Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents
Abstract
:1. Introduction
2. The Alphavirus Life Cycle
3. Pathogenesis and Epidemiology of Alphaviruses
4. Alphavirus Vector Development
5. Prophylactics and Therapeutics
5.1. Infectious Diseases
5.2. Cancers
5.3. Neurological Disorders
6. Conclusions
Funding
Conflicts of Interest
References
- Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication and evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef] [PubMed]
- Garoff, H.; Wilschut, J.; Liljeström, P.; Wahlberg, J.M.; Bron, R.; Suomalainen, M.; Smyth, J.; Salminen, A.; Barth, B.U.; Zhao, H.; et al. Assembly and entry mechanisms of Semliki Forest virus. Arch. Virol. Suppl. 1994, 9, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, C.R.; Strauss, E.G.; Strauss, J.H. Replication of Sindbis virus. III. An electron microscopic study of virus maturation using the surface replica technique. Virology 1973, 56, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.L.; Powell, N.; Greenwald, G.F.; Willis, L.V.; Johnson, B.J.B.; Smith, J.; Johnston, R.E. Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: Construction of single and multiple mutations in a full-length cDNA clone. Virology 1991, 183, 20–31. [Google Scholar] [CrossRef]
- Garmashova, N.; Gorchakov, R.; Volkova, E.; Paessler, S.; Frolova, E.; Frolov, I. The Old World and New World alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J. Virol. 2007, 81, 2472–2484. [Google Scholar] [CrossRef]
- Liljestrom, P.; Garoff, H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 1991, 9, 1356–1361. [Google Scholar] [CrossRef]
- Xiong, C.; Levis, R.; Shen, P.; Schlesinger, S.; Rice, C.M.; Huang, H.V. Sindbis virus: An efficient, broad host range vector for gene expression in animal cells. Science 1989, 243, 1188–1191. [Google Scholar] [CrossRef]
- Davis, N.L.; Willis, L.V.; Smith, J.F.; Johnston, R.F. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: Analysis of a viable deletion mutant. Virology 1989, 171, 189–204. [Google Scholar] [CrossRef]
- Atkins, G.J.; Sheahan, B.J.; Liljestrom, P. The molecular pathogenesis of Semliki Forest virus: A model virus made useful? J. Gen. Virol. 1999, 80, 2287–2297. [Google Scholar] [CrossRef]
- Brown, D.T.; Condreay, L.D. Replication of alphaviruses in mosquito cells. In The Togaviridae and Flaviviridae; Schlesinger, S., Schlesinger, M.J., Eds.; Plenum Publishing Corp.: New York, NY, USA, 1986; pp. 171–203. [Google Scholar]
- Cheng, R.H.; Kuhn, R.J.; Olson, N.H.; Rossmann, M.G.; Choi, H.K.; Smith, T.J.; Baker, T.S. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 1995, 80, 621–630. [Google Scholar] [CrossRef]
- Birdwell, C.R.; Strauss, J.H. Distribution of the receptor sites for Sindbis virus on the surface of chicken and BHK cells. J. Virol. 1974, 14, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Sefton, B.M. The entry into host cells of Sindbis virus, vesicular stomatitis virus and Sendai virus. Cell 1978, 15, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Froshauer, S.; Kartenbeck, J.; Helenius, A. Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J. Cell Biol. 1988, 107, 2075–2086. [Google Scholar] [CrossRef]
- Doms, R.W.; Lamb, R.A.; Rose, J.K.; Helenius, A. Folding and assembly of viral membrane glycoproteins. Virology 1993, 193, 545–562. [Google Scholar] [CrossRef]
- Zhao, H.; Garoff, H. Role of cell surface spikes in alphavirus budding. J. Virol. 1992, 66, 7089–7095. [Google Scholar] [CrossRef]
- Smith, A.L.; Tignor, G.H. Host cell receptors for two strains of Sindbis virus. Arch. Virol. 1980, 66, 11–26. [Google Scholar] [CrossRef]
- Wang, K.-S.; Kuhn, R.J.; Strauss, E.G.; Ou, S.; Strauss, J.H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 1992, 66, 4992–5001. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, L.; Yang, Y.; Jia, J.; Fu, S.; Feng, Y.; He, Y.; Li, J.P.; Liang, G. Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus. PLoS ONE 2010, 5, e9656. [Google Scholar] [CrossRef]
- Hoekstra, D.; Kok, J.W. Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes. Biosci. Rep. 1989, 9, 273–305. [Google Scholar] [CrossRef]
- Marsh, M.; Bolzau, E.; Helenius, A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 1983, 32, 931–940. [Google Scholar] [CrossRef]
- Kääriäinen, L.; Keränen, S.; Lachmi, B.; Söderlund, H.; Tuomi, K.; Ulmanen, I. Replication of Semliki Forest virus. Med. Biol. 1975, 53, 342–351. [Google Scholar] [PubMed]
- Marsh, M. The entry of enveloped viruses into cells by endocytosis. Biochem. J. 1984, 218, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Stegmann, T.R.; Doms, R.W.; Helenius, A. Protein mediated membrane fusion. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 187–211. [Google Scholar] [CrossRef] [PubMed]
- Helenius, A.; Kielian, M.; Wellsteed, J.; Mellman, I.; Rudnick, G. Effects of monovalent cations on Semliki Forest virus entry into BHK-21 cells. J. Biol. Chem. 1985, 260, 5691–5697. [Google Scholar] [CrossRef]
- Ahola, T.; McInerney, G.; Merits, A. Alphavirus replication in vertebrate cells. Adv. Virus Res. 2021, 111, 111–156. [Google Scholar]
- Pietilä, M.K.; Hellström, K.; Ahola, T. Alphavirus polymerase and RNA replication. Virus Res. 2017, 234, 44–57. [Google Scholar] [CrossRef]
- Garoff, H.; Simons, K.; Dobberstein, B. Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro. J. Mol. Biol. 1978, 124, 587–600. [Google Scholar] [CrossRef]
- de Curtis, I.; Simons, K. Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. Proc. Natl. Acad. Sci. USA 1988, 85, 8052–8056. [Google Scholar] [CrossRef]
- Cadd, T.L.; Skoging, U.; Liljeström, P. Budding of enveloped viruses from the plasma membrane. Bioessays 1997, 19, 993–1000. [Google Scholar] [CrossRef]
- Weaver, S.; Salas, R.; Rico-Hesse, R.; Ludwig, G.V.; Oberste, M.S.; Boshell, J.; Tesh, J.B.; VEE Study Group. Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America. Lancet 1996, 348, 43640. [Google Scholar] [CrossRef]
- Mathiot, C.; Grimaud, G.; Garry, P.; Bouquety, J.C.; Mada, A.; Daguisy, A.M.; Georges, A.J. An outbreak of human Semliki Forest virus infection in Central African Republic. Am. J. Trop. Med. Hyg. 1990, 42, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Niklasson, B. Sindbis and Sindbis-like viruses. In The Arboviruses: Epidemiology and Ecology; Monath, T.P., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1988; pp. 167–176. [Google Scholar]
- Niklasson, B.; Aspmark, A.; LeDuc, J.; Gargan, T.P.; Ennis, W.A.; Tesh, J.B.; Main, A.J., Jr. Association of a Sindbis-like virus with Ockelbo disease in Sweden. Am. J. Trop. Med. Hyg. 1984, 33, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Kelvin, A. Outbreak of Chikungunya in the Republic of Congo and the global picture. J. Infect. Dev. Ctries 2011, 5, 4414. [Google Scholar] [CrossRef]
- Jansen, K. The 20A5-2N7 Chikungunya epidemic in Reunion: Ambiguous etiologies, memories, and meaning-making. Med. Anthropol. 2013, 32, 174–189. [Google Scholar] [CrossRef]
- Rodrigues Faria, N.; Lourenco, J.; Marques de Cerqueira, E.; Maia de Lima, M.; Pybus, O.; Alcantara, L.C.J. Epidemiology of Chikungunya virus in Bahia, Brazil, 2014–2015. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef]
- Levine, B.; Huang, Q.; Isaacs, J.T.; Reed, J.C.; Griffin, D.E.; Hardwick, J.M. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 1993, 361, 739–742. [Google Scholar] [CrossRef]
- Barry, G.; Fragkoudis, R.; Ferguson, M.C.; Lulla, A.; Merits, A.; Kohl, A.; Fazakerley, J.K.J. Semliki Forest virus-induced endoplasmic reticulum stress accelerates apoptotic death of mammalian cells. J. Virol. 2010, 84, 7369–7377. [Google Scholar] [CrossRef]
- Fros, J.J.; Pijlman, G.P. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses. Viruses 2016, 8, 166. [Google Scholar] [CrossRef]
- Frolova, E.; Frolov, I.; Schlesinger, S. Packaging signals in alphaviruses. J. Virol. 1997, 71, 248–258. [Google Scholar] [CrossRef]
- Smerdou, C.; Liljestrom, P. Two-helper RNA system for production of recombinant Semliki Forest virus particles. J. Virol. 1999, 73, 1092–1098. [Google Scholar] [CrossRef]
- Burgess, D.J. RNA stability: Remember your driver. Nat. Rev. Genet. 2012, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Blakney, A.K.; McKay, P.F.; Yus, B.I.; Aldon, Y.; Shattock, R.J. Inside out: Optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019, 26, 363–372. [Google Scholar] [CrossRef] [PubMed]
- DiCiommo, P.D.; Bremner, R. Rapid, high-level protein production using DNA based Semliki Forest virus vectors. J. Biol. Chem. 1998, 273, 18060–18066. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Semliki Forest virus vectors for rapid and high-level expression of integral membrane protein. Biochim. Biophys. Acta 2003, 1610, 90–96. [Google Scholar] [CrossRef]
- Lundstrom, K.; Abenavoli, A.; Malgaroli, A.; Ehrengruber, M.U. Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol. Ther. 2003, 7, 202–209. [Google Scholar] [CrossRef]
- Agapov, E.; Frolov, I.; Lindenbach, B.; Pragai, B.M.; Schlesinger, S.; Tice, C.M. Noncytopathic Sindbis virus RNA vector for heterologous gene expression. Proc. Natl. Acad. Sci. USA 1998, 95, 12989–12994. [Google Scholar] [CrossRef]
- Lundstrom, K.; Rotrnann, D.; Hermann, D. Novel mutant Semliki Forest virus vectors: Gene expression and localization studies in neuronal cells. Histochem. Cell Biol. 2001, 115, 83–91. [Google Scholar] [CrossRef]
- Rodriguez-Madoz, J.; Prieto, J.; Smerdou, C. Semliki Forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol. Ther. 2005, 12, 153–163. [Google Scholar] [CrossRef]
- Beissert, T.; Perkovic, M.; Vogel, A.; Erbar, S.; Walzer, K.C.; Hempel, T.; Brill, S.; Haefner, E.; Becker, R.; Türeci, Ö.; et al. A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity. Mol. Ther. 2020, 28, 119–128. [Google Scholar] [CrossRef]
- Lundstrom, K. Self-Amplifying RNA Virus Vectors for Drug Delivery. Expert Opin. Drug Deliv. 2024, in press. [Google Scholar]
- Wang, M.; Jokinen, J.; Tretyakova, I.; Pushko, P.; Lukashevich, I.S. Alphavirus-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins. Vaccine 2018, 36, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.M.; Jokinen, J.D.; Wang, M.; Pfeffer, T.; Tretaykova, I.; Carrion, R., Jr.; Griffiths, A.; Pushko, P.; Lukashevich, I.S. Bivalent Junin and Machupo experimental vaccine based on alphavirus RNA replicon vector. Vaccine 2020, 38, 2949–2959. [Google Scholar] [CrossRef]
- Tretyakova, I.; Tibbens, A.; Jokinen, J.D.; Johnson, D.M.; Lukashevich, I.S.; Pushko, P. Novel DNA-launched Venezuelan equine encephalitis virus vaccine with rearranged genome. Vaccine 2019, 37, 3317–3325. [Google Scholar] [CrossRef] [PubMed]
- Tretyakova, I.; Plante, K.S.; Rossi, S.L.; Lawrence, W.S.; Peel, J.E.; Gudjohnsen, S.; Wang, E.; Mirchandani, D.; Tibbens, A.; Lamichhane, T.N.; et al. Venezuelan equine encephalitis vaccine with rearranged genome resists reversion and protects non-human primates from viremia after aerosol challenge. Vaccine 2020, 38, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ewing, D.; Subramanian, H.; Block, K.; Rayner, J.; Alterson, K.D.; Sedegah, M.; Hayes, C.; Porter, K.; Raviprakash, K. A heterologous DNA prime-Venezuelan equine encephalitis virus replicon particle boost dengue vaccine regimen affords complete protection from virus challenge in cynomolgus macaques. J. Virol. 2007, 81, 11634–11639. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, J.H.; Khandhar, A.P.; Guderian, J.; Granger, B.; Archer, J.; Archer, M.; Gage, E.; Fuerte-Stone, J.; Larson, E.; Lin, S.; et al. A nanostructured lipid carrier for delivery of a replicating viral RNA provides single, low-dose protection against Zika. Mol. Ther. 2018, 26, 2507–2522. [Google Scholar] [CrossRef]
- Morris-Downes, M.M.; Sheahan, B.J.; Fleeton, M.N.; Liljeström, P.; Reid, H.W.; Atkins, G.J. A recombinant Semliki Forest virus particle vaccine encoding the prME and NS1 proteins of louping ill virus is effective in a sheep challenge model. Vaccine 2001, 19, 3877–3884. [Google Scholar] [CrossRef]
- Brand, D.; Lemiale, F.; Turbica, I.; Buzelay, L.; Brunet, S.; Barin, F. Comparative analysis of humoral immune responses to HIV type 1 envelope glycoproteins in mice immunized with a DNA vaccine, recombinant Semliki Forest virus RNA, or recombinant Semliki Forest virus particles. AIDS Res. Hum. Retrovir. 1998, 14, 1369–1377. [Google Scholar] [CrossRef]
- Ljungberg, K.; Whitmore, A.C.; Fluet, M.E.; Moran, T.P.; Shabman, R.S.; Collier, M.L.; Kraus, A.A.; Thompson, J.M.; Montefiori, D.C.; Beard, C.; et al. Increased immunogenicity of a DNA-launched Venezuelan equine encephalitis virus-based replicon DNA vaccine. Virology 2007, 81, 13412–13423. [Google Scholar] [CrossRef]
- Wecker, M.; Gilbert, P.; Russell, N.; Hural, J.; Allen, M.; Pensiero, M.; Chulay, J.; Chiu, Y.-L.; Abdool Karim, S.S.; Burke, D.S.; et al. Phase I safety and immunogenicity evaluations of an alphavirus replicon HIV-1 subtype C gag vaccine in healthy HIV-1-uninfected adults. Clin. Vaccine Immunol. 2020, 19, 1651–1660. [Google Scholar] [CrossRef]
- Fleeton, M.N.; Chen, M.; Berglund, P.; Rhodes, G.; Parker, S.E.; Murphy, M.; Atkins, G.J.; Liljeström, P. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J. Infect. Dis. 2001, 183, 1395–1398. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K.C.; Wicke, L.; Perkovic, M.; Beisset, T.; Haas, H.; et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 2018, 26, 446–455. [Google Scholar] [CrossRef] [PubMed]
- McKay, P.F.; Hu, K.; Blakney, A.K.; Samnuan, K.; Brown, J.C.; Penn, R.; Zhou, J.; Bouton, C.R.; Rogers, P.; Polra, K.; et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibodies in mice. Nat. Commun. 2020, 11, 3523. [Google Scholar] [CrossRef] [PubMed]
- Pollock, K.M.; Cheeseman, H.M.; Szubert, A.J.; Libri, V.; Boffito, M.; Owen, D.; Bern, H.; O’Hara, J.; McFarlane, L.R.; Lemm, N.M.; et al. Safety and Immunogenicity of a Self-Amplifying RNA Vaccine Against COVID-19: COVAC1, a Phase I, Dose-Ranging Trial. EClinicalMedicine 2022, 44, 101262. [Google Scholar] [CrossRef]
- Szubert, A.J.; Pollock, K.M.; Cheeseman, H.M.; Alagaratnam, J.; Bern, H.; Bird, O.; Boffito, M.; Byrne, R.; Cole, T.; Cosgrove, C.A.; et al. COVAC1 phase 2a expanded safety and immunogenicity study of a self-amplifying RNA vaccine against SARS-CoV-2. EClinicalMedicine 2023, 56, 101823. [Google Scholar] [CrossRef]
- Erasmus, J.H.; Khandhar, A.P.; Walls, A.C.; Hemann, E.A.; O’Connor, M.A.; Murapa, P.; Archer, J.; Leventhal, S.; Fuller, J.; Lewis, T.; et al. Single-dose replicating RNA vaccine induces neutralizing antibodies against SARS-CoV-2 in nonhuman primates. bioRxiv 2020. [Google Scholar] [CrossRef]
- Safety, Tolerability and Immunogenicity of the Candidate GEMCOVAC-19 (COVID-19) Vaccine in Healthy Pediatric Subjects of 5 to Less than 18 Years. Available online: https://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=66638 (accessed on 26 September 2024).
- HDT Bio Receives Emergency Use Approval for COVID-19 Vaccine in India. Available online: https://www.pharmaceutical-technology.com/news/hdt-bio-vaccine-india-approval/ (accessed on 26 September 2024).
- Ho, N.T.; Hughes, S.G.; Ta, V.T.; Phan, L.T.; Do, O.; Nguyen, T.V.; Pham, A.T.V.; Dang, M.T.N.; Nguyen, L.V.; Trinh, Q.V.; et al. Safety, immunogenicity and efficacy of the self-amplifying mRNA ARCT-154 COVID-19 vaccine: Pooled phase 1, 2, 3a and 3b randomized, controlled trials. Nat. Commun. 2024, 15, 4081. [Google Scholar] [CrossRef]
- Oda, Y.; Kumagai, Y.; Kanai, M.; Iwama, Y.; Okura, I.; Minamida, T.; Yagi, Y.; Kurosawa, T.; Greener, B.; Zhang, Y.; et al. Immunogenicity and safety of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: A double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet Infect. Dis. 2024, 24, 351–360. [Google Scholar] [CrossRef]
- Amano, T.; Yu, H.; Amano, M.; Leyder, E.; Badiola, M.; Ray, P.; Kim, J.; Ko, A.C.; Achour, A.; Weng, N.P.; et al. Controllable self-replicating RNA vaccine delivered intradermally elicits predominantly cellular immunity. iScience 2023, 26, 106335. [Google Scholar] [CrossRef]
- Koseki, T.; Teramachi, M.; Koga, M.; Ko, M.S.H.; Amano, T.; Yu, H.; Amano, M.; Leyder, E.; Badiola, M.; Ray, P.; et al. A Phase I/II Clinical Trial of Intradermal, Controllable Self-Replicating Ribonucleic Acid Vaccine EXG-5003 against SARS-CoV-2. Vaccines 2023, 11, 1767. [Google Scholar] [CrossRef]
- Thomas, J.M.; Moen, S.T.; Gnade, B.T.; Vargas-Inchaustegui, D.A.; Foltz, S.M.; Suarez, G.; Heidner, H.W.; König, R.; Chopra, A.K.; Peterson, J.W. Recombinant Sindbis virus vectors designed to express protective antigen of Bacillus anthracis protect animals from anthrax and display synergy with ciprofloxacin. Clin. Vaccine Immunol. 2009, 16, 1696–1699. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; An, H.J.; Yu, Y.Z.; Xu, Q. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors. Immunol. Lett. 2015, 163, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, A.; Saez, D.; Cespedes, S.; Andrews, E.; Onate, A. Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice. Immunobiology 2009, 214, 467–474. [Google Scholar] [CrossRef]
- Tsuji, M.; Bergmann, C.C.; Takita-Sonoda, Y.; Murata, K.; Rodrigues, E.G.; Nussenzweig, R.S.; Zavala, F. Recombinant Sindbis viruses expressing a cytotoxic T-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice. J. Virol. 1998, 72, 6907–6910. [Google Scholar] [CrossRef]
- Murphy, A.M.; Morris-Downes, M.M.; Sheahan, B.J.; Atkins, G.J. Inhibition of human lung carcinoma cell growth by apoptosis induction using Semliki Forest virus recombinant particles. Gene Ther. 2000, 7, 1477–1482. [Google Scholar] [CrossRef]
- Ying, H.; Zaks, T.Z.; Wang, R.-F.; Irvine, K.R.; Kammula, U.S.; Marincola, F.M.; Leitner, W.W.; Restifo, N.P. Cancer therapy using a self-replicating RNA vaccine. Nat. Med. 1999, 5, 823–827. [Google Scholar] [CrossRef]
- Crosby, E.J.; Gwin, W.; Blackwell, K.; Marcom, P.K.; Chang, S.; MAecker, H.T.; Broadwater, G.; Hyslop, T.; Kim, S.; Rogatko, A.; et al. Vaccine-induced memory CD8+ T cells provide clinical benefit in HER2 expressing breast cancer: A mouse to human translational study. Clin. Cancer Res. 2019, 25, 2723–2736. [Google Scholar] [CrossRef]
- Lachman, L.B.; Rao, X.M.; Kremer, R.H.; Ozpolat, B.; Kiriakova, G.; Price, J.E. DNA vaccination against neu reduces breast cancer incidence and metastasis in mice. Cancer Gene Ther. 2001, 8, 259–268. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.-P.; Maughan, M.F.; Lachman, L.B. Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis. Breast Cancer Res. 2005, 7, R145–R155. [Google Scholar] [CrossRef]
- Velders, M.P.; McElhiney, S.; Cassetti, M.C.; Eiben, G.L.; Higgins, T.; Kovacs, G.R.; Elmishad, A.G.; Kast, W.M.; Smith, L.R. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res. 2001, 61, 7861–7867. [Google Scholar]
- Daemen, T.; Riezebos-Brilman, A.; Bungener, L.; Regts, J.; Dontje, B.; Wilschut, J. Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7. Vaccine 2003, 21, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Komdeur, F.L.; Singh, A.; Van de Wall, S.; Meulenberg, J.J.M.; Boerma, A.; Hoogeboom, B.N.; Paijens, S.T.; Ovarce, C.; de Bruyn, M.; Schuuring, E.; et al. First-in-human phase I clinical trial of an SFV-based RNA replicon cancer vaccine against HPV-induced cancers. Mol. Ther. 2021, 29, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Vvax001 Cancer Vaccine in Premalignant Cervical Lesions–Phase II (Vvax). Available online: www.clinicaltrials.gov/study/NCT06015854 (accessed on 4 November 2024).
- Crosby, E.J.; Hobeika, A.C.; Niedzweicki, D.; Rushing, C.; Hsu, D.; Berglund, P.; Smith, J.; Osada, T.; Gwin lii, W.R.; Hartman, Z.C.; et al. Long-term survival of patients with stage III colon cancer treated with VRP-CEA(6D), an alphavirus vector that increases the CD8+ effector memory T cell to Treg ratio. J. Immunother. Cancer 2020, 8, e001662. [Google Scholar] [CrossRef] [PubMed]
- Avogadri, F.; Zappasodi, R.; Yang, A.; Budhu, S.; Malandro, N.; Hirschhorn-Cymerman, D.; Tiwari, S.; Maughan, M.F.; Olmsted, R.; Wolchok, J.D.; et al. Combination of alphavirus replicon particle-based vaccination with immunomodulatory antibodies: Therapeutic activity in the B16 melanoma mouse model and immune correlates. Cancer Immunol. Res. 2014, 2, 448–458. [Google Scholar] [CrossRef]
- Yin, X.; Wang, W.; Zhu, X.; Wang, Y.; Wu, S.; Wang, Z.; Wang, L.; Du, Z.; Gao, J.; Yu, J. Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis. Biochem. Biophys. Res. Comm. 2015, 465, 239–244. [Google Scholar] [CrossRef]
- Durso, R.J.; Andjelic, S.; Gardner, J.P.; Margitich, D.J.; Donovan, G.P.; Arrigale, R.R.; Wang, X.; Maughan, M.F.; Talarico, T.L.; Olmsted, R.A.; et al. A novel alphavirus vaccine encoding prostate-specific membrane antigen elicits potent cellular and humoral immune responses. Clin. Cancer Res. 2007, 13, 3999–4008. [Google Scholar] [CrossRef]
- Slovin, S.F.; Kehoe, M.; Durso, R.; Fernandez, C.; Olson, W.; Gao, J.P.; Israel, R.; Scher, H.I.; Morris, S. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 2013, 31, 943–949. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Tan, J.; Zhang, Y.; Wong, C.-W.; Lin, Z.; Liu, X.; Sander, M.; Yang, X.; Liang, L.; et al. Necroptotic virotherapy of oncolytic alphavirus M1 cooperated with Doxorubicin displays promising therapeutic efficacy in TNBC. Oncogene 2021, 40, 4783–4795. [Google Scholar] [CrossRef]
- Unno, Y.; Shino, Y.; Kondo, F.; Igarashi, N.; Wang, G.; Shimura, R.; Yamaguchi, T.; Asano, T.; Saisho, H.; Sekiya, S.; et al. Oncolytic virotherapy for cervical and ovarian cancer cells by Sindbis virus strain AR339. Clin. Cancer Res. 2005, 11, 4553–4560. [Google Scholar] [CrossRef]
- Jerusalmi, A.; Morris-Downes, M.M.; Sheahan, B.J.; Atkins, G.J. Effect of intranasal administration of Semliki Forest virus recombinant particles expressing reporter and cytokine genes on the progression of experimental autoimmune encephalomyelitis. Mol. Ther. 2003, 8, 886–894. [Google Scholar] [CrossRef]
- Nygårdas, P.T.; Grönberg, S.A.; Heikkilä, J.; Joronen, K.; Sorsa, T.; Hinkkanen, A. Treatment of experimental autoimmune encephalomyelitis with a neurotropic alphavirus vector expressing tissue inhibitor of metalloproteinase-2. Scand. J. Immunol. 2004, 60, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Vähä-Koskela, M.J.; Kuusinen, T.I.; Holmlund-Hampf, J.C.; Furu, P.T.; Heikkilä, J.E.; Hinkkanen, A.E. Semliki Forest virus vectors expressing transforming growth factor beta inhibit experimental autoimmune encephalomyelitis in Balb/c mice. Biochem. Biophys. Res. Commun. 2007, 355, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarian, F.; Shi, Y.; Zhu, P.F.; Grob, D. Immune responses, and autoimmune outcome, during virus infection of the central nervous system. Cell Immunol. 1994, 157, 195–210. [Google Scholar] [CrossRef] [PubMed]
Disease | Vector/Target Gene(s) | Findings |
---|---|---|
Infections | ||
LASV | VEE RP/LASV-GPC(NP) | Protection against LASV in guinea pigs [53] |
JUNV | VEE RP/JUNV-GPC | Protection against JUNV in guinea pigs [54] |
MACV | VEE RP/MACV-GPC | Protection against MACV in guinea pigs [54] |
VEE | VEE DNA/VEE-Capsid | Protection in mice [55] and macaques [56] |
DENV | VEE RP/DENV-prME + pDNA | Complete protection after prime-boost immunization in macaques [57] |
ZIKV | VEE RNA/ZIKV-prME-NCLs | Protection against ZIKV challenges in mice [58] |
LIV | VEE RP/LIV-prME/NS1 | 100% protection against LIV in mice [59] |
HIV/AIDS | SFV RP/HIV-1 Env | Superior Ab response to pDNA and recombinant Env [60] |
HIV/AIDS | VEE DNA/HIV-Env gp160 | 10–100-fold lower doses needed than pDNA [61] |
HIV/AIDS | VEE RP/HIV-Gag | Phase I terminated due to vaccine instability [62] |
IFVA | SFV RNA/IFVA-HA | 90% protection with 10 μg RNA replicon in mice [63] |
IFVA | VEE RNA/IFVA-HA | 100-fold lower doses of RNA replicons [64] |
IFVA | SFV taRNA/IFVA-HA | 50 ng of taRNA sufficient for protection in mice [51] |
COVID-19 | VEE RNA-LNPs/SARS-CoV-2 S | Robust S-specific immune response in mice [65] |
COVID-19 | VEE RNA-LNPs/SARS-CoV-2 S | Good safety, immune responses in phase I [66] |
COVID-19 | VEE RNA-LNPs/SARS-CoV-2 S | Higher seroconversion rates in phase II than in phase I [67] |
COVID-19 | VEE RNA-LION/SARS-CoV-2 S | Th1-biased immunity in macaques [68] |
COVID-19 | VEE RNA-LION/SARS-CoV-2 S | Safe, tolerable, and immune responses in phase II/III [69] |
COVID-19 | VEE RNA-LION/SARS-CoV-2 S | EUA in India [70] |
COVID-19 | VEE RNA-LNPs/SARS-CoV-2 S | 95.3% efficacy against severe COVID-19 in phase I–III [71] |
COVID-19 | VEE RNA-LNPs/SARS-CoV-2 S | EUA in Japan [72] |
COVID-19 | VEE c-srRNA/SARS-CoV-2 S RBD | Temperature-sensitive strong cellular immune response [73] |
COVID-19 | VEE c-srRNA/SARS-CoV-2 S RBD | Superior intradermal prime-boost immunization combined with approved mRNA vaccines in phase I/II [74] |
Anthrax | SIN RP/B. anthracis PA | Immune responses, some protection in mice [75] |
Anthrax | SFV RP/DNA/B. anthracis PA | Protection against B. anthracis A16R strain in mice [76] |
Brucellosis | SFV RP/B. abortus IF3 | Protection against B. abortus challenges in mice [77] |
Malaria | SIN RP/P. yoelii CTL epitope | Protection against malaria in mice [78] |
Cancer | Vector/Target Gene(s) | Findings |
---|---|---|
NSCLC | SFV RP/EGFP | Killing of H358a cells, tumor regression in mice [79] |
Colon | SFV RNA/LacZ | Protection against CT26 tumor challenges in mice [80] |
Breast | VEE RP/HER2 EDM/TM | Protection in mice, clinic benefits in phase I [81]. |
Breast | SIN DNA/HER2/neu | Protection in mice against A2L2 challenges [82] |
Breast | SIN DNA/HER2/neu | Protection with 80% less DNA compared to pDNA [83] |
Cervix | VEE RP/HPV E7 | Protection against tumor challenges in mice [84] |
Cervix | SFV RP/HPV E6-E7 | Complete tumor eradication in mice [85] |
Cervix | SFV RP/HPV E6-E7 | Good safety, immunogenicity in all patients in phase I [86] |
Cervix | SFV RP/HPV E6-E7 | Phase II study in CIN3 patients in progress [87] |
Colorectal | VEE RP/CEA | Safe, prolonged survival in phase I [88] |
Melanoma | VEE RP + CTLA-4/TRP-2 | Complete tumor regression in 50% of mice [89] |
Melanoma | VEE RP + GITR/TRP-2 | Complete tumor regression in 90% of mice [89] |
Melanoma | SFV DNA/VEGFR-2/IL-12 + survivin/β-hGC | Superior tumor growth inhibition and survival after co-administration of SFV DNA replicons in mice [90] |
Prostate | VEE RP/PSMA | Strong immune response in TRAMP mice [91] |
Prostate | VEE RP/PSMA | Weak immunogenicity in CRPC patients in phase I [92] |
Breast | Oncolytic M1 + doxorubicin | Strong TNBC tumor regression in mice [93] |
Cervical | Oncolytic SIN AR339 | Tumor regression in mice [94] |
Disease | Vector/Target Gene(s) | Findings |
---|---|---|
EAE | SFV RP/IL-10 | Therapeutic benefits in EAE mouse model [95] |
EAE | SFV RP/TIMP-2 | Inhibition of EAE development in mice [96] |
EAE | SFV RP/TGF-β1 | Inhibition of EAE in BALB/c mice [97] |
EAE | SFV RP + MBP | Superior immune responses in EAE-susceptible mice [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lundstrom, K. Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents. Viruses 2024, 16, 1762. https://doi.org/10.3390/v16111762
Lundstrom K. Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents. Viruses. 2024; 16(11):1762. https://doi.org/10.3390/v16111762
Chicago/Turabian StyleLundstrom, Kenneth. 2024. "Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents" Viruses 16, no. 11: 1762. https://doi.org/10.3390/v16111762
APA StyleLundstrom, K. (2024). Self-Replicating Alphaviruses: From Pathogens to Therapeutic Agents. Viruses, 16(11), 1762. https://doi.org/10.3390/v16111762