Incidence and Severity of COVID-19 in Relation to Anti-Receptor-Binding Domain IgG Antibody Level after COVID-19 Vaccination in Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Subjects
2.2. Data Collection
2.3. SARS-CoV-2-Specific Antibodies
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Incidence of COVID-19 in Seropositive versus Seronegative Participants
3.3. COVID-19 Disease Severity
3.4. Estimated COVID-19 Vaccine Efficacy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilbrands, L.B.; Duivenvoorden, R.; Vart, P.; Franssen, C.F.M.; Hemmelder, M.H.; Jager, K.J.; Kieneker, L.M.; Noordzij, M.; Pena, M.J.; de Vries, H.; et al. COVID-19-Related Mortality in Kidney Transplant and Dialysis Patients: Results of the ERACODA Collaboration. Nephrol. Dial. Transpl. 2020, 35, 1973–1983. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors Associated with COVID-19-Related Death Using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Carr, E.J.; Kronbichler, A.; Graham-Brown, M.; Abra, G.; Argyropoulos, C.; Harper, L.; Lerma, E.v.; Suri, R.S.; Topf, J.; Willicombe, M.; et al. Review of Early Immune Response to SARS-CoV-2 Vaccination among Patients with CKD. Kidney Int. Rep. 2021, 6, 2292–2304. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.-S.F.; Bemelman, F.J.; Messchendorp, A.L.; Baan, C.C.; van Baarle, D.; van Binnendijk, R.; Diavatopoulos, D.A.; Frölke, S.C.; Geers, D.; GeurtsvanKessel, C.H.; et al. The RECOVAC Immune-Response Study: The Immunogenicity, Tolerability, and Safety of COVID-19 Vaccination in Patients with Chronic Kidney Disease, on Dialysis, or Living with a Kidney Transplant. Transplantation 2022, 106, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; del Bello, A. Three Doses of an MRNA COVID-19 Vaccine in Solid-Organ Transplant Recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef]
- Benotmane, I.; Gautier, G.; Perrin, P.; Olagne, J.; Cognard, N.; Fafi-Kremer, S.; Caillard, S. Antibody Response after a Third Dose of the MRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients with Minimal Serologic Response to 2 Doses. JAMA 2021, 326, 1063–1065. [Google Scholar] [CrossRef] [PubMed]
- Schimpf, J.; Davidovic, T.; Abbassi-Nik, A.; Sprenger-Mähr, H.; Lhotta, K.; Zitt, E. Enhanced SARS-CoV-2 Antibody Response after a Third Heterologous Vector Vaccine Ad26COVS1 Dose in MRNA Vaccine-Primed Kidney Transplant Recipients. Transpl. Int. 2022, 36, 10357. [Google Scholar] [CrossRef] [PubMed]
- Reindl-Schwaighofer, R.; Heinzel, A.; Mayrdorfer, M.; Jabbour, R.; Hofbauer, T.M.; Merrelaar, A.; Eder, M.; Regele, F.; Doberer, K.; Spechtl, P.; et al. Comparison of SARS-CoV-2 Antibody Response 4 Weeks after Homologous vs Heterologous Third Vaccine Dose in Kidney Transplant Recipients: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 165–171. [Google Scholar] [CrossRef]
- Thomson, T.; Prendecki, M.; Gleeson, S.; Martin, P.; Spensley, K.; De Aguiar, R.C.; Sandhu, B.; Seneschall, C.; Gan, J.; Clarke, C.L.; et al. Immune Responses Following 3rd and 4th Doses of Heterologous and Homologous COVID-19 Vaccines in Kidney Transplant Recipients. EClinicalMedicine 2022, 53, 101642. [Google Scholar] [CrossRef]
- Osmanodja, B.; Ronicke, S.; Budde, K.; Jens, A.; Hammett, C.; Koch, N.; Seelow, E.; Waiser, J.; Zukunft, B.; Bachmann, F.; et al. Serological Response to Three, Four and Five Doses of SARS-CoV-2 Vaccine in Kidney Transplant Recipients. J. Clin. Med. 2022, 11, 2565. [Google Scholar] [CrossRef]
- Peghin, M.; Graziano, E.; Grossi, P.A. SARS-CoV-2 Vaccination in Solid-Organ Transplant Recipients. Vaccines 2022, 10, 1430. [Google Scholar] [CrossRef]
- Naylor, K.L.; Kim, S.J.; Smith, G.; McArthur, E.; Kwong, J.C.; Dixon, S.N.; Treleaven, D.; Knoll, G.A. Effectiveness of First, Second, and Third COVID-19 Vaccine Doses in Solid Organ Transplant Recipients: A Population-Based Cohort Study from Canada. Am. J. Transplant. 2022, 22, 2228–2236. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, C.J.; Mumford, L.; Curtis, R.M.K.; Williams, S.V.; Whitaker, H.; Andrews, N.; Lopez Bernal, J.; Ushiro-Lumb, I.; Pettigrew, G.J.; Thorburn, D.; et al. Real-World Effectiveness of the Pfizer-BioNTech BNT162b2 and Oxford-AstraZeneca ChAdOx1-S Vaccines Against SARS-CoV-2 in Solid Organ and Islet Transplant Recipients. Transplantation 2022, 106, 436–446. [Google Scholar] [CrossRef]
- Kho, M.M.L.; Reinders, M.E.J.; Baan, C.C.; van Baarle, D.; Bemelman, F.J.; Diavatopoulos, D.A.; Gansevoort, R.T.; van der Klis, F.R.M.; Koopmans, M.P.G.; Messchendorp, A.L.; et al. The RECOVAC IR Study: The Immune Response and Safety of the MRNA-1273 COVID-19 Vaccine in Patients with Chronic Kidney Disease, on Dialysis, or Living with a Kidney Transplant—A Prospective, Controlled, Multicenter Observational Cohort by the REnal Pati. Nephrol. Dial. Transplant. 2021, 36, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Bouwmans, P.; Messchendorp, A.L.; Sanders, J.S.; Hilbrands, L.; Reinders, M.E.J.; Vart, P.; Bemelman, F.J.; Abrahams, A.C.; van den Dorpel, M.A.; ten Dam, M.A.; et al. Long-Term Efficacy and Safety of SARS-CoV-2 Vaccination in Patients with Chronic Kidney Disease, on Dialysis or after Kidney Transplantation: A National Prospective Observational Cohort Study. BMC Nephrol. 2022, 23, 55. [Google Scholar] [CrossRef]
- Centraal bureau voor statistiek. Sociaal-Economische Status; Scores per Viercijferige Postcode Op 1 Januari 2019. June 2022. Available online: https://www.cbs.nl/nl-nl/maatwerk/2022/26/sociaal-economische-status-per-postcode-2019 (accessed on 1 December 2023).
- Sanders, J.-S.F.; Messchendorp, A.L.; de Vries, R.D.; Baan, C.C.; van Baarle, D.; van Binnendijk, R.; Diavatopoulos, D.A.; Geers, D.; Schmitz, K.S.; GeurtsvanKessel, C.H.; et al. Antibody and T-Cell Responses 6 Months after Coronavirus Disease 2019 Messenger RNA-1273 Vaccination in Patients with Chronic Kidney Disease, on Dialysis, or Living with a Kidney Transplant. Clin. Infect. Dis. 2022, 76, e188–e199. [Google Scholar] [CrossRef]
- Steenhuis, M.; van Mierlo, G.; Derksen, N.I.; Ooijevaar-de Heer, P.; Kruithof, S.; Loeff, F.L.; Berkhout, L.C.; Linty, F.; Reusken, C.; Reimerink, J.; et al. Dynamics of Antibodies to SARS-CoV-2 in Convalescent Plasma Donors. Clin. Transl. Immunol. 2021, 10, e1285. [Google Scholar] [CrossRef]
- Vogelzang, E.H.; Loeff, F.C.; Derksen, N.I.L.; Kruithof, S.; Ooijevaar-de Heer, P.; van Mierlo, G.; Linty, F.; Mok, J.Y.; van Esch, W.; de Bruin, S.; et al. Development of a SARS-CoV-2 Total Antibody Assay and the Dynamics of Antibody Response over Time in Hospitalized and Nonhospitalized Patients with COVID-19. J. Immunol. 2020, 205, 3491–3499. [Google Scholar] [CrossRef]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.K.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A Minimal Common Outcome Measure Set for COVID-19 Clinical Research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Haug, N.; Geyrhofer, L.; Londei, A.; Dervic, E.; Desvars-Larrive, A.; Loreto, V.; Pinior, B.; Thurner, S.; Klimek, P. Ranking the Effectiveness of Worldwide COVID-19 Government Interventions. Nat. Hum. Behav. 2020, 4, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Riou, J.; Panczak, R.; Althaus, C.L.; Junker, C.; Perisa, D.; Schneider, K.; Criscuolo, N.G.; Low, N.; Egger, M. Socioeconomic Position and the COVID-19 Care Cascade from Testing to Mortality in Switzerland: A Population-Based Analysis. Lancet Public Health 2021, 6, e683–e691. [Google Scholar] [CrossRef]
- Noordzij, M.; Duivenvoorden, R.; Pena, M.J.; de Vries, H.; Kieneker, L.M. ERACODA: The European Database Collecting Clinical Information of Patients on Kidney Replacement Therapy with COVID-19. Nephrol. Dial. Transpl. 2020, 35, 2023–2025. [Google Scholar] [CrossRef]
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; et al. Coronavirus Pandemic (COVID-19). Our World Data 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 7 November 2022).
- Zheng, C.; Shao, W.; Chen, X.; Zhang, B.; Wang, G.; Zhang, W. Real-World Effectiveness of COVID-19 Vaccines: A Literature Review and Meta-Analysis. Int. J. Infect. Dis. 2022, 114, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, D.; Hamzaoui, M.; Lemée, V.; Lamulle, J.; Hanoy, M.; Laurent, C.; Lebourg, L.; Etienne, I.; Lemoine, M.; Le Roy, F.; et al. Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients. J. Am. Soc. Nephrol. 2021, 32, 2147–2152. [Google Scholar] [CrossRef]
- Boyarsky, B.J.; Werbel, W.A.; Avery, R.K.; Tobian, A.A.R.; Massie, A.B.; Segev, D.L.; Garonzik-Wang, J.M. Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients. JAMA—J. Am. Med. Assoc. 2021, 325, 1784–1786. [Google Scholar] [CrossRef] [PubMed]
- Chavarot, N.; Ouedrani, A.; Marion, O.; Leruez-Ville, M.; Villain, E.; Baaziz, M.; Del Bello, A.; Burger, C.; Sberro-Soussan, R.; Martinez, F.; et al. Poor Anti-SARS-CoV-2 Humoral and T-Cell Responses after 2 Injections of MRNA Vaccine in Kidney Transplant Recipients Treated with Belatacept. Transplantation 2021, 105, e94–e95. [Google Scholar] [CrossRef] [PubMed]
- Geers, D.; Shamier, M.C.; Bogers, S.; den Hartog, G.; Gommers, L.; Nieuwkoop, N.N.; Schmitz, K.S.; Rijsbergen, L.C.; van Osch, J.A.T.; Dijkhuizen, E.; et al. SARS-CoV-2 Variants of Concern Partially Escape Humoral but not T-Cell Responses in COVID-19 Convalescent Donors and Vaccinees. Sci. Immunol. 2021, 6, eabj1750. [Google Scholar] [CrossRef]
- Marion, O.; Del Bello, A.; Abravanel, F.; Couat, C.; Faguer, S.; Esposito, L.; Hebral, A.L.; Izopet, J.; Kamar, N. Safety and Immunogenicity of Anti–SARS-CoV-2 Messenger RNA Vaccines in Recipients of Solid Organ Transplants. Ann. Intern. Med. 2021, 174, 1336–1338. [Google Scholar] [CrossRef]
- Rodríguez-Cubillo, B.; Moreno de la Higuera, M.A.; Pérez-Flores, I.; Calvo Romero, N.; Aiffil, A.S.; Arribi Vilela, A.; Peix, B.; Huertas, S.; Juez, A.; Sanchez-Fructuoso, A.I. Clinical Effectiveness of SARS-CoV-2 Vaccination in Renal Transplant Recipients. Antibody Levels Impact in Pneumonia and Death. Transplantation 2022, 106, e476–e487. [Google Scholar] [CrossRef]
- Alejo, J.L.; Chiang, T.P.Y.; Bowles Zeiser, L.; Kim, J.D.; Mitchell, J.; Avery, R.K.; Tobian, A.A.R.; Abedon, R.R.; Levan, M.L.; Warren, D.S.; et al. Incidence and Severity of COVID-19 among Vaccinated Solid Organ Transplant Recipients during the Omicron Wave. Transplantation 2022, 106, e413–e415. [Google Scholar] [CrossRef]
- Hamm, S.R.; Rezahosseini, O.; Møller, D.L.; Loft, J.A.; Poulsen, J.R.; Knudsen, J.D.; Pedersen, M.S.; Schønning, K.; Harboe, Z.B.; Rasmussen, A.; et al. Incidence and Severity of SARS-CoV-2 Infections in Liver and Kidney Transplant Recipients in the Post-Vaccination Era: Real-Life Data from Denmark. Am. J. Transpl. 2022, 22, 2637–2650. [Google Scholar] [CrossRef] [PubMed]
- Hovd, M.; Åsberg, A.; Munthe, L.A.; Heldal, K.; Reisæter, A.V.; Vaage, J.T.; Lund-Johansen, F.; Midtvedt, K. Humoral Vaccine Response and Breakthrough Infections in Kidney Transplant Recipients during the COVID-19 Pandemic: A Nationwide Cohort Study. EClinicalMedicine 2023, 60, 102035. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.; Goodyear, C.S.; Willicombe, M.; Gaskell, C.; Siebert, S.; I de Silva, T.; Murray, S.M.; Rea, D.; Snowden, J.A.; Carroll, M.; et al. SARS-CoV-2-Specific Immune Responses and Clinical Outcomes after COVID-19 Vaccination in Patients with Immune-Suppressive Disease. Nat. Med. 2023, 29, 1760–1774. [Google Scholar] [CrossRef] [PubMed]
- Kläser, K.; Molteni, E.; Graham, M.; Canas, L.S.; Österdahl, M.F.; Antonelli, M.; Chen, L.; Deng, J.; Murray, B.; Kerfoot, E.; et al. COVID-19 Due to the B.1.617.2 (Delta) Variant Compared to B.1.1.7 (Alpha) Variant of SARS-CoV-2: A Prospective Observational Cohort Study. Sci. Rep. 2022, 12, 10904. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Mak, T.M.; Cui, L.; Toh, M.P.H.; Lim, Y.D.; Lee, P.H.; Lee, T.H.; Chia, P.Y.; et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin. Infect. Dis. 2022, 75, e1128–e1136. [Google Scholar] [CrossRef]
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J.; et al. Hospital Admission and Emergency Care Attendance Risk for SARS-CoV-2 Delta (B.1.617.2) Compared with Alpha (B.1.1.7) Variants of Concern: A Cohort Study. Lancet Infect. Dis. 2022, 22, 35–42. [Google Scholar] [CrossRef]
- Imhof, C.; Messchendorp, A.L.; van der Heiden, M.; Baan, C.C.; van der Molen, R.G.; Remmerswaal, E.B.M.; de Vries, R.D.; Diavatopoulos, D.A.; Boerma, A.; Bakker, F.J.; et al. SARS-CoV-2 Spike-Specific IFN-γ T-Cell Response after COVID-19 Vaccination in Patients with Chronic Kidney Disease, on Dialysis, or Living with a Kidney Transplant. Transplant. Direct 2022, 8, e1387. [Google Scholar] [CrossRef]
- Zhang, R.; Shin, B.-H.; Gadsden, T.-A.M.; Petrosyan, A.; Vo, A.; Ammerman, N.; Sethi, S.; Huang, E.; Peng, A.; Najjar, R.; et al. Assessment of Humoral and Cellular Immune Responses to SARS CoV-2 Vaccination (BNT162b2) in Immunocompromised Renal Allograft Recipients. Transpl. Infect. Dis. 2022, 24, e13813. [Google Scholar] [CrossRef]
- Piotrowska, M.; Zieliński, M.; Tylicki, L.; Biedunkiewicz, B.; Kubanek, A.; Ślizień, Z.; Polewska, K.; Tylicki, P.; Muchlado, M.; Sakowska, J.; et al. Local and Systemic Immunity Are Impaired in End-Stage-Renal-Disease Patients Treated with Hemodialysis, Peritoneal Dialysis and Kidney Transplant Recipients Immunized with BNT162b2 Pfizer-BioNTech SARS-CoV-2 Vaccine. Front. Immunol. 2022, 13, 832924. [Google Scholar] [CrossRef]
- Marinaki, S.; Adamopoulos, S.; Degiannis, D.; Roussos, S.; Pavlopoulou, I.D.; Hatzakis, A.; Boletis, I.N. Immunogenicity of SARS-CoV-2 BNT162b2 Vaccine in Solid Organ Transplant Recipients. Am. J. Transplant. 2021, 21, 2913–2915. [Google Scholar] [CrossRef]
- Grupper, A.; Rabinowich, L.; Schwartz, D.; Schwartz, I.F.; Ben-Yehoyada, M.; Shashar, M.; Katchman, E.; Halperin, T.; Turner, D.; Goykhman, Y.; et al. Reduced Humoral Response to MRNA SARS-CoV-2 BNT162b2 Vaccine in Kidney Transplant Recipients without Prior Exposure to the Virus. Am. J. Transplant. 2021, 21, 2719–2726. [Google Scholar] [CrossRef] [PubMed]
- Lo Sasso, B.; Agnello, L.; Giglio, R.V.; Gambino, C.M.; Ciaccio, A.M.; Vidali, M.; Ciaccio, M. Longitudinal Analysis of Anti-SARS-CoV-2 S-RBD IgG Antibodies before and after the Third Dose of the BNT162b2 Vaccine. Sci. Rep. 2022, 12, 8679. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.-H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable Escape of SARS-CoV-2 Omicron to Antibody Neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef]
- Kumar, D.; Hu, Q.; Samson, R.; Ferreira, V.H.; Hall, V.G.; Ierullo, M.; Majchrzak-Kita, B.; Hardy, W.; Gingras, A.-C.; Humar, A. Neutralization against Omicron Variant in Transplant Recipients after Three Doses of MRNA Vaccine. Am. J. Transplant. 2022, 22, 2089–2093. [Google Scholar] [CrossRef] [PubMed]
- Chalkias, S.; Harper, C.; Vrbicky, K.; Walsh, S.R.; Essink, B.; Brosz, A.; McGhee, N.; Tomassini, J.E.; Chen, X.; Chang, Y.; et al. A Bivalent Omicron-Containing Booster Vaccine against COVID-19. N. Engl. J. Med. 2022, 387, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- De Vries, R.D.; van der Heiden, M.; Geers, D.; Imhof, C.; van Baarle, D. Difference in Sensitivity between SARS-CoV-2-Specific T Cell Assays in Patients with Underlying Conditions. J. Clin. Investig. 2021, 131, e155499. [Google Scholar] [CrossRef] [PubMed]
- Sanghavi, D.K.; Bhakta, S.; Wadei, H.M.; Bosch, W.; Cowart, J.B.; Carter, R.E.; Shah, S.Z.; Pollock, B.D.; Neville, M.R.; Oman, S.P.; et al. Low Antispike Antibody Levels Correlate with Poor Outcomes in COVID-19 Breakthrough Hospitalizations. J. Intern. Med. 2022, 292, 127–135. [Google Scholar] [CrossRef]
- Goldblatt, D.; Fiore-Gartland, A.; Johnson, M.; Hunt, A.; Bengt, C.; Zavadska, D.; Snipe, H.D.; Brown, J.S.; Workman, L.; Zar, H.J.; et al. Towards a Population-Based Threshold of Protection for COVID-19 Vaccines. Vaccine 2022, 40, 306–315. [Google Scholar] [CrossRef]
- Kho, M.M.; Messchendorp, A.L.; Frölke, S.C.; Imhof, C.; Koomen, V.J.; Malahe, S.R.K.; Vart, P.; Geers, D.; de Vries, R.D.; GeurtsvanKessel, C.H.; et al. Alternative Strategies to Increase the Immunogenicity of COVID-19 Vaccines in Kidney Transplant Recipients not Responding to Two or Three Doses of an MRNA Vaccine: A Randomised Clinical Trial. Lancet Infect. Dis. 2022, 23, 307–319. [Google Scholar] [CrossRef]
- Kantauskaite, M.; Müller, L.; Kolb, T.; Fischer, S.; Hillebrandt, J.; Ivens, K.; Andree, M.; Luedde, T.; Orth, H.M.; Adams, O.; et al. Intensity of Mycophenolate Mofetil Treatment Is Associated with an Impaired Immune Response to SARS-CoV-2 Vaccination in Kidney Transplant Recipients. Am. J. Transplant. 2022, 22, 634–639. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, H.; Hobbs, F.D.R.; Padilla, F.; Arbetter, D.; Templeton, A.; Seegobin, S.; Kim, K.; Campos, J.A.S.; Arends, R.H.; Brodek, B.H.; et al. Efficacy and Safety of Intramuscular Administration of Tixagevimab-Cilgavimab for Early Outpatient Treatment of COVID-19 (TACKLE): A Phase 3, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Respir. Med. 2022, 10, 985–996. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 2885) | Seropositive (n = 1578) | Seronegative (n = 1307) | p-Value | |
---|---|---|---|---|
Female, n (%) | 1214 (42.1) | 638 (40.4) | 576 (44.1) | 0.04 |
Caucasian, n (%) | 2514 (92.2) | 1373 (91.7) | 1141 (92.8) | 0.28 |
Age (years) | 57.7 ± 12.9 | 56.2 ± 13.2 | 59.5 ± 12.0 | <0.001 |
BMI (kg/m2) | 26.1 ± 6.3 | 26.2 ± 5.2 | 26.0 ± 7.5 | 0.19 |
Current smoking, n (%) | 28 (1.0) | 22 (1.5) | 6 (0.5) | <0.001 |
Current alcohol consumption, n (%) | 1196 (43.1) | 692 (45.6) | 504 (40.2) | 0.004 |
Number of comorbidities, n (%) | <0.001 | |||
| 1329 (51.4) | 818 (53.9) | 511 (47.8) | |
| 631 (24.4) | 332 (21.9) | 299 (28.0) | |
| 337 (13.0) | 169 (11.1) | 168 (15.7) | |
Comorbidities, n (%) | ||||
| 2323 (85.3) | 1266 (83.4) | 1057 (87.7) | 0.002 |
| 549 (21.2) | 273 (18.0) | 276 (25.8) | <0.001 |
| 307 (11.9) | 155 (10.2) | 152 (14.2) | 0.002 |
| 158 (6.1) | 80 (5.3) | 78 (7.3) | 0.03 |
| 169 (6.5) | 77 (5.1) | 92 (8.6) | <0.001 |
| 113 (4.4) | 68 (4.5) | 45 (4.2) | 0.74 |
eGFR (mL/min/1.73 m2) | 51.2 ± 18.7 | 52.6 ± 19.0 | 49.1 ± 18.2 | <0.001 |
Primary renal diagnosis, n (%) | <0.001 | |||
| 455 (20.5) | 279 (21.5) | 176 (19.1) | |
| 155 (7.0) | 107 (8.3) | 48 (5.2) | |
| 400 (18.1) | 233 (18.0) | 167 (18.2) | |
| 82 (3.7) | 53 (4.1) | 29 (3.2) | |
| 169 (7.6) | 100 (7.7) | 69 (7.5) | |
| 129 (4.4) | 60 (4.6) | 69 (7.5) | |
| 109 (5.1) | 66 (5.1) | 49 (5.3) | |
| 528 (24.9) | 292 (22.5) | 263 (28.6) | |
| 155 (7.0) | 105 (8.1) | 50 (5.4) | |
Transplant characteristics | ||||
| 1770 (85.3) | 1077 (85.3) | 766 (85.4) | 0.94 |
| 7 (3–13) | 8 (4–14) | 6 (3–12) | <0.001 |
| 237 (11.0) | 118 (9.3) | 119 (13.3) | 0.004 |
| ||||
| 1368 (63.3) | 822 (65.1) | 546 (60.9) | 0.04 |
| 824 (35.8) | 492 (36.4) | 332 (34.8) | 0.44 |
Number of immunosuppressants, n (%) | <0.001 | |||
| 82 (3.8) | 65 (5.2) | 17 (1.9) | |
| 1071 (50.0) | 667 (53.4) | 404 (45.3) | |
| 988 (46.1) | 518 (41.4) | 470 (52.7) | |
Immunosuppressive treatment, n (%) | ||||
| 1645 (76.8) | 975 (78.0) | 670 (75.2) | 0.13 |
| 225 (10.5) | 187 (15.0) | 38 (4.3) | <0.001 |
| 1369 (63.9) | 644 (51.5) | 725 (81.4) | <0.001 |
| 1767 (82.5) | 1026 (82.1) | 741 (83.2) | 0.52 |
| 167 (7.9) | 117 (9.4) | 46 (5.2) | <0.001 |
| 19 (0.8) | 4 (0.3) | 15 (1.4) | 0.003 |
| 13 (0.6) | 7 (0.6) | 6 (0.6) | 0.97 |
| 1 (0.04) | 1 (0.1) | 0 | 0.36 |
| 10 (0.4) | 3 (0.2) | 7 (0.7) | 0.12 |
COVID-19 vaccination | <0.001 | |||
| 2604 (93.7) | 1461 (96.0) | 1143 (91.0) | |
| 117 (4.2) | 44 (2.9) | 73 (5.8) | |
| 56 (2.0) | 17 (1.1) | 39 (3.1) | |
Adherence to COVID-19 restrictions * | 4.25 (3.67–4.67) | 4.17 (3.56–4.63) | 4.33 (3.75–4.67) | <0.001 |
Socio-economic status ** | 0.04 | |||
| 444 (15.5) | 256 (16.3) | 188 (14.5) | |
| 257 (9.0) | 136 (8.7) | 121 (9.3) | |
| 382 (13.3) | 208 (13.3) | 174 (13.4) | |
| 517 (18.0) | 275 (17.5) | 242 (18.6) | |
| 547 (19.1) | 325 (20.7) | 222 (17.1) | |
| 721 (25.1) | 368 (23.5) | 353 (27.2) | |
Interval between vaccination and blood sample (days) | 31 (28–36) | 31 (28–36) | 31 (28–36) | 0.90 |
RBD IgG antibody level after vaccination (BAU/mL) | 72.5 (10.7–600) | 495 (142–1716) | 8.57 (1.18–21.5) | <0.001 |
Variables are presented as mean ± SD in the case of normal distribution, as median (IQ interval) in the case of non-normal distribution. or as absolute numbers and percentages in the case of categorical data; due to missing data, numbers and percentages may not match the total number of included patients. Abbreviations are as follows: BMI, body mass index; eGFR, estimated glomerular filtration rate. * Adherence to restrictions was determined by the average score for 9 questions on a 1–5 point Likert scale ** Socio-economic status was scored based on financial prosperity, educational level, and recent employment history of households using publicly accessible data from Statistics Netherlands (CBS) [16]. |
Crude | Model 1 | Model 2 | Model 3 | Model 4 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p.val | aHR (95% CI) | p.val | aHR (95% CI) | p.val | aHR (95% CI) | p.val | aHR (95% CI) | p.val | |
Seropositive (yes vs. no) | 0.58 (0.35–0.96) | 0.03 | 0.56 (0.33–0.93) | 0.02 | 0.48 (0.26–0.88) | 0.02 | 0.37 (0.19–0.74) | 0.005 | 0.48 (0.27–0.86) | 0.01 |
Age (years) | 0.99 (0.97–1.01) | 0.23 | 0.99 (0.97–1.02) | 0.61 | 1.00 (0.97–1.03) | 0.81 | ||||
Sex (Female vs. Male) | 0.94 (0.57–1.56) | 0.81 | 0.93 (0.52–1.67) | 0.81 | 0.98 (0.51–1.85) | 0.94 | ||||
Diabetes mellitus (yes vs. no) | 1.90 (1.01–3.55) | 0.045 | 1.76 (0.89–3.51) | 0.11 | ||||||
Azathioprine use (yes vs. no) | 2.87 (1.38–5.97) | 0.005 | 4.04 (1.88–8.69) | <0.001 | 2.56 (1.25–5.28) | 0.01 | ||||
Adherence to COVID-19 restrictions * | 0.93 (0.63–1.40) | 0.74 | ||||||||
Socio-economic status ** | 0.35 (0.09–1.29) | 0.12 | ||||||||
Hazard ratio’s (HR) and adjusted HR (aHR) (95% CI) and p-values were calculated using a multivariable Cox regression analysis with COVID-19 as the event and days after blood collection as the time variable. * Adherence to restrictions was determined by the average score for 9 questions on a 1–5 point Likert scale ** Socio-economic status was scored based on financial prosperity, educational level, and recent employment history of households using publicly accessible data from Statistics Netherlands (CBS) [16]. 1 Model 4 was conducted using a multivariable stepwise backward logistic regression analysis including variables from Model 3, leaving variables with a p-value < 0.05. |
COVID-19 | ||||
---|---|---|---|---|
All (n = 62) | Seropositive * (n = 27) | Seronegative (n = 35) | p-Value | |
Severity | 0.046 | |||
| 47 (75.8) | 25 (92.6) | 22 (62.9) | |
| 11 (17.7) | 1 (3.7) | 10 (28.6) | |
| 1 (1.6) | 0 | 1 (2.9) | |
| 3 (4.8) | 1 (3.7) | 2 (5.7) | |
WHO CPS score | 2 (2–4) | 2 (2–2) | 2 (2–5) | 0.008 |
Therapy 1 | ||||
| 15 (24.6) | 1 (3.8) | 14 (40.0) | 0.001 |
| 14 (19.4) | 0 | 11 (31.4) | 0.002 |
| 3 (4.2) | 0 | 2 (5.7) | 0.22 |
Time after vaccination (days) | 172 (121–201) | 167 (115–188) | 156 (101–180) | 0.29 |
Variables are presented as median (IQ interval) for continuous data or as absolute numbers and percentages in case of categorical data. p-values were calculated using Mann–Whitney U for continuous variables and Pearson’s chi-squared test for categorical variables. Abbreviations are as follows: WHO, World Health Organization; CPS, Clinical Progression Scale. * Seroresponse after vaccination was defined as an anti-RBD IgG antibody level ≥ or <50 BAU/mL. 1 Due to missing data, numbers and percentages may not match the total number of included patients. |
Univariable | Multivariable * | |||
---|---|---|---|---|
OR (95% CI) | p.val | aOR (95% CI) | p.val | |
Seropositive (yes vs. no) | 0.14 (0.03–0.67) | 0.01 | 0.03 (0.001–0.51) | 0.02 |
Age (years) | 1.05 (0.99–1.11) | 0.12 | ||
Sex (Female vs. Male) | 1.29 (0.40–4.15) | 0.67 | ||
eGFR (mL/min/1.73 m2) | 0.93 (0.89–0.99) | 0.01 | 0.93 (0.88–0.99) | 0.02 |
≤1 year after transplantation (yes vs. no) | 11.1 (0.89–140) | 0.06 | ||
Living donor transplant (yes vs. no) | 0.12 (0.02–0.66) | 0.02 | 0.06 (0.01–0.62) | 0.02 |
Socio-economic status ** | 1.78 (0.13–23.8) | 0.66 | ||
Odds ratio’ s (OR) and adjusted OR (aOR) (95% CI) and p-values were calculated using a logistic regression analysis. Dependent variable is COVID-19 severity defined as a WHO CPS score of ≥4 or <4, i.e., hospital admission and/or death (yes or no). Abbreviations are as follows: eGFR, estimated glomerular filtration rate. * Multivariable model was created using a multivariable stepwise backward logistic regression analysis including all variables from the univariable analysis, leaving variables with a p-value < 0.05. ** Socio-economic status was scored based on financial prosperity, educational level, and recent employment history of households using publicly accessible data from Statistics Netherlands (CBS) [16]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messchendorp, A.L.; Sanders, J.-S.F.; Abrahams, A.C.; Bemelman, F.J.; Bouwmans, P.; van den Dorpel, R.M.A.; Hilbrands, L.B.; Imhof, C.; Reinders, M.E.J.; Rispens, T.; et al. Incidence and Severity of COVID-19 in Relation to Anti-Receptor-Binding Domain IgG Antibody Level after COVID-19 Vaccination in Kidney Transplant Recipients. Viruses 2024, 16, 114. https://doi.org/10.3390/v16010114
Messchendorp AL, Sanders J-SF, Abrahams AC, Bemelman FJ, Bouwmans P, van den Dorpel RMA, Hilbrands LB, Imhof C, Reinders MEJ, Rispens T, et al. Incidence and Severity of COVID-19 in Relation to Anti-Receptor-Binding Domain IgG Antibody Level after COVID-19 Vaccination in Kidney Transplant Recipients. Viruses. 2024; 16(1):114. https://doi.org/10.3390/v16010114
Chicago/Turabian StyleMesschendorp, A. Lianne, Jan-Stephan F. Sanders, Alferso C. Abrahams, Frederike J. Bemelman, Pim Bouwmans, René M. A. van den Dorpel, Luuk B. Hilbrands, Céline Imhof, Marlies E. J. Reinders, Theo Rispens, and et al. 2024. "Incidence and Severity of COVID-19 in Relation to Anti-Receptor-Binding Domain IgG Antibody Level after COVID-19 Vaccination in Kidney Transplant Recipients" Viruses 16, no. 1: 114. https://doi.org/10.3390/v16010114
APA StyleMesschendorp, A. L., Sanders, J. -S. F., Abrahams, A. C., Bemelman, F. J., Bouwmans, P., van den Dorpel, R. M. A., Hilbrands, L. B., Imhof, C., Reinders, M. E. J., Rispens, T., Steenhuis, M., ten Dam, M. A. G. J., Vart, P., de Vries, A. P. J., Hemmelder, M. H., Gansevoort, R. T., & RECOVAC Investigators. (2024). Incidence and Severity of COVID-19 in Relation to Anti-Receptor-Binding Domain IgG Antibody Level after COVID-19 Vaccination in Kidney Transplant Recipients. Viruses, 16(1), 114. https://doi.org/10.3390/v16010114