Predicting Immunogenic Epitopes Variation of Envelope 2 Gene Among Chikungunya Virus Clonal Lineages by an In Silico Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phylogenetic Analysis of CHIKV E2 Genes from Global Databases and Production of Representative E2 Recombinant Proteins
2.2. Predicting E2 Structure and Immunogenic Epitopes Using In Silico Approach
2.3. Predicting Structure Docking
3. Results
3.1. Phylogenetic Analysis of CHIKV E2 and Immunogenicity Screening of E2 Recombinant Protein
3.2. Prediction of CHKV E2 Structure and B-Cell Epitope Using an In Silico Approach
3.3. Prediction of T-Cell Epitope in CHKV E2 and Molecular Docking
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jupp, P.G.; McIntosh, B.M. Chikungunya Virus Disease. In The Arbovirus: Epidemiology and Ecology, 1st ed.; Monath, T.P., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 137–157. [Google Scholar]
- Kariuki Njenga, M.; Nderitu, L.; Ledermann, J.P.; Ndirangu, A.; Logue, C.H.; Kelly, C.H.; Sang, R.; Sergon, K.; Breiman, R.; Powers, A.M. Tracking epidemic Chikungunya virus into the Indian Ocean from East Africa. J. Gen. Virol. 2008, 89, 2754–2760. [Google Scholar] [CrossRef] [PubMed]
- Ligon, B.L. Reemergence of an unusual disease: The chikungunya epidemic. Semin. Pediatr. Infect. Dis. 2006, 17, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Borgherini, G.; Poubeau, P.; Jossaume, A.; Gouix, A.; Cotte, L.; Michault, A.; Arvin-Berod, C.; Paganin, F. Persistent arthralgia associated with chikungunya virus: A study of 88 adult patients on reunion island. Clin. Infect. Dis. 2008, 47, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Kam, Y.W.; Ong, E.K.; Renia, L.; Tong, J.C.; Ng, L.F. Immuno-biology of Chikungunya and implications for disease intervention. Microbes Infect. 2009, 11, 1186–1196. [Google Scholar] [CrossRef]
- Powers, A.M.; Brault, A.C.; Tesh, R.B.; Weaver, S.C. Reemergence of Chikungunya and O’nyong-nyong viruses: Evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol. 2000, 81, 471–479. [Google Scholar] [CrossRef]
- Dash, P.K.; Parida, M.M.; Santhosh, S.R.; Verma, S.K.; Tripathi, N.K.; Ambuj, S.; Saxena, P.; Gupta, N.; Chaudhary, M.; Babu, J.P.; et al. East Central South African genotype as the causative agent in reemergence of Chikungunya outbreak in India. Vector Borne Zoonotic Dis. 2007, 7, 519–527. [Google Scholar] [CrossRef]
- Arankalle, V.A.; Shrivastava, S.; Cherian, S.; Gunjikar, R.S.; Walimbe, A.M.; Jadhav, S.M.; Sudeep, A.B.; Mishra, A.C. Genetic divergence of Chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J. Gen. Virol. 2007, 88, 1967–1976. [Google Scholar] [CrossRef]
- Volk, S.M.; Chen, R.; Tsetsarkin, K.A.; Adams, A.P.; Garcia, T.I.; Sall, A.A.; Nasar, F.; Schuh, A.J.; Holmes, E.C.; Higgs, S.; et al. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol. 2010, 84, 6497–6504. [Google Scholar] [CrossRef]
- Charrel, R.N.; de Lamballerie, X.; Raoult, D. Chikungunya outbreaks: The globalization of vectorborne diseases. N. Engl. J. Med. 2007, 356, 769–771. [Google Scholar] [CrossRef]
- Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef]
- Kam, Y.W.; Lee, W.W.; Simarmata, D.; Harjanto, S.; Teng, T.S.; Tolou, H.; Chow, A.; Lin, R.T.; Leo, Y.S.; Rénia, L.; et al. Longitudinal analysis of the human antibody response to Chikungunya virus infection: Implications for serodiagnosis and vaccine development. J. Virol. 2012, 86, 13005–13015. [Google Scholar] [CrossRef]
- Kumar, J.; Khan, M.; Gupta, G.; Bhoopati, M.; Lakshmana Rao, P.V.; Parida, M. Production, characterization, and application of monoclonal antibodies specific to recombinant (E2) structural protein in antigencapture ELISA for clinical diagnosis of Chikungunya virus. Viral Immunol. 2012, 25, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Dhanwani, R.; Rao, P.V.; Parida, M. Subunit vaccine formulations based on recombinant envelope proteins of Chikungunya virus elicit balanced Th1/Th2 response and virus-neutralizing antibodies in mice. Virus Res. 2012, 167, 236–246. [Google Scholar] [CrossRef]
- Roques, P.; Ljungberg, K.; Kümmerer, B.M.; Gosse, L.; Dereuddre-Bosquet, N.; Tchitchek, N.; Hallengärd, D.; García-Arriaza, J.; Meinke, A.; Esteban, M.; et al. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight. 2017, 2, e83527. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Schlager, B.; Straessle, A.; Hafen, E. Use of anionic denaturing detergents to purify insoluble proteins after overexpression. BMC Biotechnol. 2012, 12, 95. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef]
- Voss, J.; Vaney, M.C.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.; Thompson, A.; Bricogne, G.; Rey, F.A. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 2010, 468, 709–712. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, J.; Sidney, J.; Chung, J.; Brander, C.; Peters, B.; Sette, A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 2011, 63, 325–335. [Google Scholar] [CrossRef]
- Weiskopf, D.; Angelo, M.A.; de Azeredo, E.L.; Sidney, J.; Greenbaum, J.A.; Fernando, A.N.; Broadwater, A.; Kolla, R.V.; De Silva, A.D.; de Silva, A.M.; et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl. Acad. Sci. USA 2013, 110, E2046–E2053. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef]
- Haste Andersen, P.; Nielsen, M.; Lund, O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006, 15, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A Protein-Peptide Docking Tool Based on Interaction Similarity and Energy Optimization. Nucleic Acids Res. 2015, 43, W431–W435. [Google Scholar] [CrossRef]
- Kurcinski, M.; Badaczewska-Dawid, A.; Kolinski, M.; Kolinski, A.; Kmiecik, S. Flexible docking of peptides to proteins using CABS-dock. Protein Sci. 2020, 29, 211–222. [Google Scholar] [CrossRef]
- Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Velankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021, 49, W431–W437. [Google Scholar] [CrossRef]
- Kam, Y.W.; Lum, F.M.; Teo, T.H.; Lee, W.W.; Simarmata, D.; Harjanto, S.; Chua, C.L.; Chan, Y.F.; Wee, J.K.; Chow, A.; et al. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol. Med. 2012, 4, 330–343. [Google Scholar] [CrossRef]
- Kam, Y.W.; Simarmata, D.; Chow, A.; Her, Z.; Teng, T.S.; Ong, E.K.; Rénia, L.; Leo, Y.S.; Ng, L.F. Early appearance of neutralizing IgG3-antibodies is associated with Chikungunya virus clearance and long-term clinical protection. J. Infect. Dis. 2012, 205, 1147–1154. [Google Scholar] [CrossRef]
- Auerswald, H.; Boussioux, C.; In, S.; Mao, S.; Ong, S.; Huy, R.; Leang, R.; Chan, M.; Duong, V.; Ly, S.; et al. Broad and long-lasting immune protection against various Chikungunya genotypes demonstrated by participants in a cross-sectional study in a Cambodian rural community. Emerg. Microbes Infect. 2018, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Langsjoen, R.M.; Haller, S.L.; Roy, C.J.; Vinet-Oliphant, H.; Bergren, N.A.; Erasmus, J.H.; Livengood, J.A.; Powell, T.D.; Weaver, S.C.; Rossi, S.L. Chikungunya virus strains show lineage-specific variations in virulence and cross-protective ability in murine and nonhuman primate models. mBio 2018, 9, e02449-17. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.L.; Sam, I.C.; Merits, A.; Chan, Y.F. Antigenic variation of East/Central/South African and Asian Chikungunya virus genotypes in neutralization by immune Sera. PLoS Negl. Trop. Dis. 2016, 10, e0004960. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xiang, Y.; Akahata, W.; Holdaway, H.; Pal, P.; Zhang, X.; Diamond, M.S.; Nabel, G.J.; Rossmann, M.G. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLife. 2013, 2, e00435. [Google Scholar] [CrossRef]
- Fox, J.M.; Long, F.; Edeling, M.A.; Lin, H.; van Duijl-Richter, M.K.S.; Fong, R.H.; Kahle, K.M.; Smit, J.M.; Jin, J.; Simmons, G.; et al. Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell 2015, 163, 1095–1107. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Fox, J.M.; Earnest, J.T.; Ng, T.; Kim, A.S.; Fibriansah, G.; Kostyuchenko, V.A.; Shi, J.; Shu, B.; Diamond, M.S.; et al. Structural basis of Chikungunya virus inhibition by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 2020, 117, 27637–27645. [Google Scholar] [CrossRef]
- Raju, S.; Adams, L.J.; Earnest, J.T.; Warfield, K.; Vang, L.; Crowe, J.E., Jr.; Fremont, D.H.; Diamond, M.S. A chikungunya virus-like particle vaccine induces broadly neutralizing and protective antibodies against alphaviruses in humans. Sci. Transl. Med. 2023, 15, eade8273. [Google Scholar] [CrossRef]
- Ozden, S.; Lucas-Hourani, M.; Ceccaldi, P.E.; Basak, A.; Valentine, M.; Benjannet, S.; Hamelin, J.; Jacob, Y.; Mamchaoui, K.; Mouly, V.; et al. Inhibition of Chikungunya virus infection in cultured human muscle cells by furin inhibitors: Impairment of the maturation of the E2 surface glycoprotein. J. Biol. Chem. 2008, 283, 21899–21908. [Google Scholar] [CrossRef]
- Kori, P.; Sajjan, S.S.; Madagi, S.B. In silico prediction of epitopes for Chikungunya viral strains. J. Pharm. Investig. 2015, 45, 579–591. [Google Scholar] [CrossRef]
- Hoque, H.; Islam, R.; Ghosh, S.; Rahaman, M.M.; Jewel, N.A.; Miah, M.A. Implementation of in silico methods to predict common epitopes for vaccine development against Chikungunya and Mayaro viruses. Heliyon 2021, 7, e06396. [Google Scholar] [CrossRef]
- Sánchez-Burgos, G.G.; Montalvo-Marin, N.M.; Díaz-Rosado, E.R.; Pérez-Rueda, E. In Silico Identification of Chikungunya Virus B- and T-Cell Epitopes with High Antigenic Potential for Vaccine Development. Viruses 2021, 13, 2360. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Mourosi, J.T.; Khan, M.F.; Hosen, M.J. Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno-informatics Approach. Curr. Pharm. Biotechnol. 2020, 21, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Bappy, S.S.; Sultana, S.; Adhikari, J.; Mahmud, S.; Khan, M.A.; Kibria, K.M.K.; Rahman, M.M.; Shibly, A.Z. Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: A computational biology approach. J. Biomol. Struct. Dyn. 2021, 39, 1139–1154. [Google Scholar] [CrossRef] [PubMed]
E2 Domain | Clade III: ECSA Strain (no. NP 690589) a | Clade I: IOI Strain (no. EF210157) a | Clade II: Asian Strain (no. ACY66830) a |
---|---|---|---|
A (including β-ribbon region) | STKDNFNVYKA (1–11) b | STKDNFNVYKA (1–11) | SIKDHFNVYKA (1–11) |
CGEGHSC (22–28) | CGEGHSCH (22–29) | CGEGHSC (22–28) | |
TDDSHDWTK (58–66) | IKTDDSHDWTK (56–66) | IKTDDSHDWTK (56–66) | |
TDSRKIS (116–122) | TDSRKIS (116–122) | TDGRKIS (116–122) | |
RPQHGKE (144–150) | RPQHGKE (144–150) | RPQHGRE (144–150) | |
QSNAATAEEIE (158–168) | QSTAATTEEIE (158–168) | QSTAATAEEIE (158–168) | |
VPRNAELGDRKGKIHI (242–257) | VPRNAELGDRKGKIHI (242–257) | VPRNAEFGDRKGKVHI (242–257) | |
B | MPPDTPDRTLLSQQSGNVKITVN (171–193) | MPPDTPDRTLMSQQSGNVKITVN (171–193) | MPPDTPDRTLMSQQSGNVKITVN (171–193) |
QTVRYKCNCGGSNEGLITTDKVINNCKVDQCHAAVTNHKKW (195–235) | QTVRYKCNCGGSNEGLTTTDKVINNCKVDQCHAAVTNHKKW (195–235) | QTVRYKCNCGDSSEGLTTTDKVINNCKVDQCHAAVTNHKKW (195–235) | |
C | PKARNPTVTYGK (269–280) | PKARNPTVTYGK (269–280) | PKARNPTVTYGK (269–280) |
Amino Acid Position a | Conserved Core Peptide b | MHC Class II HLA Allele | Shared IEDB Epitope ID c | Response Measured d |
---|---|---|---|---|
3–20 (E2 domain A) | YKATRPYLA | HLA-DRB1*01:01 HLA-DRB1*07:01 HLA-DRB1*09:01 HLA-DQA1*04:01/DQB1*04:02 | 169782, 2191694, 2252980, 2253056 | IFN-gamma release Biological activation |
232–246 | WQYNSPLVP | HLA-DRB3*02:02 | 2190289 | IFN-gamma release |
280–299 (E2 domain C) | IMLLYPDHP MLLYPDHPT LYPDHPTLL | HLA-DRB1*03:01 HLA-DRB1*15:01 HLA-DRB3*01:01 HLA-DRB4*01:01 | 2192092, 2191085, 2253044, 2190783, 2190320 | IFN-gamma release Biological activation |
Amino Acid Position a | ECSA Strain (no. NP 690589) | Indian Strain (no. EF210157) | Asian Strain (no. ACY66830) | MHC Class II HLA Allele | Shared IEDB Epitope ID b |
---|---|---|---|---|---|
48–56 | IQVSLQIGI | IQVSLQIGI | HLA-A*02:06 | 2189548 | |
69–78 | YMDNHIPADA | HLA-A*02:03 | 2190586 | ||
95–103 | GTMGHFILA | GTMGHFILA | GTMGHFILA | HLA-A*02:06 | 2189667, 2191815 |
180–188 | LLSQQSGNV | LMSQQSGNV | HLA-A*02:03 | 2190966 | |
256–269 | HIPFPLANV FPLANVTCMV | FPLANVTCRV | HIPFPLANV FPLANVTCRV | HLA-A*02:03 | 2252994 2190673 |
285–295 | MLLYPDHPTL LLYPDHPTLL LLYPDHPTL | LLYPDHPTLL LLYPDHPTL | MLLYPDHPTL LLYPDHPTLL LLYPDHPTL | HLA-A*02:01 HLA-A*02:03 HLA-A*02:06 | 2191085 2253044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-Y.; Lee, D.-G.; Park, J.Y.; Kim, W.-B.; Lee, R.; Nho, D.; Oh, E.-J.; Lee, H.; Park, C. Predicting Immunogenic Epitopes Variation of Envelope 2 Gene Among Chikungunya Virus Clonal Lineages by an In Silico Approach. Viruses 2024, 16, 1689. https://doi.org/10.3390/v16111689
Cho S-Y, Lee D-G, Park JY, Kim W-B, Lee R, Nho D, Oh E-J, Lee H, Park C. Predicting Immunogenic Epitopes Variation of Envelope 2 Gene Among Chikungunya Virus Clonal Lineages by an In Silico Approach. Viruses. 2024; 16(11):1689. https://doi.org/10.3390/v16111689
Chicago/Turabian StyleCho, Sung-Yeon, Dong-Gun Lee, Jung Yeon Park, Won-Bok Kim, Raeseok Lee, Dukhee Nho, Eun-Jee Oh, Hyeyoung Lee, and Chulmin Park. 2024. "Predicting Immunogenic Epitopes Variation of Envelope 2 Gene Among Chikungunya Virus Clonal Lineages by an In Silico Approach" Viruses 16, no. 11: 1689. https://doi.org/10.3390/v16111689
APA StyleCho, S.-Y., Lee, D.-G., Park, J. Y., Kim, W.-B., Lee, R., Nho, D., Oh, E.-J., Lee, H., & Park, C. (2024). Predicting Immunogenic Epitopes Variation of Envelope 2 Gene Among Chikungunya Virus Clonal Lineages by an In Silico Approach. Viruses, 16(11), 1689. https://doi.org/10.3390/v16111689