Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World
Abstract
:1. Introduction
2. Evolution of Paramyxoviruses
2.1. Genomic and Virological Characteristics
2.2. Phylogenetic Classification and Diversity
2.3. Evolutionary Molecular Mechanisms and Implications
3. Ecology and Environmental Factors
3.1. Primary Hosts and Natural Reservoirs
3.2. Ecological Changes and Anthropogenic Factors
4. Transmission Mechanisms and Pathogenesis
4.1. Molecular Mechanisms of Cross-Species Transmission
4.2. Viral Replication and Immune Evasion
5. Epidemiological Risks and Public Health Impact
6. Prevention and Surveillance Strategies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Emerging zoonoses: A one health challenge. eClinicalMedicine 2020, 19, 100300. [CrossRef] [PubMed]
- Wang, S.; Li, W.; Wang, Z.; Yang, W.; Li, E.; Xia, X.; Yan, F.; Chiu, S. Emerging and reemerging infectious diseases: Global trends and new strategies for their prevention and control. Signal Transduct. Target. Ther. 2024, 9, 223. [Google Scholar] [PubMed]
- Jacob, S.T.; Crozier, I.; Fischer, W.A.; Hewlett, A.; Kraft, C.S.; Vega, M.A.d.L.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola virus disease. Nat. Rev. Dis. Prim. 2020, 6, 13. [Google Scholar] [CrossRef]
- COVID-19 Deaths | WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 18 September 2024).
- Friedrich, M. WHO’s blueprint list of priority diseases. JAMA 2018, 319, 1973. [Google Scholar] [CrossRef]
- Prioritizing Diseases for Research and Development in Emergency Contexts. Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 18 September 2024).
- Gazal, S.; Sharma, N.; Gazal, S.; Tikoo, M.; Shikha, D.; Badroo, G.A.; Rashid, M.; Lee, S.J. Nipah and Hendra viruses: Deadly zoonotic paramyxoviruses with the potential to cause the next pandemic. Pathogens 2022, 11, 1419. [Google Scholar] [CrossRef] [PubMed]
- Hendra Virus Infection. Available online: https://www.who.int/health-topics/hendra-virus-disease (accessed on 18 September 2024).
- Factsheet on Nipah Virus Disease. Available online: https://www.ecdc.europa.eu/en/infectious-disease-topics/nipah-virus-disease/factsheet-nipah-virus-disease (accessed on 18 September 2024).
- Zhang, X.A.; Li, H.; Jiang, F.C.; Zhu, F.; Zhang, Y.F.; Chen, J.J.; Tan, C.W.; Anderson, D.E.; Fan, H.; Dong, L.Y.; et al. A zoonotic henipavirus in febrile patients in China. N. Engl. J. Med. 2022, 387, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, O.P.; Priyanka; Fahrni, M.L.; Metwally, A.A.; Saied, A.A. Spillover zoonotic ‘Langya virus’: Is it a matter of concern? Vet. Q. 2022, 42, 172–174. [Google Scholar] [CrossRef]
- Sanchez, S.; Ly, H. Langya henipavirus: Is it a potential cause for public health concern? Virulence 2023, 14, 2154188. [Google Scholar] [CrossRef]
- Philbey, A.W.; Kirkland, P.D.; Ross, A.D.; Davis, R.J.; Gleeson, A.B.; Love, R.J.; Daniels, P.W.; Gould, A.R.; Hyatt, A.D. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 1998, 4, 269. [Google Scholar] [CrossRef]
- Amman, B.R.; Albariño, C.G.; Bird, B.H.; Nyakarahuka, L.; Sealy, T.K.; Balinandi, S.; Schuh, A.J.; Campbell, S.M.; Ströher, U.; Jones, M.E.; et al. A recently discovered pathogenic paramyxovirus, Sosuga virus, is present in Rousettus aegyptiacus fruit bats at multiple locations in Uganda. J. Wildl. Dis. 2015, 51, 774–779. [Google Scholar] [CrossRef]
- Yaiw, K.C.; Crameri, G.; Wang, L.; Chong, H.T.; Chua, K.B.; Tan, C.T.; Goh, K.J.; Shamala, D.; Wong, K.T. Serological evidence of possible human infection with Tioman virus, a newly described paramyxovirus of bat origin. J. Infect. Dis. 2007, 196, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Sinnott, J.T.; Somboonwit, C.; Alrabaa, S.F.; Shapshak, P. Dangerous Risk Group-4 (RG-4) emergent viruses. Bioinformation 2023, 19, 345. [Google Scholar]
- Zhang, Y.; Zhang, J.; Wang, Y.; Tian, F.; Zhang, X.; Wang, G.; Li, S.; Ding, H.; Hu, Z.; Liu, W.; et al. Genetic diversity and expanded host range of J paramyxovirus detected in wild small mammals in China. Viruses 2022, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, A.; Shackelton, L.A.; Holmes, E.C. Family level phylogenies reveal modes of macroevolution in RNA viruses. Proc. Natl. Acad. Sci. USA 2011, 108, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.l.; Chen, J.t.; Hu, B.; Guo, W.w.; Guo, J.j.; Xiong, C.r.; Qin, L.x.; Yu, X.n.; Chen, X.m.; Cai, K.; et al. Discovery and genetic characterization of novel paramyxoviruses from small mammals in Hubei Province, Central China. Microb. Genom. 2024, 10, 001229. [Google Scholar] [CrossRef]
- Haas, G.D.; Lee, B. Paramyxoviruses from bats: Changes in receptor specificity and their role in host adaptation. Curr. Opin. Virol. 2023, 58, 101292. [Google Scholar] [CrossRef]
- Desvars-Larrive, A.; Vogl, A.E.; Puspitarani, G.A.; Yang, L.; Joachim, A.; Käsbohrer, A. A One Health framework for exploring zoonotic interactions demonstrated through a case study. Nat. Commun. 2024, 15, 5650. [Google Scholar] [CrossRef]
- Eby, P.; Peel, A.J.; Hoegh, A.; Madden, W.; Giles, J.R.; Hudson, P.J.; Plowright, R.K. Pathogen spillover driven by rapid changes in bat ecology. Nature 2023, 613, 340–344. [Google Scholar] [CrossRef]
- Thibault, P.A.; Watkinson, R.E.; Moreira-Soto, A.; Drexler, J.F.; Lee, B. Zoonotic potential of emerging paramyxoviruses: Knowns and unknowns. Adv. Virus Res. 2017, 98, 1–55. [Google Scholar]
- Rima, B.; Balkema-Buschmann, A.; Dundon, W.G.; Duprex, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.; Lee, B.; Rota, P.; et al. ICTV virus taxonomy profile: Paramyxoviridae. J. Gen. Virol. 2019, 100, 1593–1594. [Google Scholar] [CrossRef]
- Cox, R.M.; Plemper, R.K. Structure and organization of paramyxovirus particles. Curr. Opin. Virol. 2017, 24, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Siering, O.; Cattaneo, R.; Pfaller, C.K. C proteins: Controllers of orderly paramyxovirus replication and of the innate immune response. Viruses 2022, 14, 137. [Google Scholar] [CrossRef]
- Rao, P.L.; Gandham, R.K.; Subbiah, M. Molecular evolution and genetic variations of V and W proteins derived by RNA editing in Avian Paramyxoviruses. Sci. Rep. 2020, 10, 9532. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Duan, L.; Chen, H.; Hu, R.; Wang, X.; Jia, Y.; Chu, Z.; Liu, H.; Wang, X.; et al. Evasion of host antiviral innate immunity by paramyxovirus accessory proteins. Front. Microbiol. 2022, 12, 790191. [Google Scholar] [CrossRef] [PubMed]
- Jack, P.J.; Anderson, D.E.; Bossart, K.N.; Marsh, G.A.; Yu, M.; Wang, L.F. Expression of novel genes encoded by the paramyxovirus J virus. J. Gen. Virol. 2008, 89, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, M.Z.; Nissly, R.H.; Ahad, A.; Rabbani, M.; Chothe, S.K.; Sebastian, A.; Albert, I.; Jayarao, B.M.; Kuchipudi, S.V. Complete genome sequences of three related avian avulavirus 1 isolates from poultry farmers in Pakistan. Genome Announc. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.D.; Chen, X.; Tian, J.H.; Chen, L.J.; Li, K.; Wang, W.; Eden, J.S.; Shen, J.J.; Liu, L.; et al. The evolutionary history of vertebrate RNA viruses. Nature 2018, 556, 197–202. [Google Scholar] [CrossRef]
- Barr, J.A.; Smith, C.; Marsh, G.A.; Field, H.; Wang, L.F. Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs. J. Gen. Virol. 2012, 93, 2590–2594. [Google Scholar] [CrossRef]
- Amman, B.R.; Koroma, A.H.; Schuh, A.J.; Conteh, I.; Sealy, T.K.; Foday, I.; Johnny, J.; Bakarr, I.A.; Whitmer, S.L.; Wright, E.A.; et al. Sosuga Virus Detected in Egyptian Rousette Bats (Rousettus aegyptiacus) in Sierra Leone. Viruses 2024, 16, 648. [Google Scholar] [CrossRef]
- Quarleri, J.; Galvan, V.; Delpino, M.V. Henipaviruses: An expanding global public health concern? Geroscience 2022, 44, 2447–2459. [Google Scholar] [CrossRef]
- Seki, F.; Takeda, M. Novel and classical morbilliviruses: Current knowledge of three divergent morbillivirus groups. Microbiol. Immunol. 2022, 66, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, Y.; Li, C.; Lu, G.; Jin, R.; Xu, B.; Shang, Y.; Ai, J.; Wang, R.; Duan, Y.; et al. Genetic characteristics of human parainfluenza viruses 1–4 associated with acute lower respiratory tract infection in Chinese children, during 2015–2021. Microbiol. Spectr. 2024, e03432-23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Sun, J.; Li, X.; Xing, G.; Zhang, Y.; Lai, A.; Baele, G.; Ji, X.; Su, S. Divergent viruses discovered in swine alter the understanding of evolutionary history and genetic diversity of the respirovirus genus and related porcine parainfluenza viruses. Microbiol. Spectr. 2022, 10, e00242-22. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Bobb, K.; Borisevich, V.; Geisbert, J.B.; Agans, K.N.; Cross, R.W.; Prasad, A.N.; Fenton, K.A.; Yu, H.; Fouts, T.R.; et al. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. npj Vaccines 2021, 6, 23. [Google Scholar] [CrossRef]
- Lawrence, P.; Escudero-Pérez, B. Henipavirus immune evasion and pathogenesis mechanisms: Lessons learnt from natural infection and animal models. Viruses 2022, 14, 936. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, L.; Yang, F.; Ren, X.; Jiang, J.; Dong, J.; Sun, L.; Zhu, Y.; Zhou, H.; Jin, Q. Novel henipa-like virus, Mojiang paramyxovirus, in rats, China, 2012. Emerg. Infect. Dis. 2014, 20, 1064. [Google Scholar] [CrossRef]
- Cousins, S. Measles: A global resurgence. Lancet Infect. Dis. 2019, 19, 362–363. [Google Scholar] [CrossRef] [PubMed]
- Mugoša, B.; Ceccarelli, G.; Begić, S.; Vujošević, D.; Zekovic, Z.; Ciccozzi, M.; Vratnica, Z. Measles outbreak, Montenegro January–July 2018: Lessons learned. J. Med. Virol. 2022, 94, 514–520. [Google Scholar] [CrossRef]
- Roberts, L. Is measles next? Science 2015, 348, 958–963. [Google Scholar] [CrossRef]
- Saied, A.A.; Metwally, A.A.; Mohamed, H.M.; Haridy, M.A. The contribution of bovines to human health against viral infections. Environ. Sci. Pollut. Res. 2021, 28, 46999–47023. [Google Scholar]
- Baker, J.C. Human and bovine respiratory syncytial virus: Immunopathologic mechanisms. Vet. Q. 1991, 13, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Düx, A.; Lequime, S.; Patrono, L.V.; Vrancken, B.; Boral, S.; Gogarten, J.F.; Hilbig, A.; Horst, D.; Merkel, K.; Prepoint, B.; et al. Measles virus and rinderpest virus divergence dated to the rise of large cities. Science 2020, 368, 1367. [Google Scholar] [CrossRef]
- Arruda, B.; Shen, H.; Zheng, Y.; Li, G. Novel morbillivirus as putative cause of fetal death and encephalitis among swine. Emerg. Infect. Dis. 2021, 27, 1858. [Google Scholar] [CrossRef]
- Charoenkul, K.; Nasamran, C.; Janetanakit, T.; Chaiyawong, S.; Bunpapong, N.; Boonyapisitsopa, S.; Tangwangvivat, R.; Amonsin, A. Molecular detection and whole genome characterization of Canine Parainfluenza type 5 in Thailand. Sci. Rep. 2021, 11, 3866. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Peng, J.; Zhai, J.; Xiao, K.; Zhang, X.; Li, X.; Chen, X.; Chen, Z.J.; Holmes, E.C.; Irwin, D.M.; et al. Pathogenicity and transmissibility of a novel respirovirus isolated from a Malayan pangolin. J. Gen. Virol. 2021, 102, 001586. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.Z.; Que, T.C.; Xia, L.Y.; Cui, X.M.; Zhang, Y.W.; Jiang, J.F.; Wang, Q.H.; Wang, Q.; He, M.H.; Li, L.F.; et al. Natural infection of pangolins with human respiratory syncytial viruses. Curr. Biol. 2022, 32, R307–R308. [Google Scholar] [CrossRef]
- Que, T.; Li, J.; He, Y.; Chen, P.; Lin, W.; He, M.; Yu, L.; Wu, A.; Tan, L.; Li, Y.; et al. Human parainfluenza 3 and respiratory syncytial viruses detected in pangolins. Emerg. Microbes Infect. 2022, 11, 1657–1663. [Google Scholar] [CrossRef]
- Wilkes, R.P. Canine distemper virus in endangered species: Species jump, clinical variations, and vaccination. Pathogens 2022, 12, 57. [Google Scholar] [CrossRef]
- Zinzula, L.; Mazzariol, S.; Di Guardo, G. Molecular signatures in cetacean morbillivirus and host species proteomes: Unveiling the evolutionary dynamics of an enigmatic pathogen? Microbiol. Immunol. 2022, 66, 52–58. [Google Scholar] [CrossRef]
- Ghawar, W.; Pascalis, H.; Bettaieb, J.; Mélade, J.; Gharbi, A.; Snoussi, M.A.; Laouini, D.; Goodman, S.M.; Ben Salah, A.; Dellagi, K. Insight into the global evolution of Rodentia associated Morbilli-related paramyxoviruses. Sci. Rep. 2017, 7, 1974. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Goodman, S.J. Reassessing conflicting evolutionary histories of the Paramyxoviridae and the origins of respiroviruses with Bayesian multigene phylogenies. Infect. Genet. Evol. 2010, 10, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Galli, A.; Bukh, J. Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV). In Viral Fitness and Evolution: Population Dynamics and Adaptive Mechanisms; Springer: Berlin/Heidelberg, Germany, 2023; pp. 237–264. [Google Scholar]
- Pavia, G.; Quirino, A.; Marascio, N.; Veneziano, C.; Longhini, F.; Bruni, A.; Garofalo, E.; Pantanella, M.; Manno, M.; Gigliotti, S.; et al. Persistence of SARS-CoV-2 infection and viral intra-and inter-host evolution in COVID-19 hospitalized patients. J. Med. Virol. 2024, 96, e29708. [Google Scholar] [CrossRef] [PubMed]
- De Marco, C.; Veneziano, C.; Massacci, A.; Pallocca, M.; Marascio, N.; Quirino, A.; Barreca, G.S.; Giancotti, A.; Gallo, L.; Lamberti, A.G.; et al. Dynamics of viral infection and evolution of SARS-CoV-2 variants in the Calabria area of southern Italy. Front. Microbiol. 2022, 13, 934993. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, X.; Ren, Z.; Hu, B.; Zhao, H.; Yang, K.; Shi, P.; Zhang, Z.; Feng, Q.; Nawenja, C.V.; et al. Substantial viral diversity in bats and rodents from East Africa: Insights into evolution, recombination, and cocirculation. Microbiome 2024, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, F.; Brierley, L.; Robertson, G.; Chase-Topping, M.; Lycett, S.; Woolhouse, M. Temporal Dynamics, Discovery, and Emergence of Human-Transmissible RNA Viruses. Mol. Biol. Evol. 2024, 41, msad272. [Google Scholar] [CrossRef]
- Woolhouse, M.E.; Brierley, L.; McCaffery, C.; Lycett, S. Assessing the epidemic potential of RNA and DNA viruses. Emerg. Infect. Dis. 2016, 22, 2037. [Google Scholar] [CrossRef]
- Roberts, K.E.; Longdon, B. Heterogeneities in infection outcomes across species: Sex and tissue differences in virus susceptibility. Peer Community J. 2023, 3, pcjournal.242. [Google Scholar] [CrossRef]
- Mélade, J.; Wieseke, N.; Ramasindrazana, B.; Flores, O.; Lagadec, E.; Gomard, Y.; Goodman, S.M.; Dellagi, K.; Pascalis, H. An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism. Sci. Rep. 2016, 6, 23752. [Google Scholar] [CrossRef]
- Kreuder Johnson, C.; Hitchens, P.L.; Smiley Evans, T.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015, 5, 14830. [Google Scholar] [CrossRef]
- Geoghegan, J.L.; Holmes, E.C. Predicting virus emergence amid evolutionary noise. Open Biol. 2017, 7, 170189. [Google Scholar] [CrossRef]
- Drexler, J.F.; Corman, V.M.; Müller, M.A.; Maganga, G.D.; Vallo, P.; Binger, T.; Gloza-Rausch, F.; Cottontail, V.M.; Rasche, A.; Yordanov, S.; et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 2012, 3, 796. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.A.; Mélade, J.; Dietrich, M.; Ramasindrazana, B.; Soarimalala, V.; Lagadec, E.; Le Minter, G.; Tortosa, P.; Heraud, J.M.; De Lamballerie, X.; et al. Highly diverse morbillivirus-related paramyxoviruses in wild fauna of the southwestern Indian Ocean Islands: Evidence of exchange between introduced and endemic small mammals. J. Virol. 2014, 88, 8268–8277. [Google Scholar] [CrossRef] [PubMed]
- Schierup, M.H.; Mordhorst, C.H.; Muller, C.P.; Christensen, L.S. Evidence of recombination among early-vaccination era measles virus strains. BMC Evol. Biol. 2005, 5, 52. [Google Scholar] [CrossRef] [PubMed]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef]
- Han, G.Z.; Liu, X.P.; Li, S.S. Cross-species recombination in the haemagglutinin gene of canine distemper virus. Virus Res. 2008, 136, 198–201. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Shaw, M.A.; Goodman, S.J. Pathogen evolution and disease emergence in carnivores. Proc. R. Soc. B Biol. Sci. 2007, 274, 3165–3174. [Google Scholar] [CrossRef]
- Uhl, E.W.; Kelderhouse, C.; Buikstra, J.; Blick, J.P.; Bolon, B.; Hogan, R.J. New world origin of canine distemper: Interdisciplinary insights. Int. J. Paleopathol. 2019, 24, 266–278. [Google Scholar] [CrossRef]
- Romeo, I.; Marascio, N.; Pavia, G.; Talarico, C.; Costa, G.; Alcaro, S.; Artese, A.; Torti, C.; Liberto, M.C.; Focà, A. Structural Modeling of New Polymorphism Clusters of HCV Polymerase Isolated from Direct-Acting Antiviral Naïve Patients: Focus on Dasabuvir and Setrobuvir Binding Affinity. ChemistrySelect 2018, 3, 6009–6017. [Google Scholar] [CrossRef]
- Marascio, N.; Cilburunoglu, M.; Torun, E.G.; Centofanti, F.; Mataj, E.; Equestre, M.; Bruni, R.; Quirino, A.; Matera, G.; Ciccaglione, A.R.; et al. Molecular Characterization and Cluster Analysis of SARS-CoV-2 Viral Isolates in Kahramanmaraş City, Turkey: The Delta VOC Wave within One Month. Viruses 2023, 15, 802. [Google Scholar] [CrossRef]
- Marascio, N.; Pavia, G.; Strazzulla, A.; Dierckx, T.; Cuypers, L.; Vrancken, B.; Barreca, G.S.; Mirante, T.; Malanga, D.; Oliveira, D.M.; et al. Detection of natural resistance-associated substitutions by ion semiconductor technology in HCV1b positive, direct-acting antiviral agents-naïve patients. Int. J. Mol. Sci. 2016, 17, 1416. [Google Scholar] [CrossRef]
- Marascio, N.; Costantino, A.; Taffon, S.; Lo Presti, A.; Equestre, M.; Bruni, R.; Pisani, G.; Barreca, G.S.; Quirino, A.; Trecarichi, E.M.; et al. Phylogenetic and molecular analyses of more prevalent HCV1b subtype in the Calabria Region, Southern Italy. J. Clin. Med. 2021, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Marascio, N.; Rotundo, S.; Quirino, A.; Matera, G.; Liberto, M.C.; Costa, C.; Russo, A.; Trecarichi, E.M.; Torti, C. Similarities, differences, and possible interactions between hepatitis E and hepatitis C viruses: Relevance for research and clinical practice. World J. Gastroenterol. 2022, 28, 1226. [Google Scholar] [CrossRef]
- Pavia, G.; Gioffrè, A.; Pirolo, M.; Visaggio, D.; Clausi, M.T.; Gherardi, M.; Samele, P.; Ciambrone, L.; Di Natale, R.; Spatari, G.; et al. Seroprevalence and phylogenetic characterization of hepatitis E virus in pig farms in Southern Italy. Prev. Vet. Med. 2021, 194, 105448. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Kim, J.Y.V.; Pickering, B.S. Henipavirus zoonosis: Outbreaks, animal hosts and potential new emergence. Front. Microbiol. 2023, 14, 1167085. [Google Scholar] [CrossRef] [PubMed]
- Toshkova, N.; Zhelyzkova, V.; Reyes-Ruiz, A.; Haerens, E.; de Castro Deus, M.; Lacombe, R.V.; Lecerf, M.; Gonzalez, G.; Jouvenet, N.; Planchais, C.; et al. Temperature sensitivity of bat antibodies links metabolic state of bats with antigen-recognition diversity. Nat. Commun. 2024, 15, 5878. [Google Scholar] [CrossRef] [PubMed]
- Yob, J.M.; Field, H.; Rashdi, A.M.; Morrissy, C.; van der Heide, B.; Rota, P.; bin Adzhar, A.; White, J.; Daniels, P.; Jamaluddin, A.; et al. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg. Infect. Dis. 2001, 7, 439. [Google Scholar] [CrossRef]
- Chua, K.B.; Koh, C.L.; Hooi, P.S.; Wee, K.F.; Khong, J.H.; Chua, B.H.; Chan, Y.P.; Lim, M.E.; Lam, S.K. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect. 2002, 4, 145–151. [Google Scholar] [CrossRef]
- Field, H. The Ecology of Hendra Virus and Australian Bat Lyssavirus. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2004. [Google Scholar]
- Albariño, C.G.; Foltzer, M.; Towner, J.S.; Rowe, L.A.; Campbell, S.; Jaramillo, C.M.; Bird, B.H.; Reeder, D.M.; Vodzak, M.E.; Rota, P.; et al. Novel paramyxovirus associated with severe acute febrile disease, South Sudan and Uganda, 2012. Emerg. Infect. Dis. 2014, 20, 211. [Google Scholar] [CrossRef]
- Roeder, P.; Mariner, J.; Kock, R. Rinderpest: The veterinary perspective on eradication. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120139. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of major human infectious diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- Wertheim, J.O.; Kosakovsky Pond, S.L. Purifying selection can obscure the ancient age of viral lineages. Mol. Biol. Evol. 2011, 28, 3355–3365. [Google Scholar] [CrossRef] [PubMed]
- Furuse, Y.; Suzuki, A.; Oshitani, H. Origin of measles virus: Divergence from rinderpest virus between the 11 th and 12 th centuries. Virol. J. 2010, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef]
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate change increases cross-species viral transmission risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef]
- Burton, A.C.; Beirne, C.; Gaynor, K.M.; Sun, C.; Granados, A.; Allen, M.L.; Alston, J.M.; Alvarenga, G.C.; Calderón, F.S.Á.; Amir, Z.; et al. Mammal responses to global changes in human activity vary by trophic group and landscape. Nat. Ecol. Evol. 2024, 8, 924–935. [Google Scholar] [CrossRef]
- Joshi, J.; Shah, Y.; Pandey, K.; Ojha, R.P.; Joshi, C.R.; Bhatt, L.R.; Dumre, S.P.; Acharya, P.R.; Joshi, H.R.; Rimal, S.; et al. Possible high risk of transmission of the Nipah virus in South and South East Asia: A review. Trop. Med. Health 2023, 51, 44. [Google Scholar] [CrossRef] [PubMed]
- Wahed, F.; Kader, S.A.; Nessa, A.; Mahamud, M.M. Nipah virus: An emergent deadly Paramyxovirus infection in Bangladesh. J. Bangladesh Soc. Physiol. 2011, 6, 134–139. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hossain, M.J.; Sultana, S.; Homaira, N.; Khan, S.U.; Rahman, M.; Gurley, E.S.; Rollin, P.E.; Lo, M.K.; Comer, J.A.; et al. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector-Borne Zoonotic Dis. 2012, 12, 65–72. [Google Scholar] [CrossRef]
- Zhang, H.; Chase, J.M.; Liao, J. Habitat amount modulates biodiversity responses to fragmentation. Nat. Ecol. Evol. 2024, 8, 1437–1447. [Google Scholar] [CrossRef]
- Baranowski, K.; Bharti, N. Habitat loss for black flying foxes and implications for Hendra virus. Landsc. Ecol. 2023, 38, 1605–1618. [Google Scholar] [CrossRef]
- Stevenson, P. Links between industrial livestock production, disease including zoonoses and antimicrobial resistance. Anim. Res. One Health 2023, 1, 137–144. [Google Scholar] [CrossRef]
- Looi, L.M.; Chua, K.B. Lessons from the Nipah virus outbreak in Malaysia. Malays. J. Pathol. 2007, 29, 63–67. [Google Scholar] [PubMed]
- Rush, E.R.; Dale, E.; Aguirre, A.A. Illegal wildlife trade and emerging infectious diseases: Pervasive impacts to species, ecosystems and human health. Animals 2021, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
- Neiderud, C.J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Leifels, M.; Khalilur Rahman, O.; Sam, I.C.; Cheng, D.; Chua, F.J.D.; Nainani, D.; Kim, S.Y.; Ng, W.J.; Kwok, W.C.; Sirikanchana, K.; et al. The one health perspective to improve environmental surveillance of zoonotic viruses: Lessons from COVID-19 and outlook beyond. ISME Commun. 2022, 2, 107. [Google Scholar] [CrossRef]
- Ghai, R.R.; Wallace, R.M.; Kile, J.C.; Shoemaker, T.R.; Vieira, A.R.; Negron, M.E.; Shadomy, S.V.; Sinclair, J.R.; Goryoka, G.W.; Salyer, S.J.; et al. A generalizable one health framework for the control of zoonotic diseases. Sci. Rep. 2022, 12, 8588. [Google Scholar] [CrossRef]
- Mahon, M.B.; Sack, A.; Aleuy, O.A.; Barbera, C.; Brown, E.; Buelow, H.; Civitello, D.J.; Cohen, J.M.; de Wit, L.A.; Forstchen, M.; et al. A meta-analysis on global change drivers and the risk of infectious disease. Nature 2024, 629, 830–836. [Google Scholar] [CrossRef]
- Zeltina, A.; Bowden, T.A.; Lee, B. Emerging paramyxoviruses: Receptor tropism and zoonotic potential. PLoS Pathog. 2016, 12, e1005390. [Google Scholar] [CrossRef]
- Navaratnarajah, C.K.; Generous, A.R.; Yousaf, I.; Cattaneo, R. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. J. Biol. Chem. 2020, 295, 2771–2786. [Google Scholar] [CrossRef]
- Kubota, M.; Takeuchi, K.; Watanabe, S.; Ohno, S.; Matsuoka, R.; Kohda, D.; Nakakita, S.i.; Hiramatsu, H.; Suzuki, Y.; Nakayama, T.; et al. Trisaccharide containing α2, 3-linked sialic acid is a receptor for mumps virus. Proc. Natl. Acad. Sci. USA 2016, 113, 11579–11584. [Google Scholar] [CrossRef]
- Negrete, O.A.; Wolf, M.C.; Aguilar, H.C.; Enterlein, S.; Wang, W.; Mühlberger, E.; Su, S.V.; Bertolotti-Ciarlet, A.; Flick, R.; Lee, B. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog. 2006, 2, e7. [Google Scholar] [CrossRef] [PubMed]
- Bowden, T.R.; Bingham, J.; Harper, J.A.; Boyle, D.B. Menangle virus, a pteropid bat paramyxovirus infectious for pigs and humans, exhibits tropism for secondary lymphoid organs and intestinal epithelium in weaned pigs. J. Gen. Virol. 2012, 93, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Seki, F.; Yamamoto, Y.; Nao, N.; Tokiwa, H. Animal morbilliviruses and their cross-species transmission potential. Curr. Opin. Virol. 2020, 41, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Tatsuo, H.; Ono, N.; Tanaka, K.; Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 2000, 406, 893–897. [Google Scholar] [CrossRef]
- Larsen, B.B.; Gryseels, S.; Otto, H.W.; Worobey, M. Evolution and diversity of bat and rodent paramyxoviruses from North America. J. Virol. 2022, 96, e01098-21. [Google Scholar] [CrossRef]
- Negrete, O.A.; Levroney, E.L.; Aguilar, H.C.; Bertolotti-Ciarlet, A.; Nazarian, R.; Tajyar, S.; Lee, B. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005, 436, 401–405. [Google Scholar] [CrossRef]
- Bonaparte, M.I.; Dimitrov, A.S.; Bossart, K.N.; Crameri, G.; Mungall, B.A.; Bishop, K.A.; Choudhry, V.; Dimitrov, D.S.; Wang, L.F.; Eaton, B.T.; et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl. Acad. Sci. USA 2005, 102, 10652–10657. [Google Scholar] [CrossRef]
- Pernet, O.; Wang, Y.E.; Lee, B. Henipavirus receptor usage and tropism. Henipavirus: Ecology, Molecular Virology, and Pathogenesis; Springer: Berlin/Heidelberg, Germany, 2012; pp. 59–78. [Google Scholar]
- Noyce, R.S.; Bondre, D.G.; Ha, M.N.; Lin, L.T.; Sisson, G.; Tsao, M.S.; Richardson, C.D. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 2011, 7, e1002240. [Google Scholar] [CrossRef]
- Mühlebach, M.D.; Mateo, M.; Sinn, P.L.; Prüfer, S.; Uhlig, K.M.; Leonard, V.H.; Navaratnarajah, C.K.; Frenzke, M.; Wong, X.X.; Sawatsky, B.; et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011, 480, 530–533. [Google Scholar] [CrossRef]
- Ohishi, K.; Maruyama, T.; Seki, F.; Takeda, M. Marine morbilliviruses: Diversity and interaction with signaling lymphocyte activation molecules. Viruses 2019, 11, 606. [Google Scholar] [CrossRef]
- Cross-Species Transmission of Canine Distemper Virus-an Update—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/28616465 (accessed on 21 September 2024).
- Qiu, W.; Zheng, Y.; Zhang, S.; Fan, Q.; Liu, H.; Zhang, F.; Wang, W.; Liao, G.; Hu, R. Canine distemper outbreak in rhesus monkeys, China. Emerg. Infect. Dis. 2011, 17, 1541. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Yoshikawa, T.; Seki, F.; Fukushi, S.; Tahara, M.; Nagata, N.; Ami, Y.; Mizutani, T.; Kurane, I.; Yamaguchi, R.; et al. Canine distemper virus associated with a lethal outbreak in monkeys can readily adapt to use human receptors. J. Virol. 2013, 87, 7170–7175. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Kelly, J.T.; Graham, S.C.; Birch, J.; Gonçalves-Carneiro, D.; Mitchell, T.; Thompson, R.N.; Lythgoe, K.A.; Logan, N.; Hosie, M.J.; et al. Structure-guided identification of a nonhuman morbillivirus with zoonotic potential. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Bieringer, M.; Han, J.W.; Kendl, S.; Khosravi, M.; Plattet, P.; Schneider-Schaulies, J. Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150. PLoS ONE 2013, 8, e57488. [Google Scholar] [CrossRef]
- de Vries, R.D.; Ludlow, M.; Verburgh, R.J.; van Amerongen, G.; Yüksel, S.; Nguyen, D.T.; McQuaid, S.; Osterhaus, A.D.; Duprex, W.P.; de Swart, R.L. Measles vaccination of nonhuman primates provides partial protection against infection with canine distemper virus. J. Virol. 2014, 88, 4423–4433. [Google Scholar] [CrossRef]
- Wells, H.L.; Loh, E.; Nava, A.; Solorio, M.R.; Lee, M.H.; Lee, J.; Sukor, J.R.; Navarrete-Macias, I.; Liang, E.; Firth, C.; et al. Classification of new morbillivirus and jeilongvirus sequences from bats sampled in Brazil and Malaysia. Arch. Virol. 2022, 167, 1977–1987. [Google Scholar] [CrossRef] [PubMed]
- Ikegame, S.; Carmichael, J.C.; Wells, H.; Furler O’Brien, R.L.; Acklin, J.A.; Chiu, H.P.; Oguntuyo, K.Y.; Cox, R.M.; Patel, A.R.; Kowdle, S.; et al. Metagenomics-enabled reverse-genetics assembly and characterization of myotis bat morbillivirus. Nat. Microbiol. 2023, 8, 1108–1122. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Hashiguchi, T.; Ose, T.; Kubota, M.; Maita, N.; Kamishikiryo, J.; Maenaka, K.; Yanagi, Y. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat. Struct. Mol. Biol. 2011, 18, 135–141. [Google Scholar] [CrossRef]
- Bowden, T.R.; Westenberg, M.; Wang, L.F.; Eaton, B.T.; Boyle, D.B. Molecular characterization of Menangle virus, a novel paramyxovirus which infects pigs, fruit bats, and humans. Virology 2001, 283, 358–373. [Google Scholar] [CrossRef]
- Stelfox, A.J.; Bowden, T.A. A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus. Proc. Natl. Acad. Sci. USA 2019, 116, 21514–21520. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.I.; Tachedjian, M.; Clayton, B.A.; Layton, R.; Bergfeld, J.; Wang, L.F.; Smith, I.; Marsh, G.A. Characterization of Teviot virus, an Australian bat-borne paramyxovirus. J. Gen. Virol. 2021, 100, 403. [Google Scholar] [CrossRef] [PubMed]
- Langedijk, J.; Daus, F.J.; Van Oirschot, J. Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J. Virol. 1997, 71, 6155–6167. [Google Scholar] [CrossRef]
- Kirejczyk, S.G.; Amman, B.R.; Schuh, A.J.; Sealy, T.K.; Albariño, C.G.; Zhang, J.; Brown, C.C.; Towner, J.S. Histopathologic and immunohistochemical evaluation of induced lesions, tissue tropism and host responses following experimental infection of Egyptian rousette bats (Rousettus aegyptiacus) with the zoonotic paramyxovirus, Sosuga virus. Viruses 2022, 14, 1278. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Schuh, A.J.; Sealy, T.K.; Spengler, J.R.; Welch, S.R.; Kirejczyk, S.G.; Albariño, C.G.; Nichol, S.T.; Towner, J.S. Experimental infection of Egyptian rousette bats (Rousettus aegyptiacus) with Sosuga virus demonstrates potential transmission routes for a bat-borne human pathogenic paramyxovirus. PLoS Neglected Trop. Dis. 2020, 14, e0008092. [Google Scholar] [CrossRef]
- Suzuki, T.; Portner, A.; Scroggs, R.A.; Uchikawa, M.; Koyama, N.; Matsuo, K.; Suzuki, Y.; Takimoto, T. Receptor specificities of human respiroviruses. J. Virol. 2001, 75, 4604–4613. [Google Scholar] [CrossRef]
- Azarm, K.D.; Lee, B. Differential features of fusion activation within the Paramyxoviridae. Viruses 2020, 12, 161. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Y.; Cheng, Q.; Zhong, Y.; Qin, Y.; Chen, M. Inclusion body fusion of human parainfluenza virus type 3 regulated by acetylated α-tubulin enhances viral replication. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef]
- Ma, D.; George, C.X.; Nomburg, J.L.; Pfaller, C.K.; Cattaneo, R.; Samuel, C.E. Upon infection, cellular WD repeat-containing protein 5 (WDR5) localizes to cytoplasmic inclusion bodies and enhances measles virus replication. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- El Najjar, F.; Schmitt, A.P.; Dutch, R.E. Paramyxovirus glycoprotein incorporation, assembly and budding: A three way dance for infectious particle production. Viruses 2014, 6, 3019–3054. [Google Scholar] [CrossRef]
- Escudero-Pérez, B.; Lalande, A.; Mathieu, C.; Lawrence, P. Host–Pathogen interactions influencing zoonotic spillover potential and transmission in humans. Viruses 2023, 15, 599. [Google Scholar] [CrossRef]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Gortazar, C.; Reperant, L.A.; Kuiken, T.; de la Fuente, J.; Boadella, M.; Martínez-Lopez, B.; Ruiz-Fons, F.; Estrada-Peña, A.; Drosten, C.; Medley, G.; et al. Crossing the interspecies barrier: Opening the door to zoonotic pathogens. PLoS Pathog. 2014, 10, e1004129. [Google Scholar] [CrossRef] [PubMed]
- Farrukee, R.; Ait-Goughoulte, M.; Saunders, P.M.; Londrigan, S.L.; Reading, P.C. Host cell restriction factors of paramyxoviruses and pneumoviruses. Viruses 2020, 12, 1381. [Google Scholar] [CrossRef]
- Pelissier, R.; Iampietro, M.; Horvat, B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000Research 2019, 8, 1763. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.L. Henipaviruses employ a multifaceted approach to evade the antiviral interferon response. Viruses 2009, 1, 1190–1203. [Google Scholar] [CrossRef]
- Dups, J.; Middleton, D.; Long, F.; Arkinstall, R.; Marsh, G.A.; Wang, L.F. Subclinical infection without encephalitis in mice following intranasal exposure to Nipah virus-Malaysia and Nipah virus-Bangladesh. Virol. J. 2014, 11, 1–5. [Google Scholar] [CrossRef]
- Wong, K.T.; Grosjean, I.; Brisson, C.; Blanquier, B.; Fevre-Montange, M.; Bernard, A.; Loth, P.; Georges-Courbot, M.C.; Chevallier, M.; Akaoka, H.; et al. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol. 2003, 163, 2127–2137. [Google Scholar] [CrossRef]
- Dhondt, K.P.; Mathieu, C.; Chalons, M.; Reynaud, J.M.; Vallve, A.; Raoul, H.; Horvat, B. Type I interferon signaling protects mice from lethal henipavirus infection. J. Infect. Dis. 2013, 207, 142–151. [Google Scholar] [CrossRef]
- Schountz, T.; Campbell, C.; Wagner, K.; Rovnak, J.; Martellaro, C.; DeBuysscher, B.L.; Feldmann, H.; Prescott, J. Differential innate immune responses elicited by Nipah virus and Cedar virus correlate with disparate in vivo pathogenesis in hamsters. Viruses 2019, 11, 291. [Google Scholar] [CrossRef]
- Marsh, G.A.; De Jong, C.; Barr, J.A.; Tachedjian, M.; Smith, C.; Middleton, D.; Yu, M.; Todd, S.; Foord, A.J.; Haring, V.; et al. Cedar virus: A novel Henipavirus isolated from Australian bats. PLoS Pathog. 2012, 8, e1002836. [Google Scholar] [CrossRef] [PubMed]
- Laing, E.D.; Navaratnarajah, C.K.; Cheliout Da Silva, S.; Petzing, S.R.; Xu, Y.; Sterling, S.L.; Marsh, G.A.; Wang, L.F.; Amaya, M.; Nikolov, D.B.; et al. Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus. Proc. Natl. Acad. Sci. USA 2019, 116, 20707–20715. [Google Scholar] [CrossRef]
- Pryce, R.; Azarm, K.; Rissanen, I.; Harlos, K.; Bowden, T.A.; Lee, B. A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus. Life Sci. Alliance 2020, 3, e201900578. [Google Scholar] [CrossRef] [PubMed]
- Yeo, Y.Y.; Buchholz, D.W.; Gamble, A.; Jager, M.; Aguilar, H.C. Headless henipaviral receptor binding glycoproteins reveal fusion modulation by the head/stalk interface and post-receptor binding contributions of the head domain. J. Virol. 2021, 95, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Karron, R.A.; Wright, P.F.; Hall, S.L.; Makhene, M.; Thompson, J.; Burns, B.A.; Tollefson, S.; Steinhoff, M.C.; Wilson, M.H.; Harris, D.O.; et al. A live attenuated bovine parainfluenza virus type 3 vaccine is safe, infectious, immunogenic, and phenotypically stable in infants and children. J. Infect. Dis. 1995, 171, 1107–1114. [Google Scholar] [CrossRef]
- Khan, S.; Akbar, S.M.F.; Al Mahtab, M.; Uddin, M.N.; Rashid, M.M.; Yahiro, T.; Hashimoto, T.; Kimitsuki, K.; Nishizono, A. Twenty-Five Years of Nipah Outbreaks in Southeast Asia: A Persistence Threat to Global Health. IJID Reg. 2024, 13, 100434. [Google Scholar] [CrossRef]
- Duprex, W.P.; Dutch, R.E. Paramyxoviruses: Pathogenesis, vaccines, antivirals, and prototypes for pandemic preparedness. J. Infect. Dis. 2023, 228, S390–S397. [Google Scholar] [CrossRef]
- Langedijk, J.P.; Cox, F.; Johnson, N.V.; van Overveld, D.; Le, L.; van den Hoogen, W.; Voorzaat, R.; Zahn, R.; van der Fits, L.; Juraszek, J.; et al. Universal paramyxovirus vaccine design by stabilizing regions involved in structural transformation of the fusion protein. Nat. Commun. 2024, 15, 4629. [Google Scholar] [CrossRef]
- Bhatia, R. Need for integrated surveillance at human-animal interface for rapid detection & response to emerging coronavirus infections using One Health approach. Indian J. Med. Res. 2020, 151, 132–135. [Google Scholar]
- Baker, K.; Todd, S.; Marsh, G.; Fernandez-Loras, A.; Suu-Ire, R.; Wood, J.; Wang, L.; Murcia, P.; Cunningham, A. Co-circulation of diverse paramyxoviruses in an urban African fruit bat population. J. Gen. Virol. 2012, 93, 850–856. [Google Scholar] [CrossRef]
- Beaty, S.; Park, A.; Won, S.; Hong, P.; Lyons, M.; Vigant, F.; Freiberg, A.; tenOever, B.; Duprex, W.; Lee, B. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. mSphere 2017, 2, 00376-16. [Google Scholar] [CrossRef] [PubMed]
- van Boheemen, S.; Bestebroer, T.; Verhagen, J.; Osterhaus, A.; Pas, S.; Herfst, S.; Fouchier, R. A family-wide RT-PCR assay for detection of paramyxoviruses and application to a large-scale surveillance study. PLoS ONE 2012, 7, e34961. [Google Scholar] [CrossRef] [PubMed]
- Manyweathers, J.; Field, H.; Longnecker, N.; Agho, K.; Smith, C.; Taylor, M. “Why won’t they just vaccinate?” Horse owner risk perception and uptake of the Hendra virus vaccine. BMC Vet Res. 2017, 13, 103. [Google Scholar] [CrossRef] [PubMed]
Subfamily | Genus | Species | Primary Host | Spillover Hosts | Distribution | Mortality Rate | Evolution Rate | Epidemic Potential | Refs. |
---|---|---|---|---|---|---|---|---|---|
Orthoparamyxovirinae | Henipavirus | Nipah virus (NiV) | Pteropus fruit bats | Pigs, humans | South and Southeast Asia | 40–75% | High | Moderate to high (human-to-human transmission) | [7,8,9] |
Hendra virus (HeV) | Pteropus fruit bats | Horses, humans | Australia | 57% in humans, 80% in horses | High | Low to moderate (localized outbreaks) | [7,8,9] | ||
Langya virus (LayV) | Shrews | Humans | China | No deaths reported | Moderate | Low to moderate (few cases) | [10,11,19] | ||
Respirovirus | Human parainfluenza virus (HPIV 1-4) | Humans, zoonotic potential unclear | None | Global | Low mortality, mild in most cases | Low | Low (seasonal epidemics) | [36,48,49,50,51] | |
Morbillivirus | Measles virus (MV) | Humans (potential zoonotic origin) | None | Endemic globally, vaccine-preventable | <1% (with care) | Low, established human pathogen | Low (controlled with vaccination) | [41,42,47] | |
Canine distemper virus (CDV) | Domestic and wild canines | Humans (?) | Global in animal hosts | High in animals, rare in humans | Moderate | Low (rare zoonotic spillover) | [52,53] | ||
Cetacean morbillivirus (CeMV) | Cetaceans | Unknown (potential zoonosis) | Global in cetacean populations | Unknown in humans | Moderate | Low (potential zoonotic risk) | [53] | ||
Rubulavirinae | Pararubulavirus | Menangle virus (MenV) | Fruit bats | Pigs, humans | Australia | Unknown in humans | Moderate | Low (rare zoonotic spillover) | [32,32] |
Sosuga virus (SOSV) | Rousettus aegyptiacus bats | Humans | Central and East Africa | Moderate illness, severity unknown | Moderate | Low (sporadic cases) | [14,33] | ||
Avulavirinae | Orthoavulavirus | Newcastle disease virus (NDV) | Wild birds, poultry | Humans | Global in birds, poultry exposure | Low, mild, self-limiting infections in humans | Moderate | Low (rare zoonotic cases) | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branda, F.; Pavia, G.; Ciccozzi, A.; Quirino, A.; Marascio, N.; Matera, G.; Romano, C.; Locci, C.; Azzena, I.; Pascale, N.; et al. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses 2024, 16, 1688. https://doi.org/10.3390/v16111688
Branda F, Pavia G, Ciccozzi A, Quirino A, Marascio N, Matera G, Romano C, Locci C, Azzena I, Pascale N, et al. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses. 2024; 16(11):1688. https://doi.org/10.3390/v16111688
Chicago/Turabian StyleBranda, Francesco, Grazia Pavia, Alessandra Ciccozzi, Angela Quirino, Nadia Marascio, Giovanni Matera, Chiara Romano, Chiara Locci, Ilenia Azzena, Noemi Pascale, and et al. 2024. "Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World" Viruses 16, no. 11: 1688. https://doi.org/10.3390/v16111688
APA StyleBranda, F., Pavia, G., Ciccozzi, A., Quirino, A., Marascio, N., Matera, G., Romano, C., Locci, C., Azzena, I., Pascale, N., Sanna, D., Casu, M., Ceccarelli, G., Ciccozzi, M., & Scarpa, F. (2024). Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses, 16(11), 1688. https://doi.org/10.3390/v16111688