Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control
Abstract
:1. Introduction
2. Historical Perspective
2.1. Genus Ranavirus
2.2. Megalocytivirus
2.3. Lymphocystivirus
3. Etiology
3.1. Structure and Genome Organization of Fish Iridoviruses
3.2. Core Gene and Potential Function
4. Diagnostic Assays
4.1. Clinical Signs and Pathology
4.2. Giemsa Staining
4.3. Virus Isolation and Cell Culture
4.4. Molecular Diagnostic Methods
4.5. Immunoassays
4.6. In Situ Hybridization and Transmission Electron Microscopy
4.7. Other Diagnostic Methods
5. Epidemiology
5.1. Wide Host Range
5.2. Persistent Carriers/Reservoirs
5.3. Season and Temperature
5.4. Stress and Stocking Density
5.5. Viral Transmission
6. Prevention and Control of Disease
6.1. Biosecurity Control Measures
6.2. Physical and Chemical Properties of Iridoviruses
6.3. Vaccination
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whittington, R.J.; Becker, J.A.; Dennis, M.M. Iridovirus infections in finfish—Critical review with emphasis on ranaviruses. J. Fish Dis. 2010, 33, 95–122. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, L.; Wang, H.; Zou, P.; Dong, X.; Li, F.; Huang, J. Susceptibility of Exopalaemon carinicauda to the infection with shrimp hemocyte iridescent virus (SHIV 20141215), a strain of decapod iridescent virus 1 (DIV1). Viruses 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Chinchar, V.G.; Hyatt, A.; Miyazaki, T.; Williams, T. Family Iridoviridae: Poor viral relations no longer. Curr. Top. Microbiol. Immunol. 2009, 328, 123–170. [Google Scholar] [CrossRef]
- Chinchar, V.; Yang, F.; Huang, J.; Williams, T.; Whittington, R.; Jancovich, J.; Subramaniam, K.; Waltzek, T.; Hick, P.; Ince, I. One new genus with one new species in the subfamily Betairidovirinae. ICTV Taxonomic Proposal to the Iridoviridae Study Group of International Committee for Taxonomy of Viruses, 2018.004D ICTV 2018. Available online: https://ictv.global/filebrowser/download/4955 (accessed on 4 May 2023).
- Chinchar, V.G.; Yu, K.H.; Jancovich, J.K. The Molecular Biology of Frog Virus 3 and other Iridoviruses Infecting Cold-Blooded Vertebrates. Viruses 2011, 3, 1959–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurita, J.; Nakajima, K. Megalocytiviruses. Viruses 2012, 4, 521–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, D.; Curran, W.; Rowley, H.; Cox, D.; Cockerill, D.; Campbell, S.; Todd, D. Observation of virus particles in the spleen, kidney, gills and erythrocytes of Atlantic salmon, Salmo salar L., during a disease outbreak with high mortality. J. Fish Dis. 2002, 25, 227–234. [Google Scholar] [CrossRef]
- Grizzle, J.M.; Altinok, I.; Fraser, W.A.; Francis-Floyd, R. First isolation of largemouth bass virus. Dis. Aquat. Org. 2002, 50, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Plumb, J.A.; Grizzle, J.M.; Young, H.E.; Noyes, A.D.; Lamprecht, S. An Iridovirus Isolated from Wild Largemouth Bass. J. Aquat. Anim. Health 1996, 8, 265–270. [Google Scholar] [CrossRef]
- Goldberg, T. Largemouth bass virus: An emerging problem for warmwater fisheries? Am. Fish. Soc. Symp. 2002, 31, 411–416. [Google Scholar]
- Chinchar, V.G. Ranaviruses (family Iridoviridae): Emerging cold-blooded killers. Arch. Virol. 2002, 147, 447–470. [Google Scholar] [CrossRef]
- Ohlemeyer, S.; Holopainen, R.; Tapiovaara, H.; Bergmann, S.M.; Schütze, H. Major capsid protein gene sequence analysis of the Santee-Cooper ranaviruses DFV, GV6, and LMBV. Dis. Aquat. Org. 2011, 96, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plumb, J.A.; Zilberg, D. The lethal dose of largemouth bass virus in juvenile largemouth bass and the comparative susceptibility of striped bass. J. Aquat. Anim. Health 1999, 11, 246–252. [Google Scholar] [CrossRef]
- Zilberg, D.; Grizzle, J.M.; Plumb, J.A. Preliminary description of lesions in juvenile largemouth bass injected with largemouth bass virus. Dis. Aquat. Org. 2000, 39, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Langdon, J.S.; Humphrey, J.D.; Williams, L.M.; Hyatt, A.D.; Westbury, H.A. First virus isolation from Australian fish: An iridovirus-like pathogen from redfin perch, Perca fluviatilis L. J. Fish Dis. 1986, 9, 263–268. [Google Scholar] [CrossRef]
- Hyatt, A.D.; Eaton, B.T.; Hengstberger, S.; Russel, G. Epizootic haematopoietic necrosis virus: Detection by ELISA, immunohistochemistry and immunoelectron-microscopy. J. Fish Dis. 1991, 14, 605–617. [Google Scholar] [CrossRef]
- Hedrick, R.P.; Mcdowell, T.S.; Ahne, W.; Torhy, C.; Kinkelin, P.D. Properties of three iridovirus-like agents associated with systemic infections of fish. Dis. Aquat. Org. 1992, 13, 203–209. [Google Scholar] [CrossRef]
- Hengstberger, S.G.; Hyatt, A.D.; Speare, R.S.; Coupar, B. Comparison of epizootic haematopoietic necrosis and Bohle iridoviruses, recently isolated Australian iridoviruses. Dis. Aquat. Org. 1993, 15, 93–107. [Google Scholar] [CrossRef]
- Hyatt, A.D.; Gould, A.R.; Zupanovic, Z.; Cunningham, A.A.; Hengstberger, S.; Whittington, R.J.; Kattenbelt, J.; Coupar, B.E.H. Comparative studies of piscine and amphibian iridoviruses. Arch. Virol. 2000, 145, 301–331. [Google Scholar] [CrossRef]
- Becker, J.A.; Gilligan, D.; Asmus, M.; Tweedie, A.; Whittington, R.J. Geographic Distribution of Epizootic haematopoietic necrosis virus (EHNV) in Freshwater Fish in South Eastern Australia: Lost Opportunity for a Notifiable Pathogen to Expand Its Geographic Range. Viruses 2019, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- Langdon, J.S.; Humphrey, J.D. Epizootic haematopoietic necrosis, a new viral disease in redfin perch, Perca fluviatilis L., in Australia. J. Fish Dis. 1987, 10, 289–297. [Google Scholar] [CrossRef]
- Whittington, R.; Becker, J.; Tweedie, A.; Gilligan, D.; Asmus, M. Susceptibility of previously untested basin fish species to EHN virus and epidemiology of EHN virus in the wild. In Native Fish Forum 2010; Murray–Darling Basin Authority: Canberra, ACT, Australia, 2010; p. 22. [Google Scholar]
- Ahne, W.; Schlotfeldt, H.; Thomsen, I. Fish viruses: Isolation of an icosahedral cytoplasmic deoxyribovirus from sheatfish (Silurus glanis). J. Vet. Med. Ser. B 1989, 36, 333–336. [Google Scholar] [CrossRef]
- Marsh, I.B.; Whittington, R.J.; O’Rourke, B.; Hyatt, A.D.; Chisholm, O. Rapid differentiation of Australian, European and American ranaviruses based on variation in major capsid protein gene sequence. Mol. Cell. Probes 2002, 16, 137–151. [Google Scholar] [CrossRef]
- Chua, F.H.; Ng, M.L.; Ng, K.L.; Loo, J.J.; Wee, J.Y. Investigation of outbreaks of a novel disease, ‘Sleepy Grouper Disease’, affecting the brown-spotted grouper, Epinephelus tauvina Forskal. J. Fish Dis. 1994, 17, 417–427. [Google Scholar] [CrossRef]
- Chang, S.F.; Ngoh-Lim, G.H.; Kueh, L.F.S.; Qin, Q.W.; Seng, E.K.; Sin, Y.M. Initial investigations into two viruses isolated from marine food fish in Singapore. Vet. Rec. 2002, 150, 15. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.W.; Lam, T.J.; Sin, Y.M.; Shen, H.; Chang, S.F.; Ngoh, G.H.; Chen, C.L. Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, Epinephelus tauvina. J. Virol. Methods 2001, 98, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Chang, S.; Ngoh-Lim, G.; Gibson-Kueh, S.; Shi, C.; Lam, T. Characterization of a novel ranavirus isolated from grouper Epinephelus tauvina. Dis. Aquat. Org. 2003, 53, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.M.; Wang, F.; Song, W.; Hew, C.L. Temporal and differential gene expression of Singapore grouper iridovirus. J. Gen. Virol. 2006, 87, 2907–2915. [Google Scholar] [CrossRef]
- Tsai, C.T.; Ting, J.W.; Wu, M.H.; Wu, M.F.; Guo, I.C.; Chang, C.Y. Complete Genome Sequence of the Grouper Iridovirus and Comparison of Genomic Organization with Those of Other Iridoviruses. J. Virol. 2005, 79, 2010–2023. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, H.; Nakajima, K. Cultured fish species affected by red sea bream iridoviral disease from 1996 to 2000. Fish Pathol. 2002, 37, 45–47. [Google Scholar] [CrossRef]
- Matsuoka, S.; Inouye, K.; Nakajima, K. Cultured fish species affected by red sea bream iridoviral disease from 1991 to 1995. Fish Pathol. 1996, 31, 233–234. [Google Scholar] [CrossRef] [Green Version]
- MacLachlan, N.J.; Dubovi, E.J. Chapter 2—Virus replication. In Fenner’s Veterinary Virology, 5th ed.; Academic Press: Boston, MA, USA, 2017. [Google Scholar]
- Kwon, W.J.; Choi, J.C.; Hong, S.; Kim, Y.C.; Jeong, M.G.; Min, J.G.; Jeong, J.B.; Kim, K.I.; Do Jeong, H. Development of a high-dose vaccine formulation for prevention of megalocytivirus infection in rock bream (Oplegnathus fasciatus). Vaccine 2020, 38, 8107–8115. [Google Scholar] [CrossRef]
- Inouye, K.; Yamano, K.; Maeno, Y.; Nakajima, K.; Matsuoka, M.; Wada, Y.; Sorimachi, M. Iridovirus Infection of Cultured Red Sea Bream, Pagrus major. Fish Pathol. 1992, 27, 19–27. [Google Scholar] [CrossRef]
- Imajoh, M.; Ikawa, T.; Oshima, S.I. Characterization of a new fibroblast cell line from a tail fin of red sea bream, Pagrus major, and phylogenetic relationships of a recent RSIV isolate in Japan. Virus Res. 2007, 126, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.J.; Oh, M.J. Iridovirus-like infection associated with high mortalities of striped beakperch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. J. Fish Dis. 2000, 23, 223–226. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, Z.h.; Hu, Y.u.; Sun, L. Characterization of a megalocytivirus from cultured rock bream, Oplegnathus fasciatus (Temminck & Schlege), in China. Aquac. Res. 2012, 43, 556–564. [Google Scholar]
- He, J.G.; Deng, M.; Weng, S.P.; Li, Z.; Chan, S.M. Complete Genome Analysis of the Mandarin Fish Infectious Spleen and Kidney Necrosis Iridovirus. Virology 2002, 291, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Rimmer, A.E.; Whittington, R.J.; Tweedie, A.; Becker, J.A. Susceptibility of a number of Australian freshwater fishes to dwarf gourami iridovirus (Infectious spleen and kidney necrosis virus). J. Fish Dis. 2017, 40, 293–310. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, W.W.; Li, K.B.; Chang, O.Q.; Liu, C.; Wu, G.H.; Shi, C.B.; Wu, S.Q. Outbreaks of an iridovirus in marbled sleepy goby, Oxyeleotris marmoratus (Bleeker), cultured in southern China. J. Fish Dis. 2011, 34, 399–402. [Google Scholar] [CrossRef]
- Weber, E.S., 3rd; Waltzek, T.B.; Young, D.A.; Twitchell, E.L.; Gates, A.E.; Vagelli, A.; Risatti, G.R.; Hedrick, R.P.; Frasca, S., Jr. Systemic iridovirus infection in the Banggai cardinalfish (Pterapogon kauderni Koumans 1933). J. Vet. Diagn. Investig. 2009, 21, 306–320. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.Y.; Wang, Y.G.; Yang, S.L.; Huang, J.; Wang, Q.Y. The first report of an iridovirus-like agent infection in farmed turbot, Scophthalmus maximus, in China. Aquaculture 2004, 236, 11–25. [Google Scholar] [CrossRef]
- Do, J.; Cha, S.; Kim, J.; An, E.; Lee, N.; Choi, H.; Lee, C.; Park, M.; Kim, J.; Kim, Y. Phylogenetic analysis of the major capsid protein gene of iridovirus isolates from cultured flounders Paralichthys olivaceus in Korea. Dis. Aquat. Org. 2005, 64, 193–200. [Google Scholar] [CrossRef]
- Go, J.; Waltzek, T.B.; Subramaniam, K.; Yun, S.C.; Groff, J.M.; Anderson, I.G.; Chong, R.; Shirley, I.; Schuh, J.C.L.; Handlinger, J.H.; et al. Detection of infectious spleen and kidney necrosis virus (ISKNV) and turbot reddish body iridovirus (TRBIV) from archival ornamental fish samples. Dis. Aquat. Org. 2016, 122, 18. [Google Scholar] [CrossRef] [Green Version]
- Koda, S.A.; Subramaniam, K.; Francis-Floyd, R.; Yanong, R.P.; Frasca, S., Jr.; Groff, J.M.; Popov, V.L.; Fraser, W.A.; Yan, A.; Mohan, S.; et al. Phylogenomic characterization of two novel members of the genus Megalocytivirus from archived ornamental fish samples. Dis. Aquat. Org. 2018, 130, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.M.; Tu, C.; Tseng, C.H.; Huang, C.C.; Chou, C.C.; Kuo, H.C.; Chang, S.K. Genetic analysis of fish iridoviruses isolated in Taiwan during 2001–2009. Arch. Virol. 2011, 156, 1505–1515. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.H.; Lin, K.B.; Wang, X.W. Outbreaks of an iridovirus disease in maricultured large yellow croaker, Larimichthys crocea (Richardson), in China. J. Fish Dis. 2003, 26, 615–619. [Google Scholar] [CrossRef]
- Wang, G.; Luan, Y.; Wei, J.; Li, Y.; Shi, H.; Cheng, H.; Bai, A.; Xie, J.; Xu, W.; Qin, P. Genetic and Pathogenic Characterization of a New Iridovirus Isolated from Cage-Cultured Large Yellow Croaker (Larimichthys crocea) in China. Viruses 2022, 14, 208. [Google Scholar] [CrossRef] [PubMed]
- Noga, E.J. Fish Disease: Diagnosis and Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Lowe, J. Fauna and flora of Norfolk. Part IV. Fishes. Trans. Norfolk Norwich Nat. Soc. 1874, 1, 21–56. [Google Scholar]
- Walker, R. Fine structure of lymphocystis virus of fish. Virology 1962, 18, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Tidona, C.A.; Darai, G. The Complete DNA Sequence of Lymphocystis Disease Virus. Virology 1997, 230, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.; Barbosa-Solomieu, V.; Chinchar, V.G. A decade of advances in iridovirus research. Adv. Virus Res. 2005, 65, 173–248. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Xiao, F.; Xie, J.; Li, Z.Q.; Gui, J.F. Complete Genome Sequence of Lymphocystis Disease Virus Isolated from China. J. Virol. 2004, 78, 6982–6994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawato, S.; Nozaki, R.; Hirono, I.; Kondo, H. Genome Sequence of Lymphocystis Disease Virus 2 LCDV-JP_Oita_2018, Isolated from a Diseased Japanese Flounder (Paralichthys olivaceus) in Japan. Microbiol. Resour. Announc. 2021, 10, e0054721. [Google Scholar] [CrossRef] [PubMed]
- Doszpoly, A.; Kaján, G.L.; Puentes, R.; Perretta, A. Complete genome sequence and analysis of a novel lymphocystivirus detected in whitemouth croaker (Micropogonias furnieri): Lymphocystis disease virus 4. Arch. Virol. 2020, 165, 1215–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heppell, J.; Berthiaume, L. Ultrastructure of lymphocystis disease virus (LDV) as compared to frog virus 3 (FV 3) and chilo iridescent virus (CIV): Effects of enzymatic digestions and detergent degradations. Arch. Virol. 1992, 125, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.L.; Reno, P.W. Viral erythrocytic necrosis (VEN) in marine fishes. Fish Pathol. 1981, 15, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Robin, J.; Laperrière, A.; Berthiaume, L. Identification of the glycoproteins of lymphocystis disease virus (LDV) of fish. Arch. Virol. 1986, 87, 297–305. [Google Scholar] [CrossRef]
- Grayfer, L.; Andino, F.D.J.; Chen, G.; Chinchar, G.V.; Robert, J. Immune Evasion Strategies of Ranaviruses and Innate Immune Responses to These Emerging Pathogens. Viruses 2012, 4, 1075–1092. [Google Scholar] [CrossRef] [Green Version]
- Eaton, H.E.; Ring, B.A.; Brunetti, C.R. The Genomic Diversity and Phylogenetic Relationship in the Family Iridoviridae. Viruses 2010, 2, 1458–14775. [Google Scholar] [CrossRef] [Green Version]
- Delius, H.; Darai, G.; Flügel, R.M. DNA Analysis of Insect Iridescent Virus 6: Evidence for Circular Permutation and Terminal Redundancy. J. Virol. 1984, 49, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Mahy, B.W.; Van Regenmortel, M.H. Encyclopedia of Virology; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Hossain, M.; Song, J.Y.; Kitamura, S.I.; Jung, S.J.; Oh, M.J. Phylogenetic analysis of lymphocystis disease virus from tropical ornamental fish species based on a major capsid protein gene. J. Fish Dis. 2008, 31, 473–479. [Google Scholar] [CrossRef]
- Eaton, H.E.; Metcalf, J.; Penny, E.; Tcherepanov, V.; Upton, C.; Brunetti, C.R. Comparative genomic analysis of the familyIridoviridae: Re-annotating and defining the core set of iridovirus genes. Virol. J. 2007, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- de Matos, A.P.; Caeiro, M.F.; Papp, T.; Matos, B.A.; Correia, A.C.; Marschang, R.E. New viruses from Lacerta monticola (Serra da Estrela, Portugal): Further evidence for a new group of nucleo-cytoplasmic large deoxyriboviruses. Microsc. Microanal. 2011, 17, 101–108. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, X.; Cai, J.; Ye, F.; Guan, L.; Liu, H.; Qin, Q. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication. Virus Res. 2011, 160, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Tidona, C.A.; Schnitzler, P.; Kehm, R.; Darai, G. Is the Major Capsid Protein of Iridoviruses a Suitable Target for the Study of Viral Evolution? Virus Genes 1998, 16, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Oh, M.J.; Jung, S.J.; Kim, Y.J.; Kitamura, S.I. Characterization of an iridovirus detected from cultured turbot Scophthalmus maximus in Korea. Dis. Aquat. Org. 2005, 64, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, P.; Hart, A.; Gregg, J.; Elder, N.; Winton, J. Dynamics of viral hemorrhagic septicemia, viral erythrocytic necrosis and ichthyophoniasis in confined juvenile Pacific herring Clupea pallasii. Dis. Aquat. Org. 2006, 70, 201. [Google Scholar] [CrossRef]
- Paperna, I.; de Matos, A.A. Erythrocytic viral infections of lizards and frogs: New hosts, geographical locations and description of the infection process. Ann. Parasitol. Hum. Comp. 1993, 68, 11–23. [Google Scholar] [CrossRef] [Green Version]
- St, M.J.; Young, J.; Williams, L.M. Epizootic haematopoietic necrosis virus (EHNV): Growth in fish cell lines at different temperatures. Bull.-Eur. Assoc. Fish Pathol. 2005, 25, 228–231. [Google Scholar]
- Mcclenahan, S.D.; Beck, B.H.; Grizzle, J.M. Evaluation of Cell Culture Methods for Detection of Largemouth Bass Virus. J. Aquat. Anim. Health 2005, 17, 365–372. [Google Scholar] [CrossRef]
- Gong, J.; Huang, Y.; Huang, X.; Ouyang, Z.; Guo, M.; Qin, Q. Establishment and characterization of a new cell line derived from kidney of grouper, Epinephelus akaara (Temminck & Schlegel), susceptible to Singapore grouper iridovirus (SGIV). J. Fish Dis. 2011, 34, 677–686. [Google Scholar]
- Piaskoski, T.O.; Plumb, J.A.; Roberts, S.R. Characterization of the largemouth bass virus in cell culture. J. Aquat. Anim. Health 1999, 11, 45–51. [Google Scholar] [CrossRef]
- Hoffman, G.; Dunbar, C.; Wolf, K.; Zwillenberg, L. Epitheliocystis, a new infectious disease of the bluegill (Lepomis macrochirus). Antonie van Leeuwenhoek 1969, 35, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Zhang, X.; Zeng, K.; Xie, D.; Song, C.; Tam, K.; Liu, Z.; Zhou, T.; Li, W. Construction of a DNA vaccine and its protective effect on largemouth bass (Micropterus salmoides) challenged with largemouth bass virus (LMBV). Fish Shellfish Immunol. 2020, 106, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, W.; Wang, W.; Pan, Z.; Qin, Q.; Huang, X.; Huang, Y. Largemouth Bass Virus Infection Induced Non-Apoptotic Cell Death in MsF Cells. Viruses 2022, 14, 1568. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Dong, H.; Chen, X.; Bergmann, S.M.; Yang, Y.; Wei, X.; Tong, G.; Li, H.; Yu, H.; Chen, Y. Establishment and characterization of a permanent heart cell line from largemouth bass Micropterus salmoides and its application to fish virology and immunology. Aquaculture 2022, 547, 737427. [Google Scholar] [CrossRef]
- LaPatra, S.E. 2.2. 4 Infectious hematopoietic necrosis. In AFSFHS. Fish Health Section Blue Book: Suggested Procedures for the Detection and Identification of Certain Finfish and Shellfish Pathogens; AFS Fish Health Section: Burlington, VT, USA, 2014. [Google Scholar]
- Ariel, E.; Nicolajsen, N.; Christophersen, M.-B.; Holopainen, R.; Tapiovaara, H.; Jensen, B.B. Propagation and isolation of ranaviruses in cell culture. Aquaculture 2009, 294, 159–164. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Y.; Sun, J.; Han, X.; Qin, Q. Characterization of two grouper Epinephelus akaara cell lines: Application to studies of Singapore grouper iridovirus (SGIV) propagation and virus–host interaction. Aquaculture 2009, 292, 172–179. [Google Scholar] [CrossRef]
- Lai, Y.S.; John, J.; Lin, C.H.; Guo, I.C.; Chen, S.C.; Fang, K.; Lin, C.H.; Chang, C.Y. Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck & Schlegel), and their susceptibility to grouper irido-and nodaviruses. J. Fish Dis. 2003, 26, 31–42. [Google Scholar]
- Liu, Z.; Zhang, X.; Zhang, Y.; Qin, Q.; Huang, X.; Huang, Y. Establishment of a cell line from the head kidney of giant grouper (Epinephelus lanceolatus) and its susceptibility to fish viruses. Aquac. Rep. 2021, 21, 100899. [Google Scholar] [CrossRef]
- Lai, Y.S.; Chiou, P.; Chen, W.J.; Chen, Y.C.; Chen, C.W.; Chiu, I.S.; Chen, S.D.; Cheng, Y.H.; Chang, C.Y. Characterization of apoptosis induced by grouper iridovirus in two newly established cell lines from barramundi, Lates calcarifer (Bloch). J. Fish Dis. 2008, 31, 825–834. [Google Scholar] [CrossRef]
- Huang, S.-M.; Kuo, S.-T.; Kuo, H.-C.; Chang, S.-K. Assessment of fish iridoviruses using a novel cell line GS-1, derived from the spleen of orange-spotted grouper Epinephelus coioides (Hamilton) and susceptible to ranavirus and megalocytivirus. J. Vet. Med. Sci. 2018, 80, 1766–1774. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.S.; Murali, S.; Ju, H.Y.; Wu, M.F.; Guo, I.C.; Chen, S.C.; Fang, K.; Chang, C.Y. Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. J. Fish Dis. 2000, 23, 379–388. [Google Scholar]
- Dong, C.; Weng, S.; Shi, X.; Xu, X.; Shi, N.; He, J. Development of a mandarin fish Siniperca chuatsi fry cell line suitable for the study of infectious spleen and kidney necrosis virus (ISKNV). Virus Res. 2008, 135, 273–281. [Google Scholar] [CrossRef]
- Fu, X.; Li, N.; Lai, Y.; Luo, X.; Wang, Y.; Shi, C.; Huang, Z.; Wu, S.; Su, J. A novel fish cell line derived from the brain of Chinese perch Siniperca chuatsi: Development and characterization. J. Fish Biol. 2015, 86, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, N.; Lin, Q.; Guo, H.; Zhang, D.; Liu, L.; Wu, S. Protective immunity against infectious spleen and kidney necrosis virus induced by immunization with DNA plasmid containing mcp gene in Chinese perch Siniperca chuatsi. Fish Shellfish Immunol. 2014, 40, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Clem, L.W.; Moewus, L.; Michael Sigel, M. Studies with cells from marine fish in tissue culture. Proc. Soc. Exp. Biol. Med. 1961, 108, 762–766. [Google Scholar] [CrossRef]
- Nakajima, K.; Sorimachi, M. Biological and physico-chemical properties of the iridovirus isolated from cultured red sea bream, Pagrus major. Fish Pathol. 1994, 29, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Kasai, H.; Yoshimizu, M. Establishment of two Japanese flounder [Paralichthys olivaceus] embryo cell lines. Bull. Fish. Sci. Hokkaido Univ. 2001, 52, 67–70. [Google Scholar]
- Kawato, Y.; Yamashita, H.; Yuasa, K.; Miwa, S.; Nakajima, K. Development of a highly permissive cell line from spotted knifejaw (Oplegnathus punctatus) for red sea bream iridovirus. Aquaculture 2017, 473, 291–298. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Nishizawa, T. Establishment of rock bream Oplegnathus fasciatus embryo (RoBE-4) cells with cytolytic infection of red seabream iridovirus (RSIV). J. Virol. Methods 2016, 238, 1–5. [Google Scholar] [CrossRef]
- Parameswaran, V.; Shukla, R.; Bhonde, R.; Hameed, A.S. Splenic cell line from sea bass, Lates calcarifer: Establishment and characterization. Aquaculture 2006, 261, 43–53. [Google Scholar] [CrossRef]
- Zenke, K.; Kim, K.H. Functional characterization of the RNase III gene of rock bream iridovirus. Arch. Virol. 2008, 153, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Ha, Y.M.; Nam, Y.K.; Kim, K.H.; Kim, S.K. Production of polyclonal antibody against recombinant ORF 112 L of rock bream (Oplegnathus fasciatus) iridovirus (RBIV) and in vitro neutralization. J. Environ. Biol. 2008, 29, 571–576. [Google Scholar]
- Fan, T.-J.; Ren, B.-X.; Geng, X.-F.; Yu, Q.-T.; Wang, L.-Y. Establishment of a turbot fin cell line and its susceptibility to turbot reddish body iridovirus. Cytotechnology 2010, 62, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.B.; Fan, T.J.; Jiang, G.J.; Xu, X.H.; Sun, A. A novel heart-cell line from brown-marbled grouper Epinephelus fuscoguttatus and its susceptibility to iridovirus. J. Fish Biol. 2010, 76, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, X.; Sha, Z.; Tian, Y.; Chen, S. Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus). Fish Physiol. Biochem. 2010, 36, 1227–1234. [Google Scholar] [CrossRef]
- Wei, Y.; Fan, T.; Jiang, G.; Sun, A.; Xu, X.; Wang, J. Establishment of a novel fin cell line from Brown-marbled grouper, Epinephelus fuscoguttatus (Forsskål), and evaluation of its viral susceptibility. Aquac. Res. 2009, 40, 1523–1531. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Sha, Z.; Yang, C.; Liu, S.; Wang, N.; Chen, S.-L. Establishment and characterization of a testicular cell line from the half-smooth tongue sole, Cynoglossus semilaevis. Int. J. Biol. Sci. 2011, 7, 452. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Peng, C.; Su, Y.; Feng, J.; Guo, Z. Isolation of a Ranavirus-type grouper iridovirus in mainland China and comparison of its pathogenicity with that of a Megalocytivirus-type grouper iridovirus. Aquaculture 2016, 463, 145–151. [Google Scholar] [CrossRef]
- Zheng, Z.; Chi, H.; Liu, X.; Yang, X.; Chen, X.; Pan, Y.; Gong, H. A new embryonic cell line YCE1 from large yellow croaker (Larimichthys crocea) and its susceptibility to large yellow croaker iridovirus. Aquaculture 2023, 565, 739079. [Google Scholar] [CrossRef]
- Ao, J.; Chen, X. Identification and characterization of a novel gene encoding an RGD-containing protein in large yellow croaker iridovirus. Virology 2006, 355, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, E.J.; Borrego, J.J.; Castro, D. Evaluation of an integrated cell culture RT-PCR assay to detect and quantify infectious lymphocystis disease virus. J. Virol. Methods 2016, 238, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.; Ferro, P.; Garcia-Rosado, E.; Cano, I.; Lang, T.; Bergmann, S.; Borrego, J. Comparison of lymphocystis disease virus (LCDV) isolates obtained from different marine fish species and geographical areas. Bull.-Eur. Assoc. Fish Pathol. 2007, 27, 157. [Google Scholar]
- Chinchar, V.G.; Mao, J. Molecular diagnosis of iridovirus infections in cold-blooded animals. Semin. Avian Exot. Pet Med. 2000, 9, 27–35. [Google Scholar] [CrossRef]
- Galli, L.; Pereira, A.; Márquez, A.; Mazzoni, R. Ranavirus detection by PCR in cultured tadpoles (Rana catesbeiana Shaw, 1802) from South America. Aquaculture 2006, 257, 78–82. [Google Scholar] [CrossRef]
- Allender, M.C.; Abd-Eldaim, M.; Schumacher, J.; Mcruer, D.; Kennedy, M. PCR Prevalence of Ranavirus in Free-Ranging Eastern Box Turtles (Terrapene carolina carolina) at Rehabilitation Centers in Three Southeastern US States. J. Wildl. Dis. 2011, 47, 759–764. [Google Scholar] [CrossRef]
- Allender, M.C.; Bunick, D.; Mitchell, M.A. Development and validation of TaqMan quantitative PCR for detection of frog virus 3-like virus in eastern box turtles (Terrapene carolina carolina). J. Virol. Methods 2013, 188, 121–125. [Google Scholar] [CrossRef]
- Gias, E.; Johnston, C.; Keeling, S.; Spence, R.P.; Mcdonald, W.L. Development of real-time PCR assays for detection of megalocytiviruses in imported ornamental fish. J. Fish Dis. 2011, 34, 609–618. [Google Scholar] [CrossRef]
- Jun, K.; Kazuhiro, N.; Ikuo, H.; Takashi, A. Polymerase chain reaction (PCR) amplification of DNA of red sea bream iridovirus (RSIV). Fish Pathol. 1998, 33, 17–23. [Google Scholar]
- Jeong, J.B.; Park, K.H.; Kim, H.Y.; Hong, S.H.; Kim, K.H.; Chung, J.K.; Komisar, J.L.; Jeong, H.D. Multiplex PCR for the diagnosis of red sea bream iridoviruses isolated in Korea. Aquaculture 2004, 235, 139–152. [Google Scholar] [CrossRef]
- Getchell, R.G.; Groocock, G.H.; Schumacher, V.L.; Grimmett, S.G.; Wooster, G.A.; Bowser, P.R. Quantitative polymerase chain reaction assay for largemouth bass virus. J. Aquat. Anim. Health 2007, 19, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Cano, I.; Ferro, P.; Alonso, M.C.; Bergmann, S.M.; R?Mer-Oberd?Rfer, A.; Garcia-Rosado, E.; Castro, D.; Borrego, J.J. Development of molecular techniques for detection of lymphocystis disease virus in different marine fish species. J. Appl. Microbiol. 2010, 102, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, S.I.; Jung, S.J.; Oh, M.J. Differentiation of lymphocystis disease virus genotype by multiplex PCR. J. Microbiol. 2006, 44, 248–253. [Google Scholar] [PubMed]
- Zhang, Q.; Shi, C.; Huang, J.; Jia, K.; Chen, X.; Liu, H. Rapid diagnosis of turbot reddish body iridovirus in turbot using the loop-mediated isothermal amplification method. J. Virol. Methods 2009, 158, 18–23. [Google Scholar] [CrossRef]
- Sung, C.H.; Chi, S.C.; Huang, K.C.; Lu, J.K. Rapid Detection of Grouper Iridovirus by Loop-Mediated Isothermal Amplification. J. Mar. Sci. Technol. 2010, 18, 568–573. [Google Scholar] [CrossRef]
- Li, Q.; Yue, Z.; Liu, H.; Liang, C.; Zheng, X.; Zhao, Y.; Chen, X.; Xiao, X.; Chen, C. Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of lymphocystis disease virus. J. Virol. Methods 2010, 163, 378–384. [Google Scholar] [CrossRef]
- Subramaniam, K.; Shariff, M.; Omar, A.R.; Hair-Bejo, M.; Ong, B.L. Use of Acridine Orange to Visually Improve the Loop-mediated Isothermal Amplification for Detection of Infectious Spleen and Kidney Necrosis Virus. Fish Pathol. 2014, 49, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Whittington, R.J.; Steiner, K.A. Epizootic haematopoietic necrosis virus (EHNV): Improved ELISA for detection in fish tissues and cell cultures and an efficient method for release of antigen from tissues. J. Virol. Methods 1993, 43, 205. [Google Scholar] [CrossRef]
- Li, P.; Zhou, L.; Wei, J.; Yu, Y.; Yang, M.; Wei, S.; Qin, Q. Development and characterization of aptamer-based enzyme-linked apta-sorbent assay for the detection of Singapore grouper iridovirus infection. J. Appl. Microbiol. 2016, 121, 634–643. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Li, J.; Huang, X.; Wei, J.; Yang, J.; Guan, L.; Wen, X.; Wang, S.; Qin, Q. A Novel Sandwich ELASA Based on Aptamer for Detection of Largemouth Bass Virus (LMBV). Viruses 2022, 14, 945. [Google Scholar] [CrossRef]
- Kwon, S.R.; Nishizawa, T.; Takami, I.; Yoshimizu, M. Antibody detection against red sea bream iridovirus (RSIV) in yellowtail Seriola quinqueradiata using ELISA. Fish Pathol. 2010, 45, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-J.; Jang, E.-J.; Kim, J.-S.; Lee, J.-I. Iridovirus infection of cultured juvenile flounder (Paralichthys olivaceus) in nursery. Korean J. Vet. Res. 2006, 46, 21–25. [Google Scholar]
- Eto, N.; Yamada, K.; Koga, A.; Shirahata, S.; Murakami, H. Establishment and characterization of monoclonal antibodies against Chuzan virus K-47. Cytotechnology 1991, 6, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, T.; Sano, N.; Takano, T.; Sakai, T.; Yasuike, M.; Fujiwara, A.; Kawato, Y.; Kurita, J.; Yoshida, K.; Shimada, Y.; et al. Antibody profiling using a recombinant protein-based multiplex ELISA array accelerates recombinant vaccine development: Case study on red sea bream iridovirus as a reverse vaccinology model. Vaccine 2018, 36, 2643–2649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, J.X.; Lin, X.M.; Zhu, C.H.; He, J.Q.; Liu, H.; Lin, T.L. A double antibody sandwich enzyme-linked immunosorbent assay for detection of soft-shelled turtle iridovirus antigens. J. Virol. Methods 2010, 167, 193–198. [Google Scholar] [CrossRef]
- Jin, Y.; Bergmann, S.M.; Mai, Q.; Yang, Y.; Liu, W.; Sun, D.; Chen, Y.; Yu, Y.; Liu, Y.; Cai, W. Simultaneous isolation and identification of largemouth bass virus and rhabdovirus from moribund largemouth bass (Micropterus salmoides). Viruses 2022, 14, 1643. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Zhang, Z.; Sun, W.; Zhang, X.; Liu, X. Analysis of the transcriptomic profiles of Mandarin fish (Siniperca chuatsi) infected with red sea bream iridovirus (RSIV). Microb. Pathog. 2023, 174, 105921. [Google Scholar] [CrossRef]
- Chuang, H.-C.; Chu, T.-W.; Cheng, A.-C.; Chen, N.-Y.; Lai, Y.-S. Iridovirus isolated from marine giant sea perch causes infection in freshwater ornamental fish. Aquaculture 2022, 548, 737588. [Google Scholar] [CrossRef]
- Whittington, L.A.R.J. Pathology of epizootic haematopoietic necrosis virus (EHNV) infection in rainbow trout (Oncorhynchus mykiss Walbaum) and redfin perch (Perca fluviatilis L.). J. Comp. Pathol. 1996, 115, 103–115. [Google Scholar]
- Jensen, B.B.; Ersbøll, A.K.; Ariel, E. Susceptibility of pike Esox lucius to a panel of Ranavirus isolates. Dis. Aquat. Org. 2009, 83, 169–179. [Google Scholar] [CrossRef]
- Vaniksampanna, A.; Manajit, O.; Senapin, S.; Kamsamarn, S.; Wangman, P.; Longyant, S.; Chaivisuthangkura, P. Generation of monoclonal antibodies against heterologously expressed major capsid protein of infectious spleen and kidney necrosis virus (ISKNV). Aquaculture 2023, 563, 738895. [Google Scholar] [CrossRef]
- Lin, H.Y.; Liou, C.J.; Cheng, Y.H.; Hsu, H.C.; Yiu, J.C.; Chiou, P.P.; Lai, Y.S. Development and application of a monoclonal antibody against grouper iridovirus (GIV) major capsid protein. J. Virol. Methods 2014, 205, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Maeno, Y.; Fukudome, M.; Fukuda, Y.; Tanaka, S.; Matsuoka, S.; Sorimachi, M. Immunofluorescence test for the rapid diagnosis of red sea bream iridovirus infection using monoclonal antibody. Fish Pathol. 1995, 30, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Bigarré, L.; Cabon, J.; Baud, M.; Pozet, F.; Castric, J. Ranaviruses associated with high mortalities in catfish in France. Bull.-Eur. Assoc. Fish Pathol. 2008, 28, 163–168. [Google Scholar]
- Huang, C.; Zhang, X.; Gin, K.Y.H.; Qin, Q.W. In situ hybridization of a marine fish virus, Singapore grouper iridovirus with a nucleic acid probe of major capsid protein. J. Virol. Methods 2004, 117, 123–128. [Google Scholar] [CrossRef]
- Glenn, J.A.; Emmenegger, E.J.; Grady, C.A.; Roon, S.R.; Gregg, J.L.; Conway, C.M.; Winton, J.R.; Hershberger, P.K. Kinetics of Viral Load and Erythrocytic Inclusion Body Formation in Pacific Herring Artificially Infected with Erythrocytic Necrosis Virus. J. Aquat. Anim. Health 2012, 24, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.J.; Curtis, L.; Grutter, A.S.; Smit, N.J. Suspected viral erythrocytic necrosis (VEN) in a juvenile blackbar triggerfish, Rhinecanthus aculeatus, from Lizard Island, Great Barrier Reef, Australia. Mar. Biodivers. Rec. 2009, 2, e149. [Google Scholar] [CrossRef]
- Qin, Q.W.; Gin, K.Y.-H.; Lee, L.Y.; Gedaria, A.I.; Zhang, S. Development of a flow cytometry based method for rapid and sensitive detection of a novel marine fish iridovirus in cell culture. J. Virol. Methods 2005, 125, 49–54. [Google Scholar] [CrossRef]
- Cho, H.S.; Kim, T.J. Comparison of surface plasmon resonance imaging and enzyme-linked immunosorbent assay for the detection of antibodies against iridovirus in rock bream (Oplegnathus fasciatus). J. Vet. Diagn. Investig. 2007, 19, 414–416. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yan, Y.; Wei, S.; Wei, J.; Gao, R.; Huang, X.; Huang, Y.; Jiang, G.; Qin, Q. Isolation and characterization of a new class of DNA aptamers specific binding to Singapore grouper iridovirus (SGIV) with antiviral activities. Virus Res. 2014, 188, 146–154. [Google Scholar] [CrossRef]
- Jeong, J.B.; Cho, H.J.; Jun, L.J.; Hong, S.H.; Chung, J.-K.; Do Jeong, H. Transmission of iridovirus from freshwater ornamental fish (pearl gourami) to marine fish (rock bream). Dis. Aquat. Org. 2008, 82, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Hanson, L.A.; Petrie-Hanson, L.; Meals, K.O.; Chinchar, V.G.; Rudis, M. Persistence of largemouth bass virus infection in a northern Mississippi reservoir after a die-off. J. Aquat. Anim. Health 2001, 13, 27–34. [Google Scholar] [CrossRef]
- Choi, S.K.; Kwon, S.R.; Nam, Y.K.; Kim, S.K.; Kim, K.H. Organ distribution of red sea bream iridovirus (RSIV) DNA in asymptomatic yearling and fingerling rock bream (Oplegnathus fasciatus) and effects of water temperature on transition of RSIV into acute phase. Aquaculture 2006, 256, 23–26. [Google Scholar] [CrossRef]
- Whittington, R.; Reddacliff, G. Influence of environmental temperature on experimental infection of redfin perch (Perca fluviatilis) and rainbow trout (Oncorhynchus mykiss) with epizootic haematopoietic necrosis virus, an Australian iridovirus. Aust. Vet. J. 1995, 72, 421–424. [Google Scholar] [CrossRef]
- Kurobe, T.; MacConnell, E.; Hudson, C.; McDowell, T.; Mardones, F.; Hedrick, R. Iridovirus infections among Missouri River sturgeon: Initial characterization, transmission, and evidence for establishment of a carrier state. J. Aquat. Anim. Health 2011, 23, 9–18. [Google Scholar] [CrossRef]
- Alcorn, S.W.; Murray, A.L.; Pascho, R.J. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka). Fish Shellfish Immunol. 2002, 12, 303–334. [Google Scholar] [CrossRef] [PubMed]
- Jun, L.; Jeong, J.; Kim, J.; Nam, J.; Shin, K.; Kim, J.; Kang, J.; Jeong, H. Influence of temperature shifts on the onset and development of red sea bream iridoviral disease in rock bream Oplegnathus fasciatus. Dis. Aquat. Org. 2009, 84, 201. [Google Scholar] [CrossRef] [Green Version]
- Leimbach, S.; Schütze, H.; Bergmann, S.M. Susceptibility of European sheatfish Silurus glanis to a panel of ranaviruses. J. Appl. Ichthyol. 2014, 30, 93–101. [Google Scholar] [CrossRef]
- Watson, L.R.; Milani, A.; Hedrick, R.P. Effects of water temperature on experimentally-induced infections of juvenile white sturgeon (Acipenser transmontanus) with the white sturgeon iridovirus (WSIV). Aquaculture 1998, 166, 213–228. [Google Scholar] [CrossRef]
- Wolf, K. Fish Viruses and Fish Viral Diseases; Comstock Publishing Associates, Cornell University Press: Ithaca, NY, USA, 1988. [Google Scholar]
- Smith, G.; Blazer, V.; Walsh, H.; Iwanowicz, L.; Starliper, C.; Sperry, A. The effects of disease-related mortality of young-of-year smallmouth bass on the population characteristics in the Susquehanna River basin, Pennsylvania and potential implications to conservation of black bass diversity. In Proceedings of the American Fisheries Society Symposium, Portland, OR, USA, 16–20 August 2015; pp. 319–332. [Google Scholar]
- Grant, E.C.; Philipp, D.P.; Inendino, K.R.; Goldberg, T.L. Effects of temperature on the susceptibility of largemouth bass to largemouth bass virus. J. Aquat. Anim. Health 2003, 15, 215–220. [Google Scholar] [CrossRef]
- He, J.; Zeng, K.; Weng, S.; Chan, S.-M. Experimental transmission, pathogenicity and physical–chemical properties of infectious spleen and kidney necrosis virus (ISKNV). Aquaculture 2002, 204, 11–24. [Google Scholar] [CrossRef]
- Georgiadis, M.P.; Hedrick, R.P.; Carpenter, T.E.; Gardner, I.A. Factors influencing transmission, onset and severity of outbreaks due to white sturgeon iridovirus in a commercial hatchery. Aquaculture 2001, 194, 21–35. [Google Scholar] [CrossRef]
- Munang’Andu, H.; Mutoloki, S.; Evensen, Ø. Prevention and control of viral diseases in aquaculture. In Aquaculture Virology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–93. [Google Scholar]
- Mugimba, K.K.; Byarugaba, D.K.; Mutoloki, S.; Evensen, Ø.; Munang’andu, H.M. Challenges and solutions to viral diseases of finfish in marine aquaculture. Pathogens 2021, 10, 673. [Google Scholar] [CrossRef] [PubMed]
- Drennan, J.D.; Ireland, S.; LaPatra, S.E.; Grabowski, L.; Carrothers, T.K.; Cain, K.D. High-density rearing of white sturgeon Acipenser transmontanus (Richardson) induces white sturgeon iridovirus disease among asymptomatic carriers. Aquac. Res. 2005, 36, 824–827. [Google Scholar] [CrossRef]
- Drennan, J.D. Studies on Transmission, Diagnostics, and Immunity to White Sturgeon Iridovirus (WSIV); University of Idaho: Moscow, ID, USA, 2006. [Google Scholar]
- Inendino, K.R.; Grant, E.C.; Philipp, D.P.; Goldberg, T.L. Effects of factors related to water quality and population density on the sensitivity of juvenile largemouth bass to mortality induced by viral infection. J. Aquat. Anim. Health 2005, 17, 304–314. [Google Scholar] [CrossRef]
- Min, J.G.; Jeong, Y.J.; Jeong, M.A.; Kim, J.-O.; Hwang, J.Y.; Kwon, M.-G.; Kim, K.I. Experimental transmission of red sea bream iridovirus (RSIV) between rock bream (Oplegnathus fasciatus) and rockfish (Sebastes schlegelii). J. Fish Pathol. 2021, 34, 1–7. [Google Scholar]
- Essbauer, S.; Ahne, W. Viruses of Lower Vertebrates. J. Vet. Med. Ser. B 2001, 48, 403–475. [Google Scholar] [CrossRef]
- Macmillan, J.R.; Mulcahy, D.; Landolt, M.L. Cytopathology and Coagulopathy Associated with Viral Erythrocytic Necrosis in Chum Salmon. J. Aquat. Anim. Health 1989, 1, 255–262. [Google Scholar] [CrossRef]
- Smail, D.A. Viral erythrocytic necrosis in fish: A review. Proc. R. Soc. Edinb. 1982, 81, 169–176. [Google Scholar] [CrossRef]
- Drennan, J.D.; Lapatra, S.E.; Samson, C.A.; Ireland, S.; Eversman, K.F.; Cain, K.D. Evaluation of lethal and non-lethal sampling methods for the detection of white sturgeon iridovirus infection in white sturgeon, Acipenser transmontanus (Richardson). J. Fish Dis. 2007, 30, 367–379. [Google Scholar] [CrossRef]
- Georgiadis, M.P.; Hedrick, R.P.; Johnson, W.O.; Yun, S.; Gardner, I.A. Risk factors for outbreaks of disease attributable to white sturgeon iridovirus and white sturgeon herpesvirus-2 at a commercial sturgeon farm. Am. J. Vet. Res. 2000, 61, 1232. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, R.; McDowell, T.; Groff, J.; Yun, S.; Wingfield, W. Isolation and some properties of an iridovirus-like agent from white sturgeon Acipenser transmontanus. Dis. Aquat. Org. 1992, 12, 75–81. [Google Scholar] [CrossRef]
- LaPatra, S.; Groff, J.; Jones, G.; Munn, B.; Patterson, T.; Holt, R.; Hauck, A.; Hedrick, R. Occurrence of white sturgeon iridovirus infections among cultured white sturgeon in the Pacific Northwest. Aquaculture 1994, 126, 201–210. [Google Scholar] [CrossRef]
- Schramm Jr, H.L.; Walters, A.R.; Grizzle, J.M.; Beck, B.H.; Hanson, L.A.; Rees, S.B. Effects of live-well conditions on mortality and largemouth bass virus prevalence in largemouth bass caught during summer tournaments. N. Am. J. Fish. Manag. 2006, 26, 812–825. [Google Scholar] [CrossRef]
- Fusianto, C.; Hick, P.M.; Becker, J.A. Stability of Infectious spleen and kidney necrosis virus and susceptibility to physical and chemical disinfectants. Aquaculture 2019, 506, 104–111. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Chapter 10.8 Infection with Red Sea Bream. Aquatic Manual. Available online: https://www.woah.org/en/disease/red-sea-bream-iridoviral-disease/ (accessed on 4 May 2023).
- Munang’Andu, H.M.; Mutoloki, S.; Evensen, Ø. Non-replicating vaccines. In Fish Vaccination; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 22–32. [Google Scholar]
- Nakajima, K.; Maeno, Y.; Honda, A.; Yokoyama, K.; Tooriyama, T.; Manabe, S. Effectiveness of a vaccine against red sea bream iridoviral disease in a field trial test. Dis. Aquat. Org. 1999, 36, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.K.; Manna, S.K.; Thomas Allnutt, F. Viral vaccines for farmed finfish. Virusdisease 2014, 25, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fu, X.; Zhang, Y.; Zhu, W.; Zhou, Y.; Yuan, G.; Liu, X.; Ai, T.; Zeng, L.; Su, J. Chitosan and anisodamine improve the immune efficacy of inactivated infectious spleen and kidney necrosis virus vaccine in Siniperca chuatsi. Fish Shellfish Immunol. 2019, 89, 52–60. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, Y.; Zhang, C.; Jia, Y.-J.; Qiu, D.-K.; Wang, G.-X.; Zhu, B. Optimization of the efficacy of a SWCNTs-based subunit vaccine against infectious spleen and kidney necrosis virus in mandarin fish. Fish Shellfish Immunol. 2020, 106, 190–196. [Google Scholar] [CrossRef]
- Li, N.; Fu, X.; Guo, H.; Lin, Q.; Liu, L.; Zhang, D.; Fang, X.; Wu, S. Protein encoded by ORF093 is an effective vaccine candidate for infectious spleen and kidney necrosis virus in Chinese perch Siniperca chuatsi. Fish Shellfish Immunol. 2015, 42, 88–90. [Google Scholar] [CrossRef]
- Dong, C.; Xiong, X.; Luo, Y.; Weng, S.; Wang, Q.; He, J. Efficacy of a formalin-killed cell vaccine against infectious spleen and kidney necrosis virus (ISKNV) and immunoproteomic analysis of its major immunogenic proteins. Vet. Microbiol. 2013, 162, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Li, N.; Lin, Q.; Guo, H.; Liu, L.; Huang, Z.; Wu, S. Early protein ORF086 is an effective vaccine candidate for infectious spleen and kidney necrosis virus in mandarin fish Siniperca chuatsi. Fish Shellfish Immunol. 2015, 46, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Chen, G.; Zhang, C.; Wang, G.X.; Zhu, B. Protective immunity against infectious spleen and kidney necrosis virus induced by mannose modified subunit vaccine with carbon nanotubes in mandarin fish. Aquac. Res. 2022, 53, 2175–2184. [Google Scholar] [CrossRef]
- Caipang, C.M.A.; Takano, T.; Hirono, I.; Aoki, T. Genetic vaccines protect red seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish Shellfish Immunol. 2006, 21, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Tamaru, Y.; Ohtsuka, M.; Kato, K.; Manabe, S.; Kuroda, K.; Sanada, M.; Ueda, M. Application of the arming system for the expression of the 380R antigen from red sea bream iridovirus (RSIV) on the surface of yeast cells: A first step for the development of an oral vaccine. Biotechnol. Prog. 2006, 22, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Hu, X.; Wang, L.; Geng, X.; Jiang, G.; Yang, X.; Yu, M. Development of an inactivated iridovirus vaccine against turbot viral reddish body syndrome. J. Ocean. Univ. China 2012, 11, 65–69. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, H.; Sun, X.; Zhang, Y.; Zhang, B.; Teng, Z.; Hou, Y.; Wang, B. Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Scophthalmus maximus). Aquaculture 2016, 452, 263–271. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, H.; Sun, X.; Qin, X.; Xu, Z.; Wang, B. Construction and expression of DNA vaccine against reddish body iridovirus and evaluation of immune efficacy in turbot (Scophthalmus maximus). Aquac. Res. 2017, 48, 4174–4183. [Google Scholar] [CrossRef]
- Robinson, N.A.; Robledo, D.; Sveen, L.; Daniels, R.R.; Krasnov, A.; Coates, A.; Jin, Y.H.; Barrett, L.T.; Lillehammer, M.; Kettunen, A.H.; et al. Applying genetic technologies to combat infectious diseases in aquaculture. Rev. Aquac. 2023, 15, 491–535. [Google Scholar] [CrossRef]
- Jung, M.-H.; Nikapitiya, C.; Jung, S.-J. DNA vaccine encoding myristoylated membrane protein (MMP) of rock bream iridovirus (RBIV) induces protective immunity in rock bream (Oplegnathus fasciatus). Vaccine 2018, 36, 802–810. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, Y.-H.; Xiao, Z.-Z.; Sun, Y.; Sun, L. Construction and analysis of experimental DNA vaccines against megalocytivirus. Fish Shellfish Immunol. 2012, 33, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Shen, Z.; Gu, Y.; Tong, X.; Zhang, Y.; Pan, J.; Feng, Y.; Hu, X.; Wang, Y.; Cao, G. A recombinant baculovirus vector vaccine (BacMCP) against the infectious spleen and kidney necrosis virus (ISKNV). J. Fish Dis. 2023, 46, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, Z.; Wang, P.; Huang, X.; Cai, J.; Huang, Y.; Wei, S.; Ji, H.; Wei, J.; Zhou, Y.; Qin, Q. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides. Dev. Comp. Immunol. 2012, 38, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, Z.; Wang, P.; Huang, Y.; Huang, X.; Wan, Q.; Zhou, S.; Wei, J.; Zhou, Y.; Qin, Q. Selection and identification of Singapore grouper iridovirus vaccine candidate antigens using bioinformatics and DNA vaccination. Vet. Immunol. Immunopathol. 2012, 149, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.-T.; Zheng, X.-b.; Liu, Z.-X. Protective immunity induced by DNA vaccine encoding viral membrane protein against SGIV infection in grouper. Fish Shellfish Immunol. 2019, 92, 649–654. [Google Scholar] [CrossRef]
- Liu, H.-I.; Chiou, P.P.; Gong, H.-Y.; Chou, H.-Y. Cloning of the major capsid protein (MCP) of grouper iridovirus of Taiwan (TGIV) and preliminary evaluation of a recombinant MCP vaccine against TGIV. Int. J. Mol. Sci. 2015, 16, 28647–28656. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.-R.; Sun, X.-Q.; Liu, H.-Z.; Zhang, J.-X. Study on the distribution and expression of a DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Aquaculture 2006, 261, 1128–1134. [Google Scholar] [CrossRef]
- Tian, J.-Y.; Sun, X.-Q.; Chen, X.-G. Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder. Fish Shellfish Immunol. 2008, 24, 592–599. [Google Scholar] [CrossRef]
Genus | Viral Pathogen | Abbrev | Size (bp) | No ORF | ORF Size (aa) | G + C% Content | GenBank Acc No. |
---|---|---|---|---|---|---|---|
Lymphocystivirus | Lymphocystis disease virus-1 | LCDV-1 | 102,653 | 195 | 40~1199 | 29 | L63545 |
Lymphocystis disease virus-C | LCDV-C | 186,250 | 240 | 40~1193 | 27 | AY380826 | |
Megalocytivirus | Infectious spleen and kidney necrosis virus | ISKNV | 111,362 | 125 | 40~1208 | 55 | AF371960 |
Rock bream iridovirus | RBIV | 112,080 | 100 | 50~1253 | 53 | AY532606 | |
Red sea bream iridovirus | RSIV | 112,414 | 114 | 40~1168 | 53 | MT798582 | |
Orange spotted grouper iridovirus | OSGIV | 112,636 | 121 | 40~1168 | 54 | AY894343 | |
Turbot reddish body iridovirus | TRBIV | 110,104 | 115 | 40~1168 | 55 | GQ273492 | |
Large yellow croaker iridovirus | LYCIV | 111,760 | 126 | ND | ND | AY779031 | |
Ranavirus | Enzootic hematopoietic necrosis virus | EHNV | 127,011 | 100 | ND | 54 | FJ433873 |
Rana grylio iridovirus | RGV | 105,791 | 106 | ND | 55 | JQ654586 | |
European sheatfish virus | ESV | 127,732 | 133 | ND | 54 | JQ724856 | |
Singapore grouper iridovirus | SGIV | 140,131 | 162 | 40~1268 | 49 | AY521625 | |
Grouper iridovirus | GIV | 139,793 | 120 | 60~1268 | 49 | AY666015 |
Viral Pathogen | Abbrev | Cell Line Name | Abbrev | Reference |
---|---|---|---|---|
Largemouth bass virus | LMBV | Fathead minnow | FHM | [76] |
Bluegill fry Lepomis macrochirus | BF-2 | [77] | ||
Epithelioma papulosum cyprini | EPC | [78] | ||
Channel catfish ovary | CCO | [76] | ||
Chinook Salmon embryo | CHSE-214 | [76] | ||
Largemouth bass fin (Micropterus salmoides) | MsF | [79] | ||
Largemouth bass heart (Micropterus salmoides) | MsH | [80] | ||
Enzootic hematopoietic necrosis virus | EHNV | Fathead minnow | FHM | [81] |
Bluegill fry Lepomis macrochirus | BF-2 | [77] | ||
Chinook Salmon embryo | CHSE-214 | [81] | ||
European catfish virus | ECV | Fathead minnow | FHM | [82] |
Bluegill fry Lepomis macrochirus | BF-2 | [77] | ||
Epithelium papulosum cyprinid | EPC | [82] | ||
Channel catfish ovary | CCO | [23] | ||
Singapore grouper iridovirus | SGIV | Epinephelus akaara grouper kidney | EAGK | [83] |
Epinephelus akaara grouper spleen | EAGS | [83] | ||
Epinephelus akaara grouper swim bladder | EAGSB | [83] | ||
Grouper embryonic cells | GEC | [84] | ||
Grouper head kidney cell | ELHK | [85] | ||
Grouper iridovirus | GIV | Barramundi muscle | BM | [86] |
Barramundi swim bladder | BSB | [84] | ||
Grouper eye, heart and swim bladder | GE | [84] | ||
Grouper fin | GF | [84] | ||
Grouper heart | GH | [84] | ||
Grouper swim bladder | GSB | [84] | ||
Orange-spotted grouper spleen | GS-1 | [87] | ||
Grouper Epinephelus awoara kidney | GK | [88] | ||
Grouper Epinephelus awoara liver | GL | [88] | ||
Infectious spleen and kidney virus | ISKNV | Mandarin fish fry | MFF-1 | [89] |
Chinese perch brain cell line | CPB | [90] | ||
Chinese perch brain cells | CPB | [91] | ||
Epithelioma papulosum cyprini | EPC | [45] | ||
Fathead minnow | FHM | [45] | ||
Epithelioma papulosum cyprini | EPC | [45] | ||
Bluegill fry Lepomis macrochirus | BF-2 | [45] | ||
Orange-spotted grouper spleen | GS-1 | [87] | ||
Red sea bream iridovirus | RSIV | Grunt fin cells | GF | [92] |
Red spotted grouper embryo | KRE-3 | [93] | ||
Bluegill fry Lepomis macrochirus | BF-2 | [77] | ||
Hirame natural embryo cells | HINAE | [94] | ||
Spotted knifejaw (Oplegnathus punctatus) | SKF-9 | [95] | ||
Red sea bream fin tail | CRF-1 | [36] | ||
Rock bream Oplegnathus fasciatus embryo | RoBE-4 | [96] | ||
Splenic cell line from sea bass Lates calcarifer | SISS | [97] | ||
Rock bream iridovirus | RBIV | Grunt fin cells | GF | [98] |
Bluegill fry Lepomis macrochirus | BF-2 | [99] | ||
Turbot reddish body iridovirus | TRBIV | Turbot (Scophthalmus maximus) fin cell line | TF | [100] |
Epithelioma papulosum cyprini | EPC | [45] | ||
Fathead minnow | FHM | [45] | ||
Bluegill fry Lepomis macrochirus | BF-2 | [45] | ||
Turbot (Scophthalmus maximus) kidney cells | TK | [101,102] | ||
Brown-marbled grouper fin cell line | bmGF-1 | [103] | ||
(Cynoglossus semilaevis) gonad cell | CSGC | [104] | ||
Orange spotted grouper iridovirus | OSGIV | Mandarin fish fry | MFF-1 | [105] |
L. crocea embryo | YCE1 | [106] | ||
Bluegill fry Lepomis macrochirus | BF-2 | [107] | ||
Lymphocystis disease virus | LCDV-C | Sparus aurata fibroblast | SAF-1 | [108] |
Epithelioma papulosum cyprini | EPC | [109] | ||
Bluegill fry Lepomis macrochirus | BF-2 | [109] | ||
Chinook Salmon embryo | CHSE-214 | [109] | ||
Turbot (Scophthalmus maximus) kidney | TK | [101,102] | ||
Brown-marbled grouper fin cell line | bmGF-1 | [103] | ||
Cynoglossus semilaevis gonad cell | CSGC | [104] |
Pathogen | Host Species | Vaccine Types | Reference |
---|---|---|---|
ISKNV | Mandarin fish (Siniperca chuatsi) | Inactivated vaccine | [180] |
SWCNTs subunit vaccine (SWCNTs-M-MCP) | [181] | ||
DNA plasmid containing mcp | [91] | ||
Single-walled carbon nanotubes DNA ORF093- | [182] | ||
Formalin-killed cell vaccine | [183] | ||
Early protein ORF086 | [184] | ||
Mannose-modified subunit vaccine | [185] | ||
RSIV | Red seabream (Pagrus major) | MCP-DNA vaccine | [186] |
Formalin-inactivated RSIV vaccine | [186] | ||
Formalin-killed viral vaccine | [178] | ||
Yeast Saccharomyces cerevisiae subunit vaccine | [187] | ||
TRBIV | Turbot (Scophthalmus maximus L.) | Formalin and aluminum hydroxide inactivated | [188] |
Chitosan nanoparticle plasmids encoding DNA (pDNA-CS-NPs) | [189] | ||
Major capsid protein (MCP) DNA vaccine | [190] | ||
Orange-spotted grouper iridovirus (OSGIV) | Giant grouper (Epinephelus lanceolatus) | Subunit oral and microencapsulation vaccine | [191] |
RBIV | Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus) | DNA vaccine encoding myristoylated membrane protein (MMP) | [192] |
DNA vaccine with MCP capsid | [193] | ||
LMBV | Largemouth bass (Micropterus salmoides) | DNA vaccine | [78] |
recombinant baculovirus vector vaccine (BacMCP) | [194] | ||
SGIV | Orange-spotted grouper (Epinephelus coioides) | β-propiolactone (BPL) inactivated virus | [195] |
Formalin inactivated virus | [195] | ||
DNA vaccines | [196] | ||
SGIV ORF19R (SGIV-19R) viral membrane protein | [197] | ||
Grouper iridovirus of Taiwan (TGIV) | Grouper (Epinephelus coioides) | Recombinant MCP Vaccine | [195] |
LCDV | Japanese flounder (Paralichthys olivaceus) | DNA vaccine | [196] |
Oral poly (DL-lactide-co-glycolide) microcapsules | [197] | ||
Alginate microspheres DNA vaccine | [198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, P.; Munang’andu, H.M.; Xu, C.; Xie, J. Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control. Viruses 2023, 15, 1359. https://doi.org/10.3390/v15061359
Qin P, Munang’andu HM, Xu C, Xie J. Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control. Viruses. 2023; 15(6):1359. https://doi.org/10.3390/v15061359
Chicago/Turabian StyleQin, Pan, Hetron Mweemba Munang’andu, Cheng Xu, and Jianjun Xie. 2023. "Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control" Viruses 15, no. 6: 1359. https://doi.org/10.3390/v15061359
APA StyleQin, P., Munang’andu, H. M., Xu, C., & Xie, J. (2023). Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control. Viruses, 15(6), 1359. https://doi.org/10.3390/v15061359