Non-Polio Enteroviruses Isolated by Acute Flaccid Paralysis Surveillance Laboratories in the Russian Federation in 1998–2021: Distinct Epidemiological Features of Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation of AFP Cases in the Russian Federation
2.2. Investigation of Samples for Supplementary Surveillance for Polio
2.2.1. Materials from Cases of Enterovirus Infection (EVI)
2.2.2. Isolations from the Environment
2.2.3. Materials Obtained during the Examination of Risk Groups
2.3. Identification of NPVs in the NL
2.4. Clinical Classification of AFP Cases
2.5. Statistical Methods
2.6. Ethics Statement
3. Results
3.1. NPVs Isolated from AFP Cases
3.2. NPVs Isolated from AFP and Other Sources
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Committee on Taxonomy of Viruses (ICTV) [Electronic Resource]. Current ICTV Taxonomy Release. 2022. Available online: https://ictv.global/taxonomy/ (accessed on 10 January 2024).
- Ooi, M.H.; Wong, S.C.; Lewthwaite, P.; Cardosa, M.J.; Solomon, T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010, 9, 1097–1105. [Google Scholar] [CrossRef]
- Palacios, G.; Oberste, M.S. Enteroviruses as agents of emerging infectious diseases. J. Neurovirol. 2005, 11, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-W.; Cheng, D.; Wang, J.-R. Enterovirus A71: Virulence, antigenicity, and genetic evolution over the years. J. Biomed. Sci. 2019, 26, 81. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.C.; Winn, A.; Moline, H.L.; Scobie, H.M.; Midgley, C.M.; Kirking, H.L.; Adjemian, J.; Hartnett, K.P.; Johns, D.; Jones, J.M.; et al. Increase in Acute Respiratory Illnesses Among Children and Adolescents Associated with Rhinoviruses and Enteroviruses, Including Enterovirus D68—United States, July–September 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Benschop, K.S.; Albert, J.; Anton, A.; Andrés, C.; Aranzamendi, M.; Armannsdóttir, B.; Bailly, J.L.; Baldanti, F.; Baldvinsdóttir, G.E.; Beard, S.; et al. Re-emergence of enterovirus D68 in Europe after easing the COVID-19 lockdown, September 2021. Eurosurveillance 2021, 26, 2100998. [Google Scholar] [CrossRef]
- Lashkevich, V.A.; Koroleva, G.A.; Lukashev, A.N.; Denisova, E.V.; Katargina, L.A.; Khoroshilova-Maslova, I.P. Acute enterovirus uveitis in young children. Probl. Virol. 2005, 50, 36–45. (In Russian) [Google Scholar]
- de Sousa, I.P., Jr.; Giamberardino, H.I.; Raboni, S.M.; Debur, M.C.; de Lourdes Aguiar Oliveira, M.; Burlandy, F.M.; da Silva, E.E. Simultaneous enterovirus EV-D68 and CVA6 infections causing acute respiratory distress syndrome and hand, foot and mouth disease. Virol. J. 2021, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Puenpa, J.; Vongpunsawad, S.; Osterback, R.; Waris, M.; Eriksson, E.; Albert, J.; Midgley, S.; Fischer, T.K.; Eis-Hubinger, A.M.; Cabrerizo, M.; et al. Molecular epidemiology and the evolution of human coxsackievirus A6. J. Gen. Virol. 2016, 97, 3225–3231. [Google Scholar] [CrossRef] [PubMed]
- Bisseux, M.; Debroas, D.; Mirand, A.; Archimbaud, C.; Peigue-Lafeuille, H.; Bailly, J.-L.; Henquell, C. Monitoring of enterovirus diversity in wastewater by ultra-deep sequencing: An effective complementary tool for clinical enterovirus surveillance. Water Res. 2020, 169, 115246. [Google Scholar] [CrossRef] [PubMed]
- Lashkevich, V.A.; Koroleva, G.A.; Lukashev, A.N.; Denisova, E.V.; Katargina, L.A. Enterovirus uveitis. Rev. Med. Virol. 2004, 14, 241–254. [Google Scholar] [CrossRef]
- World Health Assembly. Global Eradication of Poliomyelitis by the Year 2000; WHA Resolution No. WHA41.28; World Health Organization: Geneva, Switzerland, 1988; Available online: https://polioeradication.org/wp-content/uploads/2016/07/19880513_resolution-2.pdf (accessed on 10 January 2024).
- Hull, H.F.; Birmingham, M.E.; Melgaard, B.; Lee, J.W. Progress toward Global Polio Eradication. J. Infect. Dis. 1997, 175, 4–9. [Google Scholar] [CrossRef]
- Marx, A.; Glass, J.D.; Sutter, R.W. Differential diagnosis of Acute Flaccid Paralysis and its role in poliomyelitis. Epidemiol. Rev. 2000, 22, 298–316. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Polio Laboratory Manual, 4th ed.; World Health Organization: Geneva, Switzerland, 2004; Available online: http://whqlibdoc.who.int/hq/2004/WHO_IVB_04.10.pdf (accessed on 12 January 2024).
- Suresh, S.; Rawlinson, W.D.; Andrews, P.I.; Stelzer-Braid, S. Global epidemiology of nonpolio enteroviruses causing severe neurological complications: A systematic review and meta-analysis. Rev. Med. Virol. 2020, 30, e2082. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Lee, A.; Guo, A.; Konopka-Anstadt, J.L.; Nisler, A.; Rogers, S.L.; Emery, B.; Nix, W.A.; Oberste, S.; Routh, J.; et al. Vital Signs: Surveillance for Acute Flaccid Myelitis—United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Holm-Hansen, C.C.; Midgley, S.E.; Fischer, T.K. Global emergence of enterovirus D68: A systematic review. Lancet Infect. Dis. 2016, 16, e64ee75. [Google Scholar] [CrossRef]
- Keeren, K.; Böttcher, S.; Diedrich, S. Enterovirus Surveillance (EVSurv) in Germany. Microorganisms 2021, 9, 2005. [Google Scholar] [CrossRef]
- Antona, D.; Leveque, N.; Chomel, J.J.; Dubrou, S.; Lévy-Bruhl, D.; Lina, B. Surveillance of enteroviruses in France, 2000–2004. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 403–412. [Google Scholar] [CrossRef]
- Harvala, H.; Jasir, A.; Penttinen, P.; Celentano, L.P.; Greco, D.; Broberg, E. Surveillance and laboratory detection for non-polio enteroviruses in the European Union/European Economic Area, 2016. Eurosurveillance 2017, 22, 16–00807. [Google Scholar] [CrossRef]
- Condell, O.; Midgley, S.; Christiansen, C.B.; Chen, M.; Nielsen, X.C.; Ellermann-Eriksen, S.; Mølvadgaard, M.; Schønning, K.; Hoegh, S.V.; Andersen, P.H.; et al. Evaluation of the enterovirus laboratory surveillance system in Denmark, 2010 to 2013. Eurosurveillance 2016, 21, 30218. [Google Scholar] [CrossRef]
- Benschop, K.S.M.; van der Avoort, H.G.; Jusic, E.; Vennema, H.; van Binnendijk, R.; Duizer, E. Polio and Measles Down the Drain: Environmental Enterovirus Surveillance in the Netherlands, 2005 to 2015. Appl. Environ. Microbiol. 2017, 83, e00558-17. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for Environmental Surveillance of Poliovirus Circulation; WHO: Geneva, Switzerland, 2003; Available online: https://polioeradication.org/wp-content/uploads/2016/07/WHO_V-B_03.03_eng.pdf (accessed on 10 January 2024).
- Sanitary Rules and Norms SanPiN 3.3686-21 “Sanitary and Epidemiological Requirements for the Prevention of Infectious Diseases”. 2021. Available online: https://docs.cntd.ru/document/573660140 (accessed on 10 January 2024). (In Russian).
- Oberste, M.S.; Maher, K.; Kilpatrick, D.R.; Flemister, M.R.; Brown, B.A.; Pallansch, M.A. Typing of human enteroviruses by partial sequencing of VP1. J. Clin. Microbiol. 1999, 37, 1288–1293. [Google Scholar] [CrossRef]
- Ivanova, O.E.; Yurashko, O.V.; Eremeeva, T.P.; Baikova, O.Y.; Morozova, N.S.; Lukashev, A.N. Adenovirus Isolation Rates in Acute Flaccid Paralysis Patients. J. Med. Virol. 2012, 84, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Clinic, Diagnosis and Treatment of Acute poliomyelitis. Guidelines; Institute of Poliomyelitis and Viral Encephalitides of Russian Academy of Science: Moscow, Russia, 1998; Available online: https://fcgie.ru/download/koord_tsentr/MR1998.doc (accessed on 10 January 2024).
- International Statistical Classification of Diseases and Related Health Problems 10th Revision. Available online: https://icd.who.int/browse10/2019/en35 (accessed on 12 January 2024).
- Ivanova, O.E.; Shakaryan, A.K.; Morozova, N.S.; Vakulenko, Y.A.; Eremeeva, T.P.; Kozlovskaya, L.I.; Baykova, O.Y.; Shustova, E.Y.; Mikhailova, Y.M.; Romanenkova, N.I.; et al. Cases of Acute Flaccid Paralysis Associated with Coxsackievirus A2: Findings of a 20-Year Surveillance in the Russian Federation. Microorganisms 2022, 10, 112. [Google Scholar] [CrossRef]
- Maan, H.S.; Dhole, T.N.; Chowdhary, R. Identification and characterization of nonpolio enterovirus associated with nonpolio-acute flaccid paralysis in polio endemic state of Uttar Pradesh, Northern India. PLoS ONE 2019, 14, e0208902. [Google Scholar] [CrossRef]
- Howard, W.; Savulescu, D.; Berrie, L.; Puren, A.J. Description of non-polio enteroviruses identified in two national surveillance programmes in South Africa. South. Afr. J. Infect. Dis. 2020, 35, 196. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamida, A.; Ali, K.M.; Mdodo, R.; Mohamed, A.; Mengistu, K.; Nzunza, R.M.; Farag, N.N.; Ehrhardt, D.T.; Elfakki, E.; Mbaeyi, C. Using Nonpolio Enterovirus Detection to Assess the Integrity of Stool Specimens Collected From Acute Flaccid Paralysis Cases in Somalia During 2014–2017. Open Forum. Infect. Dis. 2020, 7, ofaa135. [Google Scholar] [CrossRef]
- Wieczorek, M.; Krzysztoszek, A. Molecular Characterization of Enteroviruses Isolated from Acute Flaccid Paralysis Cases in Poland, 1999–2014. Pol. J. Microbiol. 2017, 65, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Masa-Calles, J.; Torner, N.; López-Perea, N.; de Viarce Torres de Mier, M.; Fernández-Martínez, B.; Cabrerizo, M.; Gallardo-García, V.; Malo, C.; Margolles, M.; Portell, M.; et al. Acute flaccid paralysis (AFP) surveillance: Challenges and opportunities from 18 years’ experience, Spain, 1998 to 2015. Eurosurveillance 2018, 23, 1700423. [Google Scholar] [CrossRef]
- Sousa Jr, I.P.; de Lourdes Aguiar Oliveira, M.; Burlandy, F.M.; Machado, R.S.; Oliveira, S.S.; Tavares, F.N.; Gomes-Neto, F.; da Costa, E.V.; da Silva, E.E. Molecular characterization and epidemiological aspects of non-polio enteroviruses isolated from acute flaccid paralysis in Brazil: A historical series (2005–2017). Emerg. Microbes Infect. 2020, 9, 2536–2546. [Google Scholar] [CrossRef]
- Tushabe, P.; Howard, W.; Bwogi, J.; Birungi, M.; Eliku, J.P.; Kakooza, P.; Bukenya, H.; Namuwulya, P.; Gaizi, J.; Tibanagwa, M.; et al. Molecular characterization of non-polio enteroviruses isolated from acute flaccid paralysis patients in Uganda. J. Med. Virol. 2021, 93, 4720–4728. [Google Scholar] [CrossRef]
- Chouikha, A.; Rezig, D.; Driss, N.; Abdelkhalek, I.; Ben Yahia, A.; Touzi, H.; Meddeb, Z.; Ben Farhat, E.; Yahyaoui, M.; Triki, H. Circulation and Molecular Epidemiology of Enteroviruses in Paralyzed, Immunodeficient and Healthy Individuals in Tunisia, a Country with a Polio-Free Status for Decades. Viruses 2021, 13, 380. [Google Scholar] [CrossRef]
- Jiao, M.M.A.; Apostol, L.N.; de Quiroz-Castro, M.; Jee, Y.; Roque Jr, V.; Mapue, M.; Navarro, F.M.; Fe Tabada, C.; Tandoc, A. Non-polio enteroviruses among healthy children in the Philippines. BMC Public Health 2020, 20, 167. [Google Scholar] [CrossRef]
- Baicus, A.; Joffret, M.-L.; Bessaud, M.; Delpeyroux, F.; Oprisan, G. Reinforced poliovirus and enterovirus surveillance in Romania, 2015–2016. Arch. Virol. 2020, 165, 2627–2632. [Google Scholar] [CrossRef]
- Khetsuriani, N.; LaMonte-Fowlkes, A.; Oberste, S.M.; Pallansch, M.A. Enterovirus Surveillance—United States, 1970–2005. In MMWR.: CDC Surveillance Summaries; CDC: Atlanta, GA, USA, 2006; Volume 55, pp. 1–20. [Google Scholar]
- Tapparel, C.; Siegrist, F.; Petty, T.J.; Kaiser, L. Picornavirus and enterovirus diversity with associated human diseases. Infect. Genet. Evol. 2013, 14, 282–293. [Google Scholar] [CrossRef]
- Chumakov, M.; Voroshilova, M.; Shindarov, L.; Lavrova, I.; Gracheva, L.; Koroleva, G.; Vasilenko, S.; Brodvarova, I.; Nikolova, M.; Gyurova, S.; et al. Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch. Virol. 1979, 60, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Forgie, S.; Robinson, J. Non-polio Enterovirus detection with acute flaccid paralysis: A systematic review. J. Med. Virol. 2018, 90, 3–7. [Google Scholar] [CrossRef]
- Bayrakdar, F.; Coşgun, Y.; Salman Atak, T.; Karademir, H.; Korukluoğlu, G. Investigation of adenovirus isolation frequency from the stool samples of patients suspected with acute flaccid paralysis. Mikrobiyol. Bul. 2016, 50, 287–292. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo, J.P.; Nascimento, L.R.; Cortinovis, M.C.; Oliveira, S.S.; da Costa, E.V.; da Silva, E.E. Characterization of species B adenoviruses isolated from fecal specimens taken from poliomyelitis-suspected cases. J. Clin. Virol. 2004, 31, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Calvo, T. Enterovirus infection and type 1 diabetes: Unraveling the crime scene. Clin. Exp. Immunol. 2019, 195, 15–24. [Google Scholar] [CrossRef]
- Yeung, W.C.; Rawlinson, W.D.; Craig, M.E. Enterovirus infection and type 1 diabetes mellitus: Systematic review and meta-analysis of observational molecular studies. BMJ 2011, 342, d35. [Google Scholar] [CrossRef]
- Yarmolskaya, M.S.; Shumilina, E.Y.; Ivanova, O.E.; Drexler, J.F.; Lukashev, A.N. Molecular epidemiology of echoviruses 11 and 30 in Russia: Different properties of genotypes within an enterovirus serotype. Infect. Genet. Evol. 2015, 30, 244–248. [Google Scholar] [CrossRef] [PubMed]
EV Type a | AFP | Healthy b | Enterovirus Infection (EVI) c | Sewage | ||||
---|---|---|---|---|---|---|---|---|
Isolates (%) | vs. Healthy d | vs. Healthy + EVI | Isolates (%) | Isolates (%) | vs. Healthy | Isolates (%) | vs. Any Other | |
CVA2 | 5 (1.9) | n.s. e | n.s. | 9 (1.3) | 7 (0.4) | n.s. | 0 (0) | <0.01 |
CVA4 | 7 (2.6) | n.s. | n.s. | 29 (4.3) | 26 (1.4) | n.s. | 8 (0.5) | n.s. |
CVA7 | 0 (0) | n.s. | n.s. | 5 (0.7) | 5 (0.3) | n.s. | 21 (1.4) | <0.01 |
CVA10 | 3 (1.1) | n.s. | n.s. | 13 (1.9) | 31 (1.7) | n.s. | 5 (0.3) | n.s. |
CVA16 | 4 (1.5) | n.s. | n.s. | 2 (0.3) | 47 (2.6) | <0.01 | 25 (1.7) | n.s. |
EV-A71 | 14 (5.3) | n.s. | <0.05 | 11 (1.6) | 32 (1.7) | n.s. | 3 (0.2) | <0.001 |
Total EV-A | 39 | – | – | 73 | 172 | – | 69 | – |
CVA9 | 2 (0.8) | n.s. | n.s. | 2 (0.3) | 50 (2.7) | <0.001 | 1 (0.1) | <0.001 |
CVB1-6 | 109 (41.1) | n.s. | n.s. | 247 (36.2) | 421 (23.0) | n.s. | 538 (36.2) | <0.001 |
E3 | 11 (4.2) | n.s. | n.s. | 16 (2.3) | 16 (0.9) | n.s. | 46 (3.1) | <0.05 |
E4 | 0 (0) | n.s. | n.s. | 4 (0.6) | 21 (1.1) | n.s. | 15 (1.0) | n.s. |
E6 | 14 (5.3) | n.s. | <0.05 | 42 (6.2) | 264 (14.4) | <0.001 | 157 (10.6) | n.s. |
E7 | 9 (3.4) | n.s. | n.s. | 15 (2.2) | 64 (3.5) | n.s. | 214 (14.4) | <0.001 |
E9 | 2 (0.8) | n.s. | <0.05 | 30 (4.4) | 85 (4.6) | n.s. | 0 (0) | <0.001 |
E11 | 22 (8.3) | n.s. | n.s. | 46 (6.7) | 70 (3.8) | n.s. | 170 (11.4) | <0.001 |
E12 | 1 (0.4) | n.s. | n.s. | 7 (1.0) | 9 (0.5) | n.s. | 41 (2.8) | <0.001 |
E13 | 12 (4.5) | n.s. | <0.05 | 23 (3.4) | 8 (0.4) | <0.001 | 11 (0.7) | n.s. |
E14 | 6 (2.3) | n.s. | n.s. | 13 (1.9) | 11 (0.6) | n.s. | 5 (0.3) | n.s. |
E17 | 0 (0) | n.s. | n.s. | 18 2.6) | 7 (0.4) | <0.001 | 14 (0.9) | n.s. |
E19 | 3 (1.1) | n.s. | n.s. | 16 (2.3) | 17 (0.9) | n.s. | 56 (3.8) | <0.001 |
E25 | 13 (4.9) | n.s. | <0.05 | 16 (2.3) | 24 (1.3) | n.s. | 33 (2.2) | n.s. |
E29 | 0 (0) | n.s. | n.s. | 15 (2.2) | 2 (0.1) | <0.001 | 13 (0.9) | n.s. |
E30 | 15 (5.7) | n.s. | n.s. | 26 (3.8) | 540 (29.5) | <0.001 | 41 (2.8) | <0.001 |
Total EV-B | 221 | – | – | 579 | 1634 | – | 1384 | – |
CVA21 | 3 (1.1) | n.s. | n.s. | 2 (0.3) | 12 (0.7) | n.s. | 6 (0.4) | |
CVA24 | 2 (0.8) | n.s. | n.s. | 23 (3.4) | 10 (0.5) | <0.001 | 23 (1.5) | |
Total EV-C | 5 | – | – | 30 | 23 | – | 32 | – |
All types | 265 | – | – | 682 | 1829 | – | 1485 | – |
NPVs Cases with Residual Paralysis (Cases with Residual Paralysis and Fever) | Final Classification of AFP Cases According to ICD 10 a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 n = 34 (18) | 3 n = 20 (13) | 4 n = 33 (19) | 5 n = 4 (1) | 6 n = 2 (2) | 7 n = 3 (3) | 9 n = 3 (3) | Total n = 99 (59) | |||
EVs n = 66 (40) | EV-A n = 15 (14) | CVA2 | – b | 3 (3) | – | – | – | – | – | 3 (3) |
CVA4 | – | – | 1 (1) | – | – | 1 (1) | 2 (2) | |||
CVA16 | – | 1 (1) | – | – | 1 (1) | 2 (2) | ||||
EV-A71 | 2 (2) | 2 (2) | 2 (1) | – | – | 1 (1) | 1 (1) | 8 (7) | ||
EV-B n = 51 (26) | CVA9 | – | – | 2 | – | – | – | – | 2 | |
CVB1-6 | 9(5) | 4 (3) | 8 (4) | 1 | – | 1 (1) | – | 23 (13) | ||
E3 | 1 | 1 | – | 1 | – | – | – | 3 | ||
E6 | – | 1 | – | 1 | – | – | – | 2 | ||
E7 | – | – | 1 | – | – | – | 1 (1) | 2 (1) | ||
E9 | – | – | 1 (1) | – | – | – | – | 1 (1) | ||
E11 | 3 (2) | – | 1 (1) | – | – | – | – | 4 (3) | ||
E13 | 1 (1) | – | 1 (1) | – | – | – | – | 2 (2) | ||
E14 | 1 | – | – | – | – | – | – | 1 | ||
E21 | – | 1 (1) | – | – | – | – | – | 1 (1) | ||
E25 | 1 | 1 (1) | 1 (1) | – | 1 (1) | – | – | 4 (3) | ||
E30 | 4 (2) | – | 1 | – | – | – | 5 (2) | |||
E33 | 1 | – | – | – | – | – | – | 1 | ||
NTVs | 4 (2) | 2 (1) | 2 (1) | – | – | – | – | 8 (4) | ||
HAdVs | 5 (3) | 4 (1) | 11 (8) | 1 (1) | 1 (1) | – | – | 22 (14) | ||
HPeVs | 2 (1) | – | 1 | – | – | – | – | 3 (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, O.E.; Eremeeva, T.P.; Morozova, N.S.; Mikhailova, Y.M.; Kozlovskaya, L.I.; Baikova, O.Y.; Shakaryan, A.K.; Krasota, A.Y.; Korotkova, E.A.; Yakovchuk, E.V.; et al. Non-Polio Enteroviruses Isolated by Acute Flaccid Paralysis Surveillance Laboratories in the Russian Federation in 1998–2021: Distinct Epidemiological Features of Types. Viruses 2024, 16, 135. https://doi.org/10.3390/v16010135
Ivanova OE, Eremeeva TP, Morozova NS, Mikhailova YM, Kozlovskaya LI, Baikova OY, Shakaryan AK, Krasota AY, Korotkova EA, Yakovchuk EV, et al. Non-Polio Enteroviruses Isolated by Acute Flaccid Paralysis Surveillance Laboratories in the Russian Federation in 1998–2021: Distinct Epidemiological Features of Types. Viruses. 2024; 16(1):135. https://doi.org/10.3390/v16010135
Chicago/Turabian StyleIvanova, Olga E., Tatiana P. Eremeeva, Nadezhda S. Morozova, Yulia M. Mikhailova, Liubov I. Kozlovskaya, Olga Y. Baikova, Armen K. Shakaryan, Alexandr Y. Krasota, Ekaterina A. Korotkova, Elizaveta V. Yakovchuk, and et al. 2024. "Non-Polio Enteroviruses Isolated by Acute Flaccid Paralysis Surveillance Laboratories in the Russian Federation in 1998–2021: Distinct Epidemiological Features of Types" Viruses 16, no. 1: 135. https://doi.org/10.3390/v16010135
APA StyleIvanova, O. E., Eremeeva, T. P., Morozova, N. S., Mikhailova, Y. M., Kozlovskaya, L. I., Baikova, O. Y., Shakaryan, A. K., Krasota, A. Y., Korotkova, E. A., Yakovchuk, E. V., Shustova, E. Y., & Lukashev, A. N. (2024). Non-Polio Enteroviruses Isolated by Acute Flaccid Paralysis Surveillance Laboratories in the Russian Federation in 1998–2021: Distinct Epidemiological Features of Types. Viruses, 16(1), 135. https://doi.org/10.3390/v16010135