The Binding, Infection, and Promoted Growth of Batrachochytrium dendrobatidis by the Ranavirus FV3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Husbandry
2.2. Bd Culture
2.3. Bd In Vitro Growth Assays
2.4. Cell Line and FV3 Stock Preparation
2.5. Bd Immunostaining
2.6. Xenopus tropicalis Infection with Bd and FV3
2.7. qPCR
2.8. Plaque Assays
2.9. Statistical Methods
3. Results
3.1. Direct Binding of FV3 to Bd
3.2. Effect of FV3 on Bd Growth In Vitro
3.3. Ability of FV3 to Infect Bd
3.4. Co-Infection of Bd with FV3 In Vivo
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, M.J.; Chinchar, V.J. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates; Springer Open: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar]
- Fisher, M.C.; Pasmans, F.; Martel, A. Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annu. Rev. Microbiol. 2021, 75, 673–693. [Google Scholar] [CrossRef] [PubMed]
- Scheele, B.C.; Pasmans, F.; Skerratt, L.F.; Berger, L.; Martel, A.; Beukema, W.; Acevedo, A.A.; Burrowes, P.A.; Carvalho, T.; Catenazzi, A.; et al. Amphibian Fungal Panzootic Causes Catastrophic and Ongoing Loss of Biodiversity. Science 2019, 363, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Chinchar, V.G.; Waltzek, T.B.; Subramaniam, K. Ranaviruses and Other Members of the Family Iridoviridae: Their Place in the Virosphere. Virology 2017, 511, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Price, S.J.; Ariel, E.; Maclaine, A.; Rosa, G.M.; Gray, M.J.; Brunner, J.L.; Garner, T.W.J. From Fish to Frogs and Beyond: Impact and Host Range of Emergent Ranaviruses. Virology 2017, 511, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, S.M.; Geerdes, E.; Chacon, I.; Ballestero Rodriguez, E.; Jimenez, R.R.; Donnelly, M.A.; Kerby, J.L. Infection and Co-Infection by the Amphibian Chytrid Fungus and Ranavirus in Wild Costa Rican Frogs. Dis. Aquat. Organ. 2013, 104, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Warne, R.W.; LaBumbard, B.; LaGrange, S.; Vredenburg, V.T.; Catenazzi, A. Co-Infection by Chytrid Fungus and Ranaviruses in Wild and Harvested Frogs in the Tropical Andes. PLoS ONE 2016, 11, e0145864. [Google Scholar] [CrossRef] [PubMed]
- Olori, J.C.; Netzband, R.; McKean, N.; Lowery, J.; Parsons, K.; Windstam, S.T. Multi-Year Dynamics of Ranavirus, Chytridiomycosis, and Co-Infections in a Temperate Host Assemblage of Amphibians. Dis. Aquat. Organ. 2018, 130, 187–197. [Google Scholar] [CrossRef]
- Talbott, K.; Wolf, T.M.; Sebastian, P.; Abraham, M.; Bueno, I.; McLaughlin, M.; Harris, T.; Thompson, R.; Pessier, A.P.; Travis, D. Factors Influencing Detection and Co-Detection of Ranavirus and Batrachochytrium Dendrobatidis in Midwestern North American Anuran Populations. Dis. Aquat. Organ. 2018, 128, 93–103. [Google Scholar] [CrossRef]
- Watters, J.L.; Davis, D.R.; Yuri, T.; Siler, C.D. Concurrent Infection of Batrachochytrium Dendrobatidis and Ranavirus among Native Amphibians from Northeastern Oklahoma, USA. J. Aquat. Anim. Health 2018, 30, 291–301. [Google Scholar] [CrossRef]
- Ramsay, C.; Rohr, J.R. The Application of Community Ecology Theory to Co-Infections in Wildlife Hosts. Ecology 2021, 102, e03253. [Google Scholar] [CrossRef]
- Fites, J.S.; Ramsey, J.P.; Holden, W.M.; Collier, S.P.; Sutherland, D.M.; Reinert, L.K.; Gayek, A.S.; Dermody, T.S.; Aune, T.M.; Oswald-Richter, K.; et al. The Invasive Chytrid Fungus of Amphibians Paralyzes Lymphocyte Responses. Science 2013, 342, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Rollins-Smith, L.A.; Fites, J.S.; Reinert, L.K.; Shiakolas, A.R.; Umile, T.P.; Minbiole, K.P. Immunomodulatory Metabolites Released by the Frog-Killing Fungus Batrachochytrium Dendrobatidis. Infect. Immun. 2015, 83, 4565–4570. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, A.C.; López-Bueno, A.; Blahak, S.; Caeiro, M.F.; Rosa, G.M.; Alves de Matos, A.P.; Martel, A.; Alejo, A.; Marschang, R.E. Phylogeny and Differentiation of Reptilian and Amphibian Ranaviruses Detected in Europe. PLoS ONE 2015, 10, e0118633. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Green, D.E.; Fellers, G.; Chinchar, V.G. Molecular Characterization of Iridoviruses Isolated from Sympatric Amphibians and Fish. Virus Res. 1999, 63, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Pessier, A.P.; Wellehan, J.F.; Childress, A.; Norton, T.M.; Stedman, N.L.; Bloom, D.C.; Belzer, W.; Titus, V.R.; Wagner, R.; et al. Ranavirus Infection of Free-Ranging and Captive Box Turtles and Tortoises in the United States. J. Wildl. Dis. 2008, 44, 851–863. [Google Scholar] [CrossRef]
- Robert, J.; Jancovich, J.K. Recombinant Ranaviruses for Studying Evolution of Host-Pathogen Interactions in Ectothermic Vertebrates. Viruses 2016, 8, 187. [Google Scholar] [CrossRef]
- Bates, K.A.; Sommer, U.; Hopkins, K.P.; Shelton, J.M.G.; Wierzbicki, C.; Sergeant, C.; Tapley, B.; Michaels, C.J.; Schmeller, D.S.; Loyau, A.; et al. Microbiome Function Predicts Amphibian Chytridiomycosis Disease Dynamics. Microbiome 2022, 10, 44. [Google Scholar] [CrossRef]
- Robak, M.J.; Saenz, V.; de Cortie, E.; Richards-Zawacki, C.L. Effects of Temperature on the Interaction between Amphibian Skin Bacteria and Batrachochytrium Dendrobatidis. Front. Microbiol. 2023, 14, 1253482. [Google Scholar] [CrossRef]
- Robinson, K.A.; Dunn, M.; Hussey, S.P.; Fritz-Laylin, L.K. Identification of Antibiotics for Use in Selection of the Chytrid Fungi Batrachochytrium Dendrobatidis and Batrachochytrium Salamandrivorans. PLoS ONE 2020, 15, e0240480. [Google Scholar] [CrossRef]
- Longcore, J.E.; Pessier, A.P.; Nichols, D.K. Batrachochytrium dendrobatidis Gen. et sp. nov., a Chytrid Pathogenic to Amphibians. Mycologia 1999, 91, 219–227. [Google Scholar] [CrossRef]
- Prostak, S.M.; Fritz-Laylin, L.K. Laboratory Maintenance of the Chytrid Fungus Batrachochytrium Dendrobatidis. Curr. Protoc. 2021, 1, e309. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.J.; Rush, C.; Berger, L.; Skerratt, L.F.; Roberts, A.A. Glutathione Is Required for Growth and Cadmium Tolerance in the Amphibian Chytrid Fungus, Batrachochytrium Dendrobatidis. Biochimie 2023, 220, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Robert, J.; Grayfer, L.; Edholm, E.S.; Ward, B.; De Jesus Andino, F. Inflammation-Induced Reactivation of the Ranavirus Frog Virus 3 in Asymptomatic Xenopus Laevis. PLoS ONE 2014, 9, e112904. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ward, B.M.; Yu, K.H.; Chinchar, V.G.; Robert, J. Improved Knockout Methodology Reveals That Frog Virus 3 Mutants Lacking Either the 18k Immediate-Early Gene or the Truncated Vif-2alpha Gene Are Defective for Replication and Growth in Vivo. J. Virol. 2011, 85, 11131–11138. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J. Real-Time Pcr Detection Chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Grayfer, L.; De Jesus Andino, F.; Robert, J. The Amphibian (Xenopus Laevis) Type I Interferon Response to Frog Virus 3: New Insight into Ranavirus Pathogenicity. J. Virol. 2014, 88, 5766–5777. [Google Scholar] [CrossRef]
- Morales, H.D.; Abramowitz, L.; Gertz, J.; Sowa, J.; Vogel, A.; Robert, J. Innate immune responses and permissiveness to ranavirus infection of peritoneal leukocytes in the frog Xenopus laevis. J. Virol. 2010, 84, 4912–4922. [Google Scholar] [CrossRef]
- Eaton, H.E.; Metcalf, J.; Brunetti, C.R. Expression of Frog Virus 3 Genes Is Impaired in Mammalian Cell Lines. Virol. J. 2008, 5, 83. [Google Scholar] [CrossRef]
- Whitley, D.S.; Yu, K.; Sample, R.C.; Sinning, A.; Henegar, J.; Norcross, E.; Chinchar, V.G. Frog Virus 3 Orf 53r, a Putative Myristoylated Membrane Protein, Is Essential for Virus Replication in Vitro. Virology 2010, 405, 448–456. [Google Scholar] [CrossRef]
- Majji, S.; Thodima, V.; Sample, R.; Whitley, D.; Deng, Y.; Mao, J.; Chinchar, V.G. Transcriptome Analysis of Frog Virus 3, the Type Species of the Genus Ranavirus, Family Iridoviridae. Virology 2009, 391, 293–303. [Google Scholar] [CrossRef]
- Hough, B.; Steenkamp, E.; Wingfield, B.; Read, D. Fungal Viruses Unveiled: A Comprehensive Review of Mycoviruses. Viruses 2023, 15, 5. [Google Scholar] [CrossRef]
- Ghabrial, S.A.; Castón, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-Plus Years of Fungal Viruses. Virology 2015, 479–480, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.M.; James, T.Y. Mycoviruses. Curr. Biol. 2022, 32, R150–R155. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.J.; Roberts, A.A.; Wylie, S.; Kosch, T.; Toledo, L.F.; Merces, M.; Skerratt, L.F.; Berger, L. Non-Detection of Mycoviruses in Amphibian Chytrid Fungus (Batrachochytrium Dendrobatidis) from Australia. Fungal. Biol. 2022, 126, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.M.; Bonds, A.E.; Clemons, R.A.; Thapa, N.A.; Simmons, D.R.; Carter-House, D.; Ortanez, J.; Liu, P.; Miralles-Durán, A.; Desirò, A.; et al. Survey of Early-Diverging Lineages of Fungi Reveals Abundant and Diverse Mycoviruses. mBio 2020, 11, 5. [Google Scholar] [CrossRef]
- Clemons, R.; Yacoub, M.; Faust, E.; Toledo, L.F.; Jenkinson, T.S.; Kalinka, E.; Fritz-Laylin, L.K.; James, T.Y.; Stajich, J.E. DNA Virus Bddv-1 of the Amphibian Pathogen Batrachochytrium dendrobatidis Is Associated with Hypervirulence. bioRxiv 2023, 2023.03.16.532857. [Google Scholar]
- Khan, H.A.; Nerva, L.; Bhatti, M.F. The Good, the Bad and the Cryptic: The Multifaceted Roles of Mycoviruses and Their Potential Applications for a Sustainable Agriculture. Virology 2023, 585, 259–269. [Google Scholar] [CrossRef]
- Sato, Y.; Suzuki, N. Continued Mycovirus Discovery Expanding Our Understanding of Virus Lifestyles, Symptom Expression, and Host Defense. Curr. Opin. Microbiol. 2023, 75, 102337. [Google Scholar] [CrossRef]
- Applen Clancey, S.; Ruchti, F.; LeibundGut-Landmann, S.; Heitman, J.; Ianiri, G. A Novel Mycovirus Evokes Transcriptional Rewiring in the Fungus Malassezia and Stimulates Beta Interferon Production in Macrophages. mBio 2020, 11, e01534-20. [Google Scholar] [CrossRef]
Conventional PCR Primers | |
---|---|
Genes | Sequence (5′-3′) |
FV3-vDNA polymerase II (60 R) | F: 5′-ACGAGCCCGACGAAGACTACATAG-3′ R: 5′-TGGTGGTCCTCAGCATCCTTTG-3′ |
FV3-Major Capsid protein (MCP-90 R) | F: 5′-GACTTGGCCACTTATGAC-3′ R: 5′-GTCTCTGGAGAAGAAGAAGAA-3′ |
Bd (5.8 S ribosomal) | F: 5′-CCTTGATATAATACAGTGTGCCATATGTC-3′ R: 5′-AGCCAAGAGATCCGTTGTCAAA-3′ |
Q-PCR Primers | |
FV3-vDNA polymerase II (60 R) | F: 5′-ACGAGCCCGACGAAGACTACA-3′ R: 5′-TGGTGGTCCTCAGCATCCT-3′ |
Bd (5.8 S ribosomal) | F: 5′-GCCATATGTCACGAGTCGAA-3′ R: 5′-GCCAAGAGATCCGTTGTCA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Jesús Andino, F.; Davydenko, A.; Webb, R.J.; Robert, J. The Binding, Infection, and Promoted Growth of Batrachochytrium dendrobatidis by the Ranavirus FV3. Viruses 2024, 16, 154. https://doi.org/10.3390/v16010154
De Jesús Andino F, Davydenko A, Webb RJ, Robert J. The Binding, Infection, and Promoted Growth of Batrachochytrium dendrobatidis by the Ranavirus FV3. Viruses. 2024; 16(1):154. https://doi.org/10.3390/v16010154
Chicago/Turabian StyleDe Jesús Andino, Francisco, Anton Davydenko, Rebecca J. Webb, and Jacques Robert. 2024. "The Binding, Infection, and Promoted Growth of Batrachochytrium dendrobatidis by the Ranavirus FV3" Viruses 16, no. 1: 154. https://doi.org/10.3390/v16010154
APA StyleDe Jesús Andino, F., Davydenko, A., Webb, R. J., & Robert, J. (2024). The Binding, Infection, and Promoted Growth of Batrachochytrium dendrobatidis by the Ranavirus FV3. Viruses, 16(1), 154. https://doi.org/10.3390/v16010154