hsu, K. -F., & Liu, H. -F. (2023). A Comprehensive Phylogenetic Analysis of SARS-CoV-2: Utilizing a Novel and Convenient In-House RT-PCR Method for Characterization without Virus Culture and BSL-3 Facilities. Viruses, 15(7), 1562. https://doi.org/10.3390/v15071562