High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Collection of Data
2.3. Statistical Analysis
3. Results
3.1. Primary Outcomes
3.2. Secondary Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Focosi, D.; Antonelli, G.; Pistello, M.; Maggi, F. Torquetenovirus: The human virome from bench to bedside. Clin. Microbiol. Infect. 2016, 22, 589–593. [Google Scholar] [CrossRef]
- Focosi, D.; Spezia, P.G.; Macera, L.; Salvadori, S.; Navarro, D.; Lanza, M.; Antonelli, G.; Pistello, M.; Maggi, F. Assessment of prevalence and load of torquetenovirus viraemia in a large cohort of healthy blood donors. Clin. Microbiol. Infect. 2020, 26, 1406–1410. [Google Scholar] [CrossRef]
- Spezia, P.G.; Focosi, D.; Baj, A.; Novazzi, F.; Ferrante, F.D.; Carletti, F.; Minosse, C.; Matusali, G.; Maggi, F. TTV and other anelloviruses: The astonishingly wide spread of a viral infection. Asp. Mol. Med. 2023, 1, 100006. [Google Scholar] [CrossRef] [PubMed]
- Vasilyev, E.V.; Trofimov, D.Y.; Tonevitsky, A.G.; Ilinsky, V.V.; Korostin, D.O.; Rebrikov, D.V. Torque Teno Virus (TTV) distribution in healthy Russian population. Virol. J. 2009, 6, 134. [Google Scholar] [CrossRef] [PubMed]
- De Vlaminck, I.; Khush, K.K.; Strehl, C.; Kohli, B.; Luikart, H.; Neff, N.F.; Okamoto, J.; Snyder, T.M.; Cornfield, D.N.; Nicolls, M.R.; et al. Temporal Response of the Human Virome to Immunosuppression and Antiviral Therapy. Cell 2013, 155, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Studenic, P.; Bond, G.; Kerschbaumer, A.; Bécède, M.; Pavelka, K.; Karateev, D.; Stieger, J.; Puchner, R.; Mueller, R.B.; Puchhammer-Stöckl, E.; et al. Torque Teno Virus quantification for monitoring of immunomodulation with biologic compounds in the treatment of rheumatoid arthritis. Rheumatology 2022, 61, 2815–2825. [Google Scholar] [CrossRef]
- Doberer, K.; Schiemann, M.; Strassl, R.; Haupenthal, F.; Dermuth, F.; Görzer, I.; Eskandary, F.; Reindl-Schwaighofer, R.; Kikić, Ž.; Puchhammer-Stöckl, E.; et al. Torque teno virus for risk stratification of graft rejection and infection in kidney transplant recipients—A prospective observational trial. Am. J. Transplant. 2020, 20, 2081–2090. [Google Scholar] [CrossRef]
- Jaksch, P.; Görzer, I.; Puchhammer-Stöckl, E.; Bond, G. Integrated Immunologic Monitoring in Solid Organ Transplantation: The Road Toward Torque Teno Virus-guided Immunosuppression. Transplantation 2022, 106, 1940–1951. [Google Scholar] [CrossRef]
- van Rijn, A.L.; Roos, R.; Dekker, F.W.; Rotmans, J.I.; Feltkamp, M. Torque teno virus load as marker of rejection and infection in solid organ transplantation—A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2393. [Google Scholar] [CrossRef]
- Haupenthal, F.; Rahn, J.; Maggi, F.; Gelas, F.; Bourgeois, P.; Hugo, C.; Jilma, B.; Böhmig, G.A.; Herkner, H.; Wolzt, M.; et al. A multicentre, patient- and assessor-blinded, non-inferiority, randomised and controlled phase II trial to compare standard and torque teno virus-guided immunosuppression in kidney transplant recipients in the first year after transplantation: TTVguideIT. Trials 2023, 24, 213. [Google Scholar] [CrossRef]
- Gottlieb, J.; Reuss, A.; Mayer, K.; Weide, K.; Schade-Brittinger, C.; Hoyer, S.; Jaksch, P. Viral load-guided immunosuppression after lung transplantation (VIGILung)—Study protocol for a randomized controlled trial. Trials 2021, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Elwasif, S.M.; Denewar, A.A.; Khreba, N.; Sheashaa, H. Torque Teno Virus Polymerase Chain Reaction Titer: A Promising Immunometry. Exp. Clin. Transplant. 2022, 20, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.; Stein, Y. Atheroprotective mechanisms of HDL. Atherosclerosis 1999, 144, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Castelli, W.P.; Doyle, J.T.; Gordon, T.; Hames, C.G.; Hjortland, M.C.; Hulley, S.B.; Kagan, A.; Zukel, W.J. HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation 1977, 55, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. New Engl. J. Med. 2017, 376, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Kappelle, P.J.W.H.; van Tol, A.; Wolffenbuttel, B.H.R.; Dullaart, R.P.F. Cholesteryl ester transfer protein inhibition in cardiovascular risk management: Ongoing trials will end the confusion. Cardiovasc. Ther. 2011, 29, e89–e99. [Google Scholar] [CrossRef]
- Mutharasan, R.K.; Thaxton, C.S.; Berry, J.; Daviglus, M.L.; Yuan, C.; Sun, J.; Ayers, C.; Lloyd-Jones, D.M.; Wilkins, J.T. HDL efflux capacity, HDL particle size, & high-risk carotid atherosclerosis in a cohort of asymptomatic older adults: The Chicago Healthy Aging Study. J. Lipid Res. 2017, 58, 600–606. [Google Scholar] [CrossRef]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL cholesterol efflux capacity and incident cardiovascular events. New Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef]
- Ebtehaj, S.; Gruppen, E.G.; Bakker, S.J.; Dullaart, R.P.; Tietge, U.J.F. HDL (High-Density Lipoprotein) Cholesterol Efflux Capacity Is Associated With Incident Cardiovascular Disease in the General Population. Arter. Thromb. Vasc. Biol. 2019, 39, 1874–1883. [Google Scholar] [CrossRef]
- Jia, C.; Anderson, J.L.; Gruppen, E.G.; Lei, Y.; Bakker, S.J.; Dullaart, R.P.F.; Tietge, U.J. High-Density Lipoprotein Anti-Inflammatory Capacity and Incident Cardiovascular Events. Circulation 2021, 143, 1935–1945. [Google Scholar] [CrossRef]
- Sato, M.; Neufeld, E.B.; Playford, M.P.; Lei, Y.; Sorokin, A.V.; Aponte, A.M.; Freeman, L.A.; Gordon, S.M.; Dey, A.K.; Jeiran, K.; et al. Cell-free high-density lipoprotein-specific phospholipid efflux assay predicts incident cardiovascular disease. J. Clin. Investig. 2023, 133, e165370. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Chandra, A.; Sperry, T.; Joshi, P.H.; Khera, A.; Virani, S.S.; Ballantyne, C.M.; Otvos, J.D.; Dullaart, R.P.F.; Gruppen, E.G.; et al. Associations Between High-Density Lipoprotein Particles and Ischemic Events by Vascular Domain, Sex, and Ethnicity: A Pooled Cohort Analysis. Circulation 2020, 142, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Pirillo, A.; Bonacina, F.; Norata, G.D. HDL in innate and adaptive immunity. Cardiovasc. Res. 2014, 103, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Rached, F.H.; Chapman, M.J.; Kontush, A. HDL particle subpopulations: Focus on biological function. BioFactors 2015, 41, 67–77. [Google Scholar] [CrossRef]
- Shah, A.S.; Tan, L.; Long, J.L.; Davidson, W.S. Proteomic diversity of high density lipoproteins: Our emerging understanding of its importance in lipid transport and beyond. J. Lipid Res. 2013, 54, 2575–2585. [Google Scholar] [CrossRef]
- Vaziri, N.D. HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat. Rev. Nephrol. 2016, 12, 37–47. [Google Scholar] [CrossRef]
- Deets, A.; Joshi, P.H.; Chandra, A.; Singh, K.; Khera, A.; Virani, S.S.; Ballantyne, C.M.; Otvos, J.D.; Dullaart, R.P.F.; Gruppen, E.G.; et al. Novel Size-Based High-Density Lipoprotein Subspecies and Incident Vascular Events. J. Am. Heart Assoc. 2023, 12, e031160. [Google Scholar] [CrossRef]
- Zhang, Y.; Gordon, S.M.; Xi, H.; Choi, S.; Paz, M.A.; Sun, R.; Yang, W.; Saredy, J.; Khan, M.; Remaley, A.T.; et al. HDL subclass proteomic analysis and functional implication of protein dynamic change during HDL maturation. Redox Biol. 2019, 24, 101222. [Google Scholar] [CrossRef]
- Triolo, M.; Annema, W.; Dullaart, R.P.F.; Tietge, U.J.F. Assessing the functional properties of high-density lipoproteins: An emerging concept in cardiovascular research. Biomark. Med. 2013, 7, 457–472. [Google Scholar] [CrossRef]
- Harsløf, M.; Pedersen, K.M.; Afzal, S.; Smith, G.D.; Nordestgaard, B.G. Lower levels of small HDL particles associated with increased infectious disease morbidity and mortality: A population-based cohort study of 30 195 individuals. Cardiovasc. Res. 2023, 119, 957–968. [Google Scholar] [CrossRef]
- Gore, E.J.; Gomes-Neto, A.W.; Wang, L.; Bakker, S.J.L.; Niesters, H.G.M.; de Joode, A.A.E.; Verschuuren, E.A.M.; Westra, J.; Van Leer-Buter, C. Torquetenovirus Serum Load and Long-Term Outcomes in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, E.; Engberink, M.F.; Brink, E.J.; van Baak, M.A.; Gans, R.O.B.; Navis, G.; Bakker, S.J.L. Dietary protein, blood pressure and renal function in renal transplant recipients. Br. J. Nutr. 2013, 109, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Kulifaj, D.; Durgueil-Lariviere, B.; Meynier, F.; Munteanu, E.; Pichon, N.; Dubé, M.; Joannes, M.; Essig, M.; Hantz, S.; Barranger, C.; et al. Development of a standardized real time PCR for Torque teno viruses (TTV) viral load detection and quantification: A new tool for immune monitoring. J. Clin. Virol. 2018, 105, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Matyus, S.P.; Braun, P.J.; Wolak-Dinsmore, J.; Saenger, A.K.; Jeyarajah, E.J.; Shalaurova, I.; Warner, S.M.; Fischer, T.J.; Connelly, M.A. HDL particle number measured on the Vantera®, the first clinical NMR analyzer. Clin. Biochem. 2015, 48, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Jeyarajah, E.J.; Cromwell, W.C.; Otvos, J.D. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin. Lab. Med. 2006, 26, 847–870. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; Garcia, E.; Connelly, M.A.; de Meijer, V.E.; Bakker, S.J.L.; Blokzijl, H.; Dullaart, R.P.F. Profoundly Disturbed Lipoproteins in Cirrhotic Patients: Role of Lipoprotein-Z, a Hepatotoxic LDL-like Lipoprotein. J. Clin. Med. 2022, 11, 1223. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Bennett, D.W.; Connelly, M.A.; Jeyarajah, E.J.; Warf, F.C.; Shalaurova, I.; Matyus, S.P.; Wolak-Dinsmore, J.; Oskardmay, D.N.; Young, R.M.; et al. The extended lipid panel assay: A clinically-deployed high-throughput nuclear magnetic resonance method for the simultaneous measurement of lipids and Apolipoprotein B. Lipids Health Dis. 2020, 19, 247. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 15 September 2023).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 15 September 2023).
- Giacconi, R.; Maggi, F.; Macera, L.; Spezia, P.G.; Pistello, M.; Provinciali, M.; Piacenza, F.; Basso, A.; Bürkle, A.; Moreno-Villanueva, M.; et al. Prevalence and loads of torquetenovirus in the European mark-age study population. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 1838–1845. [Google Scholar] [CrossRef]
- Westman, G.; Schoofs, C.; Ingelsson, M.; Järhult, J.D.; Muradrasoli, S. Torque teno virus viral load is related to age, CMV infection and HLA type but not to Alzheimer’s disease. PLoS ONE 2020, 15, e0227670. [Google Scholar] [CrossRef]
- Strassl, R.; Doberer, K.; Rasoul-Rockenschaub, S.; Herkner, H.; Görzer, I.; Kläger, J.P.; Schmidt, R.; Haslacher, H.; Schiemann, M.; A Eskandary, F.; et al. Torque Teno Virus for Risk Stratification of Acute Biopsy-Proven Alloreactivity in Kidney Transplant Recipients. J. Infect. Dis. 2019, 219, 1934–1939. [Google Scholar] [CrossRef]
- Jaksch, P.; Kundi, M.; Görzer, I.; Muraközy, G.; Lambers, C.; Benazzo, A.; Hoetzenecker, K.; Klepetko, W.; Puchhammer-Stöckl, E. Torque teno virus as a novel biomarker targeting the efficacy of immunosuppression after lung transplantation. J. Infect. Dis. 2018, 218, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Doorenbos, C.S.E.; Jonker, J.; Hao, J.; Gore, E.J.; Kremer, D.; Knobbe, T.J.; de Joode, A.A.E.; Sanders, J.S.F.; Thaunat, O.; Niesters, H.G.M.; et al. Smoking, Alcohol Intake and Torque Teno Virus in Stable Kidney Transplant Recipients. Viruses 2023, 15, 2387. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic Appl. Soc. Psychol. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- He, B.-M.; Zhao, S.-P.; Peng, Z.-Y. Effects of cigarette smoking on HDL quantity and function: Implications for atherosclerosis. J. Cell. Biochem. 2013, 114, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Li, S.-C.; Chen, L.-F.; Wang, W.; Wang, Y.; Yan, X.-W. The effects of cigarette smoking and smoking cessation on high-density lipoprotein functions: Implications for coronary artery disease. Ann. Clin. Biochem. Int. J. Biochem. Lab. Med. 2019, 56, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Marsche, G.; Saemann, M.D.; Heinemann, A.; Holzer, M. Inflammation alters HDL composition and function: Implications for HDL-raising therapies. Pharmacol. Ther. 2013, 137, 341–351. [Google Scholar] [CrossRef]
- Rocchi, J.; Ricci, V.; Albani, M.; Lanini, L.; Andreoli, E.; Macera, L.; Pistello, M.; Ceccherini-Nelli, L.; Bendinelli, M.; Maggi, F. Torquetenovirus DNA drives proinflammatory cytokines production and secretion by immune cells via toll-like receptor 9. Virology 2009, 394, 235–242. [Google Scholar] [CrossRef]
- Pajkrt, D.; E Doran, J.; Koster, F.; Lerch, P.G.; Arnet, B.; van der Poll, T.; Cate, J.W.T.; van Deventer, S.J. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. J. Exp. Med. 1996, 184, 1601–1608. [Google Scholar] [CrossRef]
- Zhang, Z.; Datta, G.; Zhang, Y.; Miller, A.P.; Mochon, P.; Chen, Y.-F.; Chatham, J.; Anantharamaiah, G.M.; White, C.R.; Constantinou, C.; et al. Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H866–H873. [Google Scholar] [CrossRef]
- Thompson, M.; Ray, U.; Yu, R.; Hudspeth, A.; Smillie, M.; Jordan, N.; Bartle, J. Kidney Function as a Determinant of HDL and Triglyceride Concentrations in the Australian Population. J. Clin. Med. 2016, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Badiou, S.; Cristol, J.-P.; Mourad, G. Dyslipidemia following kidney transplantation: Diagnosis and treatment. Curr. Diabetes Rep. 2009, 9, 305–311. [Google Scholar] [CrossRef]
- Holzer, M.; Birner-Gruenberger, R.; Stojakovic, T.; El-Gamal, D.; Binder, V.; Wadsack, C.; Heinemann, A.; Marsche, G. Uremia alters HDL composition and function. J. Am. Soc. Nephrol. 2011, 22, 1631–1641. [Google Scholar] [CrossRef]
- Gliwińska, A.; Ćwiklińska, A.; Czaplińska, M.; Wieczorek-Breitzke, E.; Kortas-Stempak, B.; Kuchta, A.; Dębska-Ślizień, A.; Król, E.; Jankowski, M. Changes in the size and electrophoretic mobility of HDL subpopulation particles in chronic kidney disease. J. Nephrol. 2023, 36, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Haloschan, M.; Bettesch, R.; Görzer, I.; Weseslindtner, L.; Kundi, M.; Puchhammer-Stöckl, E. TTV DNA plasma load and its association with age, gender, and HCMV IgG serostatus in healthy adults. Age 2014, 36, 9716. [Google Scholar] [CrossRef] [PubMed]
- Görzer, I.; Haloschan, M.; Jaksch, P.; Klepetko, W.; Puchhammer-Stöckl, E. Plasma DNA levels of Torque teno virus and immunosuppression after lung transplantation. J. Heart Lung Transplant. 2014, 33, 320–323. [Google Scholar] [CrossRef]
- Herz, C.T.; Kulterer, O.C.; Kulifaj, D.; Gelas, F.; Franzke, B.; Haupenthal, F.; Prager, G.; Langer, F.B.; Marculescu, R.; Haug, A.R.; et al. Obesity is associated with a higher Torque Teno viral load compared to leanness. Front. Endocrinol. 2022, 13, 962090. [Google Scholar] [CrossRef]
- Cebriá-Mendoza, M.; Beamud, B.; Andreu-Moreno, I.; Arbona, C.; Larrea, L.; Díaz, W.; Sanjuán, R.; Cuevas, J.M. Human Anelloviruses: Influence of Demographic Factors, Recombination, and Worldwide Diversity. Microbiol. Spectr. 2023, 11, e0492822. [Google Scholar] [CrossRef]
- Shibayama, T.; Masuda, G.; Ajisawa, A.; Takahashi, M.; Nishizawa, T.; Tsuda, F.; Okamoto, H. Inverse relationship between the titre of TT virus DNA and the CD4 cell count in patients infected with HIV. AIDS 2001, 15, 563–570. [Google Scholar] [CrossRef]
TTV-Negative (n = 117) | TTV-Positive (n = 539) | Univariable Linear Regression in the TTV-Positive Group (TTV Load Is the Dependent Variable) | ||
---|---|---|---|---|
st.β | 95% CI st.β | |||
Recipient characteristics | ||||
Age (years) ** | 48.9 [39.8, 60.3] | 55.7 [45.9, 63.5] | 0.07 | −0.02; 0.15 |
Female sex | 60 (51.3) | 224 (41.6) | −0.01 | −0.18; 0.16 |
BMI (kg/m2) | 26.0 (4.3) | 26.8 (4.8) | 0.01 | −0.08; 0.09 |
Smoking behavior | ||||
| 42 (38.9) | 217 (42.4) | Reference | |
| 48 (44.4) | 234 (45.7) | −0.05 | −0.24; 0.13 |
| 18 (16.7) | 61 (11.9) | −0.35 | −0.63; −0.06 |
Average daily alcohol intake >10 g | 43 (36.8) | 172 (31.9) | −0.19 | −0.37; −0.01 |
History of myocardial infarction | 3 (2.6) | 27 (5.0) | 0.06 | −0.33; 0.45 |
History of cerebral vascular accident and/or transient ischemic attack | 5 (4.3) | 36 (6.7) | 0.17 | −0.17; 0.51 |
History of diabetes mellitus | 22 (18.8) | 133 (24.7) | 0.18 | −0.02; 0.37 |
Blood test results | ||||
TTV load (log10 copies/mL) | Not applicable | 3.04 (1.53) | Not applicable | |
Hemoglobin (mmol/L) | 8.22 (1.08) | 8.24 (1.06) | −0.14 | −0.23; −0.06 |
Leucocytes (109/L) | 8.01 (2.36) | 8.17 (2.54) | −0.06 | −0.14; 0.03 |
C-reactive protein (mg/L) | 1.40 [0.65, 3.60] | 1.60 [0.70, 4.57] | −0.02 | −0.11; 0.06 |
eGFR (mL/min/1.73 m2) * | 57.4 (22.3) | 51.4 (20.0) | −0.16 | −0.25; −0.08 |
Cholesterol (mmol/L) | 5.00 (1.04) | 5.15 (1.11) | 0.00 | −0.09; 0.08 |
Triglycerides (mmol/L) | 1.52 [1.10, 2.33] | 1.68 [1.25, 2.24] | −0.02 | −0.10; 0.07 |
LDL cholesterol (mmol/L) | 2.86 (0.87) | 3.01 (0.93) | 0.02 | −0.06; 0.11 |
Total LDL particle concentration (umol/L) | 1325 (400) | 1384 (408) | 0.04 | −0.04; 0.13 |
Mean LDL size (nm) | 21.0 [20.6, 21.3] | 20.9 [20.5, 21.3] | 0.01 | −0.08; 0.09 |
HDL parameters | ||||
HDL cholesterol (mmol/L) | 1.30 [1.10, 1.70] | 1.30 [1.10, 1.60] | −0.07 | −0.16; 0.01 |
tHDL particle concentration (umol/L) | 20.21 (3.50) | 19.56 (3.41) | −0.17 | −0.26; −0.09 |
Mean HDL size (nm) | 9.13 (0.50) | 9.11 (0.46) | 0.01 | −0.08; 0.09 |
Distribution of HDL particles (% of tHDL) | ||||
| 74.4 [65.5, 81.1] | 74.6 [65.5, 82.1] | −0.02 | −0.11; 0.06 |
| 14.0 [9.5, 19.3] | 13.4 [8.2, 19.6] | 0.00 | −0.09; 0.08 |
| 9.8 [6.2, 15.8] | 10.6 [6.5, 16.0] | 0.03 | −0.05; 0.12 |
sHDL particle concentration (umol/L) | 14.67 (3.19) | 14.26 (3.12) | −0.16 | −0.24; −0.07 |
mHDL particle concentration (umol/L) | 2.80 [1.80, 3.80] | 2.60 [1.60, 3.90] | −0.04 | −0.13; 0.04 |
lHDL particle concentration (umol/L) | 1.90 [1.20, 3.50] | 2.00 [1.20, 3.40] | −0.02 | −0.11; 0.06 |
Donor characteristics | ||||
Age (years) | 43 [29, 52] | 47 [33, 55] | 0.09 | 0.01; 0.18 |
Living donor | 45 (38.5) | 184 (34.1) | −0.01 | −0.18; 0.17 |
Allograft vintage (years) * | 7.05 [4.08, 12.35] | 5.10 [1.72, 11.42] | −0.12 | −0.21; −0.04 |
Pre-emptive transplantation | 22 (18.8) | 81 (15.0) | 0.10 | −0.14; 0.33 |
Medication | ||||
Calcineurin inhibitor usage ** | ||||
| 75 (64.1) | 211 (39.1) | Reference | |
| 18 (15.4) | 97 (18.0) | 0.66 | 0.42; 0.89 |
| 24 (20.5) | 231 (42.9) | 0.44 | 0.26; 0.62 |
Using prednisolone | 115 (98.3) | 535 (99.3) | −0.13 | −1.12; 0.85 |
Using proliferation inhibitor | 104 (88.9) | 442 (82.0) | −0.11 | −0.34; 0.11 |
Using statin | 58 (49.6) | 290 (53.8) | −0.05 | −0.22; 0.12 |
Model 1 (R2 = 0.12, n = 440) | Model 2 (R2 = 0.11, n = 440) | Model 3 (R2 = 0.20, n = 180) | Model 4 (R2 = 0.18, n = 180) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
st.β | 95% CI | p-Value | st.β | 95% CI | p-Value | st.β | 95% CI | p-Value | st.β | 95% CI | p-Value | |
Age of the recipient | 0.08 | −0.02; 0.17 | 0.106 | 0.09 | 0.00; 0.19 | 0.052 | 0.12 | −0.03; 0.26 | 0.107 | 0.12 | −0.02; 0.27 | 0.099 |
Female sex | 0.03 | −0.17; 0.23 | 0.765 | 0.01 | −0.19; 0.22 | 0.896 | 0.03 | −0.28; 0.33 | 0.867 | −0.03 | −0.34; 0.28 | 0.846 |
Average daily alcohol intake >10 g | −0.15 | −0.35; 0.06 | 0.157 | −0.18 | −0.39; 0.02 | 0.082 | −0.25 | −0.59; 0.08 | 0.136 | −0.33 | −0.66; 0.00 | 0.053 |
Hemoglobin | −0.06 | −0.16; 0.05 | 0.289 | −0.06 | −0.17; 0.04 | 0.256 | −0.11 | −0.27; 0.06 | 0.200 | −0.12 | −0.29; 0.04 | 0.148 |
eGFR | −0.04 | −0.15; 0.06 | 0.426 | −0.06 | −0.17; 0.05 | 0.294 | −0.08 | −0.24; 0.09 | 0.359 | −0.10 | −0.27; 0.06 | 0.227 |
Age of the donor | −0.02 | −0.13; 0.09 | 0.677 | −0.02 | −0.14; 0.09 | 0.661 | −0.09 | −0.27; 0.08 | 0.298 | −0.11 | −0.29; 0.07 | 0.229 |
Allograft vintage | −0.08 | −0.19; 0.03 | 0.138 | −0.08 | −0.20; 0.03 | 0.135 | −0.06 | −0.23; 0.10 | 0.464 | −0.05 | −0.22; 0.12 | 0.556 |
Calcineurin inhibitor usage | ||||||||||||
| Reference | Reference | ||||||||||
| 0.31 | 0.10; 0.52 | 0.004 | 0.32 | 0.10; 0.53 | 0.004 | ||||||
| 0.60 | 0.33; 0.88 | <0.001 | 0.63 | 0.35; 0.91 | <0.001 | ||||||
Cyclosporin trough level | 0.32 | 0.18; 0.47 | <0.001 | 0.31 | 0.17; 0.46 | <0.001 | ||||||
Total HDL particle concentration | −0.14 | −0.23; −0.04 | 0.006 | −0.20 | −0.35; −0.05 | 0.009 | ||||||
HDL cholesterol | −0.08 | −0.18; 0.02 | 0.115 | −0.12 | −0.27; 0.03 | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonker, J.; Doorenbos, C.S.E.; Kremer, D.; Gore, E.J.; Niesters, H.G.M.; van Leer-Buter, C.; Bourgeois, P.; Connelly, M.A.; Dullaart, R.P.F.; Berger, S.P.; et al. High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients. Viruses 2024, 16, 143. https://doi.org/10.3390/v16010143
Jonker J, Doorenbos CSE, Kremer D, Gore EJ, Niesters HGM, van Leer-Buter C, Bourgeois P, Connelly MA, Dullaart RPF, Berger SP, et al. High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients. Viruses. 2024; 16(1):143. https://doi.org/10.3390/v16010143
Chicago/Turabian StyleJonker, Jip, Caecilia S. E. Doorenbos, Daan Kremer, Edmund J. Gore, Hubert G. M. Niesters, Coretta van Leer-Buter, Philippe Bourgeois, Margery A. Connelly, Robin P. F. Dullaart, Stefan P. Berger, and et al. 2024. "High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients" Viruses 16, no. 1: 143. https://doi.org/10.3390/v16010143
APA StyleJonker, J., Doorenbos, C. S. E., Kremer, D., Gore, E. J., Niesters, H. G. M., van Leer-Buter, C., Bourgeois, P., Connelly, M. A., Dullaart, R. P. F., Berger, S. P., Sanders, J. -S. F., & Bakker, S. J. L. (2024). High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients. Viruses, 16(1), 143. https://doi.org/10.3390/v16010143