Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression
Abstract
:1. Introduction
2. Conventional Methods for Development of Mouse Models to Study Human Virus Infections
3. Viral-Vectored Receptor Expression as an Alternative Method for Infectious Disease Mouse Model Development
3.1. Adeno-Associated Virus Vectors for In Vivo Gene Delivery
3.2. Adenovirus Vectors for In Vivo Gene Delivery
3.3. Comparison of AAV vs. Adenovirus Vectors for In Vivo Receptor Gene Delivery
4. Examples of Viral-Vectored Expression for Rapid Development of Mouse Models of Human Virus Infections
4.1. MERS-CoV
4.2. SARS-CoV-2
4.2.1. AAV-Vectorized Expression of hACE2
4.2.2. Adenovirus-Vectorized Expression of hACE2
4.3. Common Cold Coronaviruses (CCCoVs)
4.4. Hepatitis B Virus
4.5. Hantavirus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rong, N.; Liu, J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg. Microbes Infect. 2023, 12, 2178242. [Google Scholar] [CrossRef] [PubMed]
- Maginnis, M.S. Virus-Receptor Interactions: The Key to Cellular Invasion. J. Mol. Biol. 2018, 430, 2590–2611. [Google Scholar] [CrossRef]
- Ren, R.B.; Costantini, F.; Gorgacz, E.J.; Lee, J.J.; Racaniello, V.R. Transgenic mice expressing a human poliovirus receptor: A new model for poliomyelitis. Cell 1990, 63, 353–362. [Google Scholar] [CrossRef]
- Bartlett, N.W.; Walton, R.P.; Edwards, M.R.; Aniscenko, J.; Caramori, G.; Zhu, J.; Glanville, N.; Choy, K.J.; Jourdan, P.; Burnet, J.; et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat. Med. 2008, 14, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; von Schaewen, M.; Hrebikova, G.; Heller, B.; Sandmann, L.; Plaas, M.; Ploss, A. Mice Expressing Minimally Humanized CD81 and Occludin Genes Support Hepatitis C Virus Uptake In Vivo. J. Virol. 2017, 91, e01799-16. [Google Scholar] [CrossRef]
- Dorner, M.; Horwitz, J.A.; Donovan, B.M.; Labitt, R.N.; Budell, W.C.; Friling, T.; Vogt, A.; Catanese, M.T.; Satoh, T.; Kawai, T.; et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 2013, 501, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Lindenbach, B.D.; Evans, M.J.; Syder, A.J.; Wölk, B.; Tellinghuisen, T.L.; Liu, C.C.; Maruyama, T.; Hynes, R.O.; Burton, D.R.; McKeating, J.A.; et al. Complete replication of hepatitis C virus in cell culture. Science 2005, 309, 623–626. [Google Scholar] [CrossRef]
- McCray, P.B.; Pewe, L.; Wohlford-Lenane, C.; Hickey, M.; Manzel, L.; Shi, L.; Netland, J.; Jia, H.P.; Halabi, C.; Sigmund, C.D.; et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 2007, 81, 813–821. [Google Scholar] [CrossRef]
- Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Kotani, O.; Sato, H.; Sekimukai, H.; Fukushi, S.; Suzuki, T.; Sato, Y.; Takeda, M.; et al. Acute Respiratory Infection in Human Dipeptidyl Peptidase 4-Transgenic Mice Infected with Middle East Respiratory Syndrome Coronavirus. J. Virol. 2019, 93, e01818-18. [Google Scholar] [CrossRef]
- Lee, S.H.; Dimock, K.; Gray, D.A.; Beauchemin, N.; Holmes, K.V.; Belouchi, M.; Realson, J.; Vidal, S.M. Maneuvering for advantage: The genetics of mouse susceptibility to virus infection. Trends Genet. 2003, 19, 447–457. [Google Scholar] [CrossRef]
- Takaki, H.; Oshiumi, H.; Shingai, M.; Matsumoto, M.; Seya, T. Development of mouse models for analysis of human virus infections. Microbiol. Immunol. 2017, 61, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.A. Pronuclear Microinjection of One-Cell Embryos. Methods Mol. Biol. 2020, 2066, 27–33. [Google Scholar] [CrossRef]
- Gurumurthy, C.B.; Lloyd, K.C.K. Generating mouse models for biomedical research: Technological advances. Dis. Model. Mech. 2019, 12, dmm029462. [Google Scholar] [CrossRef]
- Cockrell, A.S.; Yount, B.L.; Scobey, T.; Jensen, K.; Douglas, M.; Beall, A.; Tang, X.C.; Marasco, W.A.; Heise, M.T.; Baric, R.S. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2016, 2, 16226. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.; Davis, K.; Geisbert, T.; Schmaljohn, C.; Huggins, J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 1998, 178, 651–661. [Google Scholar] [CrossRef]
- Bader, S.M.; Cooney, J.P.; Sheerin, D.; Taiaroa, G.; Harty, L.; Davidson, K.C.; Mackiewicz, L.; Dayton, M.; Wilcox, S.; Whitehead, L.; et al. SARS-CoV-2 mouse adaptation selects virulence mutations that cause TNF-driven age-dependent severe disease with human correlates. Proc. Natl. Acad. Sci. USA 2023, 120, e2301689120. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wong, G.; Audet, J.; Cutts, T.; Niu, Y.; Booth, S.; Kobinger, G.P. Establishment and characterization of a lethal mouse model for the Angola strain of Marburg virus. J. Virol. 2014, 88, 12703–12714. [Google Scholar] [CrossRef]
- Dinnon, K.H.; Leist, S.R.; Schäfer, A.; Edwards, C.E.; Martinez, D.R.; Montgomery, S.A.; West, A.; Yount, B.L.; Hou, Y.J.; Adams, L.E.; et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 2020, 586, 560–566. [Google Scholar] [CrossRef]
- Li, K.; McCray, P.B. Development of a Mouse-Adapted MERS Coronavirus. Methods Mol. Biol. 2020, 2099, 161–171. [Google Scholar] [CrossRef]
- Liu, C.; Xie, W.; Gui, C.; Du, Y. Pronuclear microinjection and oviduct transfer procedures for transgenic mouse production. Methods Mol. Biol. 2013, 1027, 217–232. [Google Scholar] [CrossRef]
- Brockhurst, J.K.; Villano, J.S. The Role of Animal Research in Pandemic Responses. Comp. Med. 2021, 71, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, D.; Méthot, J.; Déry, S.; Brisson, D.; Essiembre, C.; Tremblay, G.; Tremblay, K.; de Wal, J.; Twisk, J.; van den Bulk, N.; et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: An open-label trial. Gene Ther. 2013, 20, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N.; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M.; et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2240–2248. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Pipe, S.W.; Leebeek, F.W.G.; Recht, M.; Key, N.S.; Castaman, G.; Miesbach, W.; Lattimore, S.; Peerlinck, K.; Van der Valk, P.; Coppens, M.; et al. Gene Therapy with Etranacogene Dezaparvovec for Hemophilia B. N. Engl. J. Med. 2023, 388, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Delandistrogene Moxeparvovec: First Approval. Drugs 2023, 83, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Ozelo, M.C.; Mahlangu, J.; Pasi, K.J.; Giermasz, A.; Leavitt, A.D.; Laffan, M.; Symington, E.; Quon, D.V.; Wang, J.D.; Peerlinck, K.; et al. Valoctocogene Roxaparvovec Gene Therapy for Hemophilia A. N. Engl. J. Med. 2022, 386, 1013–1025. [Google Scholar] [CrossRef]
- Tai, C.H.; Lee, N.C.; Chien, Y.H.; Byrne, B.J.; Muramatsu, S.I.; Tseng, S.H.; Hwu, W.L. Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol. Ther. 2022, 30, 509–518. [Google Scholar] [CrossRef]
- Dhillon, S. Fidanacogene Elaparvovec: First Approval. Drugs 2024, 84, 479–486. [Google Scholar] [CrossRef]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Muhuri, M.; Levy, D.I.; Schulz, M.; McCarty, D.; Gao, G. Durability of transgene expression after rAAV gene therapy. Mol. Ther. 2022, 30, 1364–1380. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, D.A.; Shutova, M.V.; Johnston, N.R.; Smith, O.P.; Fedorin, V.V.; Kukushkin, Y.S.; van der Loo, J.C.M.; Johnstone, E.C. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 2021, 20, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Rapti, K.; Grimm, D. Adeno-Associated Viruses (AAV) and Host Immunity—A Race Between the Hare and the Hedgehog. Front. Immunol. 2021, 12, 753467. [Google Scholar] [CrossRef]
- Issa, S.S.; Shaimardanova, A.A.; Solovyeva, V.V.; Rizvanov, A.A. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023, 12, 785. [Google Scholar] [CrossRef]
- Wang, J.H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef]
- Danthinne, X.; Imperiale, M.J. Production of first generation adenovirus vectors: A review. Gene Ther. 2000, 7, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Räty, J.K.; Lesch, H.P.; Wirth, T.; Ylä-Herttuala, S. Improving safety of gene therapy. Curr. Drug Saf. 2008, 3, 46–53. [Google Scholar] [CrossRef]
- Piccolo, P.; Brunetti-Pierri, N. Challenges and Prospects for Helper-Dependent Adenoviral Vector-Mediated Gene Therapy. Biomedicines 2014, 2, 132–148. [Google Scholar] [CrossRef]
- Cots, D.; Bosch, A.; Chillón, M. Helper dependent adenovirus vectors: Progress and future prospects. Curr. Gene Ther. 2013, 13, 370–381. [Google Scholar] [CrossRef]
- Ricobaraza, A.; Gonzalez-Aparicio, M.; Mora-Jimenez, L.; Lumbreras, S.; Hernandez-Alcoceba, R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int. J. Mol. Sci. 2020, 21, 3643. [Google Scholar] [CrossRef] [PubMed]
- Arjomandnejad, M.; Dasgupta, I.; Flotte, T.R.; Keeler, A.M. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023, 37, 311–329. [Google Scholar] [CrossRef] [PubMed]
- Zolotukhin, S.; Vandenberghe, L.H. AAV capsid design: A Goldilocks challenge. Trends Mol. Med. 2022, 28, 183–193. [Google Scholar] [CrossRef]
- Pupo, A.; Fernández, A.; Low, S.H.; François, A.; Suárez-Amarán, L.; Samulski, R.J. AAV vectors: The Rubik’s cube of human gene therapy. Mol. Ther. 2022, 30, 3515–3541. [Google Scholar] [CrossRef]
- Israelow, B.; Song, E.; Mao, T.; Lu, P.; Meir, A.; Liu, F.; Alfajaro, M.M.; Wei, J.; Dong, H.; Homer, R.J.; et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. J. Exp. Med. 2020, 217, e20201241. [Google Scholar] [CrossRef] [PubMed]
- Gary, E.N.; Warner, B.M.; Parzych, E.M.; Griffin, B.D.; Zhu, X.; Tailor, N.; Tursi, N.J.; Chan, M.; Purwar, M.; Vendramelli, R.; et al. A novel mouse AAV6 hACE2 transduction model of wild-type SARS-CoV-2 infection studied using synDNA immunogens. iScience 2021, 24, 102699. [Google Scholar] [CrossRef]
- Sun, C.P.; Jan, J.T.; Wang, I.H.; Ma, H.H.; Ko, H.Y.; Wu, P.Y.; Kuo, T.J.; Liao, H.N.; Lan, Y.H.; Sie, Z.L.; et al. Rapid generation of mouse model for emerging infectious disease with the case of severe COVID-19. PLoS Pathog. 2021, 17, e1009758. [Google Scholar] [CrossRef]
- Zeng, J.; Xie, X.; Feng, X.L.; Xu, L.; Han, J.B.; Yu, D.; Zou, Q.C.; Liu, Q.; Li, X.; Ma, G.; et al. Specific inhibition of the NLRP3 inflammasome suppresses immune overactivation and alleviates COVID-19 like pathology in mice. EBioMedicine 2022, 75, 103803. [Google Scholar] [CrossRef]
- Li, Y.; Cao, L.; Li, G.; Cong, F.; Sun, J.; Luo, Y.; Chen, G.; Wang, P.; Xing, F.; Ji, Y.; et al. Remdesivir Metabolite GS-441524 Effectively Inhibits SARS-CoV-2 Infection in Mouse Models. J. Med. Chem. 2022, 65, 2785–2793. [Google Scholar] [CrossRef]
- Yang, M.S.; Park, M.J.; Lee, J.; Oh, B.; Kang, K.W.; Kim, Y.; Lee, S.M.; Lim, J.O.; Jung, T.Y.; Park, J.H.; et al. Non-invasive administration of AAV to target lung parenchymal cells and develop SARS-CoV-2-susceptible mice. Mol. Ther. 2022, 30, 1994–2004. [Google Scholar] [CrossRef]
- Glazkova, D.V.; Bogoslovskaya, E.V.; Urusov, F.A.; Kartashova, N.P.; Glubokova, E.A.; Gracheva, A.V.; Faizuloev, E.B.; Trunova, G.V.; Khokhlova, V.A.; Bezborodova, O.A.; et al. Generation of SARS-CoV-2 Mouse Model by Transient Expression of the Human ACE2 Gene Mediated by Intranasal Administration of AAV-hACE2. Mol. Biol. (Mosk) 2022, 56, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.Y.; Kuo, H.K.; Peng, W.J.; Huang, J.H.; Kuo, B.S.; Lin, F.; Liu, Y.J.; Liu, Z.; Wu, H.T.; et al. A novel RBD-protein/peptide vaccine elicits broadly neutralizing antibodies and protects mice and macaques against SARS-CoV-2. Emerg. Microbes Infect. 2022, 11, 2724–2734. [Google Scholar] [CrossRef] [PubMed]
- Tailor, N.; Warner, B.M.; Griffin, B.D.; Tierney, K.; Moffat, E.; Frost, K.; Vendramelli, R.; Leung, A.; Willman, M.; Thomas, S.P.; et al. Generation and Characterization of a SARS-CoV-2-Susceptible Mouse Model Using Adeno-Associated Virus (AAV6.2FF)-Mediated Respiratory Delivery of the Human ACE2 Gene. Viruses 2022, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Wang, S.H.; Fang, G.C.; Chou, W.C.; Liao, C.C.; Sun, C.P.; Jan, J.T.; Ma, H.H.; Ko, H.Y.; Ko, Y.A.; et al. Upregulation of PD-L1 by SARS-CoV-2 promotes immune evasion. J. Med. Virol. 2023, 95, e28478. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhuang, Z.; Zheng, J.; Li, K.; Wong, R.L.; Liu, D.; Huang, J.; He, J.; Zhu, A.; Zhao, J.; et al. Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell 2020, 182, 734–743.e5. [Google Scholar] [CrossRef]
- Hassan, A.O.; Case, J.B.; Winkler, E.S.; Thackray, L.B.; Kafai, N.M.; Bailey, A.L.; McCune, B.T.; Fox, J.M.; Chen, R.E.; Alsoussi, W.B.; et al. A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell 2020, 182, 744–753.e4. [Google Scholar] [CrossRef]
- Case, J.B.; Rothlauf, P.W.; Chen, R.E.; Kafai, N.M.; Fox, J.M.; Smith, B.K.; Shrihari, S.; McCune, B.T.; Harvey, I.B.; Keeler, S.P.; et al. Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host Microbe 2020, 28, 465–474.e4. [Google Scholar] [CrossRef]
- Wong, L.R.; Li, K.; Sun, J.; Zhuang, Z.; Zhao, J.; McCray, P.B.; Perlman, S. Sensitization of Non-permissive Laboratory Mice to SARS-CoV-2 with a Replication-Deficient Adenovirus Expressing Human ACE2. STAR Protoc. 2020, 1, 100169. [Google Scholar] [CrossRef]
- Rathnasinghe, R.; Strohmeier, S.; Amanat, F.; Gillespie, V.L.; Krammer, F.; García-Sastre, A.; Coughlan, L.; Schotsaert, M.; Uccellini, M.B. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg. Microbes Infect. 2020, 9, 2433–2445. [Google Scholar] [CrossRef]
- Han, K.; Blair, R.V.; Iwanaga, N.; Liu, F.; Russell-Lodrigue, K.E.; Qin, Z.; Midkiff, C.C.; Golden, N.A.; Doyle-Meyers, L.A.; Kabir, M.E.; et al. Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection. Am. J. Respir. Cell Mol. Biol. 2021, 64, 79–88. [Google Scholar] [CrossRef]
- Ge, J.; Wang, R.; Ju, B.; Zhang, Q.; Sun, J.; Chen, P.; Zhang, S.; Tian, Y.; Shan, S.; Cheng, L.; et al. Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nat. Commun. 2021, 12, 250. [Google Scholar] [CrossRef]
- Zhuang, Z.; Lai, X.; Sun, J.; Chen, Z.; Zhang, Z.; Dai, J.; Liu, D.; Li, Y.; Li, F.; Wang, Y.; et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med. 2021, 218, e20202187. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Zhang, G.; Wang, Y.; Zhang, Z.; Hu, H.; Shen, S.; Wu, J.; Li, B.; Li, X.; Fang, Y.; et al. Structural basis for SARS-CoV-2 neutralizing antibodies with novel binding epitopes. PLoS Biol. 2021, 19, e3001209. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Han, K.; Blair, R.; Kenst, K.; Qin, Z.; Upcin, B.; Wörsdörfer, P.; Midkiff, C.C.; Mudd, J.; Belyaeva, E.; et al. SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro. Front. Cell. Infect. Microbiol. 2021, 11, 701278. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Meyerholz, D.K.; Bartlett, J.A.; McCray, P.B. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio 2021, 12, e0097021. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, S.; Zhang, Z.; Miah, K.M.; Wei, P.; Zhang, L.; Zhu, Y.; Li, Z.; Ye, F.; Gill, D.R.; et al. Intranasal Lentiviral Vector-Mediated Antibody Delivery Confers Reduction of SARS-CoV-2 Infection in Elderly and Immunocompromised Mice. Front. Immunol. 2022, 13, 819058. [Google Scholar] [CrossRef]
- Yang, S.; Cao, L.; Xu, W.; Xu, T.; Zheng, B.; Ji, Y.; Huang, S.; Liu, L.; Du, J.; Peng, H.; et al. Comparison of model-specific histopathology in mouse models of COVID-19. J. Med. Virol. 2022, 94, 3605–3612. [Google Scholar] [CrossRef]
- El-Kafrawy, S.A.; Odle, A.; Abbas, A.T.; Hassan, A.M.; Abdel-Dayem, U.A.; Qureshi, A.K.; Wong, L.R.; Zheng, J.; Meyerholz, D.K.; Perlman, S.; et al. SARS-CoV-2-specific immunoglobulin Y antibodies are protective in infected mice. PLoS Pathog. 2022, 18, e1010782. [Google Scholar] [CrossRef]
- Amanat, F.; Clark, J.; Carreño, J.M.; Strohmeier, S.; Yellin, T.; Meade, P.S.; Bhavsar, D.; Muramatsu, H.; Sun, W.; Coughlan, L.; et al. Immunity to Seasonal Coronavirus Spike Proteins Does Not Protect from SARS-CoV-2 Challenge in a Mouse Model but Has No Detrimental Effect on Protection Mediated by COVID-19 mRNA Vaccination. J. Virol. 2023, 97, e0166422. [Google Scholar] [CrossRef]
- Palmer, D.J.; Ng, P. Methods for the production of helper-dependent adenoviral vectors. Methods Mol. Biol. 2008, 433, 33–53. [Google Scholar] [CrossRef]
- Parks, R.J.; Chen, L.; Anton, M.; Sankar, U.; Rudnicki, M.A.; Graham, F.L. A helper-dependent adenovirus vector system: Removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 1996, 93, 13565–13570. [Google Scholar] [CrossRef] [PubMed]
- Rghei, A.D.; Stevens, B.A.Y.; Thomas, S.P.; Yates, J.G.E.; McLeod, B.M.; Karimi, K.; Susta, L.; Bridle, B.W.; Wootton, S.K. Production of Adeno-Associated Virus Vectors in Cell Stacks for Preclinical Studies in Large Animal Models. J. Vis. Exp. 2021, e62727. [Google Scholar] [CrossRef]
- Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Alert, J.; Vidal, E.; Bensaid, A.; Segalés, J. Searching for animal models and potential target species for emerging pathogens: Experience gained from Middle East respiratory syndrome (MERS) coronavirus. One Health 2017, 3, 34–40. [Google Scholar] [CrossRef]
- Memish, Z.A.; Perlman, S.; Van Kerkhove, M.D.; Zumla, A. Middle East respiratory syndrome. Lancet 2020, 395, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.; Zaki, A.; Fouchier, R.A.; et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013, 495, 251–254. [Google Scholar] [CrossRef]
- Zhao, J.; Li, K.; Wohlford-Lenane, C.; Agnihothram, S.S.; Fett, C.; Gale, M.J.; Baric, R.S.; Enjuanes, L.; Gallagher, T.; McCray, P.B.; et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc. Natl. Acad. Sci. USA 2014, 111, 4970–4975. [Google Scholar] [CrossRef]
- Gong, S.R.; Bao, L.L. The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models. Anim. Model. Exp. Med. 2018, 1, 125–133. [Google Scholar] [CrossRef]
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef]
- Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 2020, 20, e238–e244. [Google Scholar] [CrossRef] [PubMed]
- Gretebeck, L.M.; Subbarao, K. Animal models for SARS and MERS coronaviruses. Curr. Opin. Virol. 2015, 13, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Lowen, A.C. Animal models for SARS-CoV-2. Curr. Opin. Virol. 2021, 48, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Santry, L.A.; Ingrao, J.C.; Yu, D.L.; de Jong, J.G.; van Lieshout, L.P.; Wood, G.A.; Wootton, S.K. AAV vector distribution in the mouse respiratory tract following four different methods of administration. BMC Biotechnol. 2017, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encycl. Virol. 2021, 428–440. [Google Scholar] [CrossRef]
- Liu, D.; Chen, C.; Chen, D.; Zhu, A.; Li, F.; Zhuang, Z.; Mok, C.K.P.; Dai, J.; Li, X.; Jin, Y.; et al. Mouse models susceptible to HCoV-229E and HCoV-NL63 and cross protection from challenge with SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2023, 120, e2202820120. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33, e00046-19. [Google Scholar] [CrossRef]
- Le, M.H.; Yeo, Y.H.; Cheung, R.; Henry, L.; Lok, A.S.; Nguyen, M.H. Chronic Hepatitis B Prevalence Among Foreign-Born and U.S.-Born Adults in the United States, 1999–2016. Hepatology 2020, 71, 431–443. [Google Scholar] [CrossRef]
- Yang, J.; Pan, G.; Guan, L.; Liu, Z.; Wu, Y.; Lu, W.; Li, S.; Xu, H.; Ouyang, G. The burden of primary liver cancer caused by specific etiologies from 1990 to 2019 at the global, regional, and national levels. Cancer Med. 2022, 11, 1357–1370. [Google Scholar] [CrossRef]
- Lin, C.L.; Kao, J.H. Natural history of acute and chronic hepatitis B: The role of HBV genotypes and mutants. Best. Pract. Res. Clin. Gastroenterol. 2017, 31, 249–255. [Google Scholar] [CrossRef]
- Du, Y.; Broering, R.; Li, X.; Zhang, X.; Liu, J.; Yang, D.; Lu, M. Mouse Models for Hepatitis B Virus Infection and Their Application. Front. Immunol. 2021, 12, 766534. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, L.G.; Matzke, B.; Schaller, H.; Chisari, F.V. High-level hepatitis B virus replication in transgenic mice. J. Virol. 1995, 69, 6158–6169. [Google Scholar] [CrossRef]
- Huang, Y.H.; Fang, C.C.; Tsuneyama, K.; Chou, H.Y.; Pan, W.Y.; Shih, Y.M.; Wu, P.Y.; Chen, Y.; Leung, P.S.; Gershwin, M.E.; et al. A murine model of hepatitis B-associated hepatocellular carcinoma generated by adeno-associated virus-mediated gene delivery. Int. J. Oncol. 2011, 39, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Yue, Y.; Liu, M.; Ghosh, A.; Engelhardt, J.F.; Chamberlain, J.S.; Duan, D. Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat. Biotechnol. 2005, 23, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Brocato, R.L.; Hooper, J.W. Progress on the Prevention and Treatment of Hantavirus Disease. Viruses 2019, 11, 610. [Google Scholar] [CrossRef]
- Munir, N.; Jahangeer, M.; Hussain, S.; Mahmood, Z.; Ashiq, M.; Ehsan, F.; Akram, M.; Ali Shah, S.M.; Riaz, M.; Sana, A. Hantavirus diseases pathophysiology, their diagnostic strategies and therapeutic approaches: A review. Clin. Exp. Pharmacol. Physiol. 2021, 48, 20–34. [Google Scholar] [CrossRef]
- Vial, P.A.; Ferrés, M.; Vial, C.; Klingström, J.; Ahlm, C.; López, R.; Le Corre, N.; Mertz, G.J. Hantavirus in humans: A review of clinical aspects and management. Lancet Infect. Dis. 2023, 23, e371–e382. [Google Scholar] [CrossRef]
- Manigold, T.; Vial, P. Human hantavirus infections: Epidemiology, clinical features, pathogenesis and immunology. Swiss Med. Wkly. 2014, 144, w13937. [Google Scholar] [CrossRef]
- Song, J.Y.; Woo, H.J.; Cheong, H.J.; Noh, J.Y.; Baek, L.J.; Kim, W.J. Long-term immunogenicity and safety of inactivated Hantaan virus vaccine (Hantavax™) in healthy adults. Vaccine 2016, 34, 1289–1295. [Google Scholar] [CrossRef]
- Brocato, R.L.; Hammerbeck, C.D.; Bell, T.M.; Wells, J.B.; Queen, L.A.; Hooper, J.W. A lethal disease model for hantavirus pulmonary syndrome in immunosuppressed Syrian hamsters infected with Sin Nombre virus. J. Virol. 2014, 88, 811–819. [Google Scholar] [CrossRef]
- Vergote, V.; Laenen, L.; Vanmechelen, B.; Van Ranst, M.; Verbeken, E.; Hooper, J.W.; Maes, P. A lethal disease model for New World hantaviruses using immunosuppressed Syrian hamsters. PLoS Negl. Trop. Dis. 2017, 11, e0006042. [Google Scholar] [CrossRef] [PubMed]
- Sironen, T.; Klingström, J.; Vaheri, A.; Andersson, L.C.; Lundkvist, A.; Plyusnin, A. Pathology of Puumala hantavirus infection in macaques. PLoS ONE 2008, 3, e3035. [Google Scholar] [CrossRef]
- Groen, J.; Gerding, M.; Koeman, J.P.; Roholl, P.J.; van Amerongen, G.; Jordans, H.G.; Niesters, H.G.; Osterhaus, A.D. A macaque model for hantavirus infection. J. Infect. Dis. 1995, 172, 38–44. [Google Scholar] [CrossRef]
- Safronetz, D.; Prescott, J.; Feldmann, F.; Haddock, E.; Rosenke, R.; Okumura, A.; Brining, D.; Dahlstrom, E.; Porcella, S.F.; Ebihara, H.; et al. Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques. Proc. Natl. Acad. Sci. USA 2014, 111, 7114–7119. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Gröne, H.J.; Frese, M.; Pavlovic, J.; Anheier, B.; Haller, O.; Klenk, H.D.; Feldmann, H. Hantaan virus infection causes an acute neurological disease that is fatal in adult laboratory mice. J. Virol. 2002, 76, 8890–8899. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, K.; Arikawa, J.; Ohbora, S.; Itakura, C. Hantavirus infection in SCID mice. J. Vet. Med. Sci. 1997, 59, 863–868. [Google Scholar] [CrossRef]
- Ebihara, H.; Yoshimatsu, K.; Ogino, M.; Araki, K.; Ami, Y.; Kariwa, H.; Takashima, I.; Li, D.; Arikawa, J. Pathogenicity of Hantaan virus in newborn mice: Genetic reassortant study demonstrating that a single amino acid change in glycoprotein G1 is related to virulence. J. Virol. 2000, 74, 9245–9255. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Shimizu, K.; Sarii, R.S.; Muthusinghe, D.S.; Lokupathirage, S.M.W.; Nio-Kobayashi, J.; Yoshimatsu, K. Pathological Studies on Hantaan Virus-Infected Mice Simulating Severe Hemorrhagic Fever with Renal Syndrome. Viruses 2022, 14, 2247. [Google Scholar] [CrossRef]
- Jangra, R.K.; Herbert, A.S.; Li, R.; Jae, L.T.; Kleinfelter, L.M.; Slough, M.M.; Barker, S.L.; Guardado-Calvo, P.; Román-Sosa, G.; Dieterle, M.E.; et al. Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature 2018, 563, 559–563. [Google Scholar] [CrossRef]
- Slough, M.M.; Li, R.; Herbert, A.S.; Lasso, G.; Kuehne, A.I.; Monticelli, S.R.; Bakken, R.R.; Liu, Y.; Ghosh, A.; Moreau, A.M.; et al. Two point mutations in protocadherin-1 disrupt hantavirus recognition and afford protection against lethal infection. Nat. Commun. 2023, 14, 4454. [Google Scholar] [CrossRef]
- Safronetz, D.; Hegde, N.R.; Ebihara, H.; Denton, M.; Kobinger, G.P.; St Jeor, S.; Feldmann, H.; Johnson, D.C. Adenovirus vectors expressing hantavirus proteins protect hamsters against lethal challenge with andes virus. J. Virol. 2009, 83, 7285–7295. [Google Scholar] [CrossRef] [PubMed]
Advantages | Limitations |
---|---|
Rapid model development: simply need to synthesize and clone the receptor gene and produce viral vector. | Requires a priori knowledge of the receptor molecule(s) that the virus uses to enter cells. |
Ability to use any strain of commercially available laboratory mice, including aged mice and transgenic mice, e.g., IFNR−/−, STAT1−/−, Sting−/−, which can be purchased quickly and easily in large numbers if necessary. There is also the potential to use other animal species, including Syrian hamsters, ferrets, etc. However, the use of other species may be contraindicated and/or pose additional challenges beyond what is presented for mice, including the need for much larger doses of the vector and the possibility of an immune response to the transgene, leading to rapid clearance of vector-transduced cells. | This approach will not be able to overcome intracellular blocks to virus replication unless there are readily available transgenic mice that already have this block to virus replication knocked out. However, this would also be a limitation in transgenic models as well. |
Ability to perform sophisticated immunological studies due to the plethora of reagents readily available for studies involving mice. | Targeting specific organs, such as the lungs, liver, or brain, is better suited for vectored receptor expression strategies compared with those that necessitate widespread or blood cell receptor expression. |
Can use authentic/natural virus isolates without having to go through the lengthy process of mouse or other species adaptation. | Potential for mouse-to-mouse variations in transgene expression, as well as variability in transgene expression between tissues. |
Use of authentic virus in challenge studies allows for more accurate testing of antibody therapies that target the receptor-binding domain (RBD) of the virus | Mild bronchial inflammation is associated with AdV delivery. |
Ability to express more than one protein involved in the virus life cycle, for example, hACE2 and TMPRSS2 in the case of SARS-CoV-2. | The potential for mouse-to-mouse variation in transduction efficiency could lead to transgene expression differences. |
Ability to administer the vector via any route of administration and with inducible promoters for controlled receptor expression. | |
Possible to evaluate co-infection in a mouse model by using vectored delivery of two virus receptors, e.g., hACE2 and hDPP4 to study SARS-CoV-2 and MERS-CoV co-infection. |
AAV Serotype | Promoter | Dose (vg), Route of Administration, and Time Between AAV-hACE2 Transduction and SARS-CoV-2 Challenge | Strain of Mice | Interventions Tested | Reference |
---|---|---|---|---|---|
AAV9 | CMV | 1 × 1011 vg IT and challenged 2 weeks later | Male and female C57BL/6J (B6J), IFNAR−/− IRF3/7 double knockout | N/A | Israelow et al., 2020 [45] |
AAV6.2FF | CASI | 1 × 1011 vg IN and challenged 2 weeks later | Male and female BALB/c | DNA vaccine | Gary et al., 2021 [46] |
AAV6 and AAV9 | CMV | 3 × 1011 vg IT (AAV6) and 1 × 1012 vg IP (AAV9), challenged 2 weeks later | C57BL/6J, BALB/c | Cocktail of chimeric anti-SARS-CoV-2 spike RBD monoclonal antibodies | Sun et al., 2021 [47] |
Not provided | Not provided | 1.6 × 1011 vg IN and challenged 2 weeks later | C57BL/6J Nlrp3−/− | NLRP3-specific inhibitor MCC950 | Zeng et al., 2022 [48] |
AAV9 | Not provided | 5 × 1011 vg IT and challenged 30 days later | BALB/c | Remdesivir metabolite GS-441524 | Li et al., 2022 [49] |
AAV8 | CAG | 4 × 1011 vg IT and 6 h later with 4 × 1011 vg IN; challenged 1 week later | C57BL/6, TLR7−/−, NOD2−/−, IFNAR−/− | N/A | Yang et al., 2022 [50] |
AAV6, AAV9, AAVDJ | Not provided | 2–6 × 1010 vg IN and challenged 10 days later | BALB/c | N/A | Glazkova et al., 2022 [51] |
AAV6 and AAV9 | CMV | 3 × 1011 vg IT (AAV6) and 1 × 1012 vg IP (AAV9) and challenged 2 weeks later | BALB/c | Subunit vaccine UB-612 | Wang et al., 2022 [52] |
AAV6.2FF | CASI | 1 × 1011 vg IN and challenged 10 days later | Male, female, old, and young C57BL/6 and BALB/c | N/A | Tailor et al., 2022 [53] |
AAV6 | CMV enhancer/beta-actin (CB) promoter | 3 × 1011 vg IT; the interval between AAV and SARS-CoV-2 challenge was not provided | C57BL/6 | Anti-PD-L1 antibody | Huang et al., 2023 [54] |
AdV Serotype | Promoter | Dose (vg), Route of Administration, and Time Between AAV-hACE2 Transduction and SARS-CoV-2 Challenge | Strain of Mice | Interventions Tested | Reference |
---|---|---|---|---|---|
Ad5 | CMV | 2.5 × 108 PFU IN and challenged 5 days later | BALB/c, C57BL/6, IFNAR−/−, STAT1−/− | Venezuelan equine encephalitis replicon particles (VRPs) expressing the SARS-CoV-2 spike (VRP-S), transmembrane (VRP-M), nucleocapsid (VRP-N), and envelope (VRP-E) proteins, human convalescent plasma, two antiviral therapies (poly I:C and remdesivir) | Sun et al., 2020 [55] |
Ad5 | CMV | 2.5 × 108 PFU IN and challenged 5 days later | BALB/c | Anti-SARS-CoV-2 mAb 1B07 | Hassan et al., 2020 [56] |
Ad5 | CMV | 2.5 × 108 PFU IN and challenged 5 days later | BALB/c | VSV-eGFP-SARS-CoV-2 vaccine | Case et al., 2020 [57] |
Ad5 | CMV | 7.5 × 107, 1 × 108, or 2.5 × 108 PFU IN and challenged 5 days later | BALB/c C57BL/6 | N/A | Wong et al., 2020 [58] |
Ad5 | CMV/K18 | 2.5 × 108 PFU IN and challenged 5 days later | BALB/c C57BL/6 | N/A | Rathnasinghe et al., 2020 [59] |
Ad5 | Not provided | 1.5 × 109 PFU oropharyngeal and challenged 5 days later | C57BL/6 | N/A | Han et al., 2021 [60] |
Ad5 | Not provided | 2.5 × 108 PFU IN; interval between transduction and challenge not specified | BALB/c | SARS-CoV-2 neutralizing antibody P2C-1F11 | Ge et al., 2021 [61] |
Ad5 | Not provided | 2.5 × 108 PFU IN and challenged 5 days later | BALB/c C57BL/6 | N/A | Zhuang et al., 2021 [62] |
Ad5 | Not provided | 4 × 108 TCID50 IN and challenged 5 days later | IFNAR−/− | SARS-CoV-2 neutralizing antibody PR1077 | Fu et al., 2021 [63] |
Ad5 | Not provided | 1.5 × 109 PFU oropharyngeal and challenged 5 days later | C57BL/6 | N/A | Liu et al., 2021 [64] |
Ad5 | Not provided | 2.5 × 108 PFU IN and challenged 5 days later | BALB/c | Serine protease inhibitors (camostat mesylate and nafamostat mesylate) | Li et al., 2021 [65] |
Ad5 | CMV | 2.5 × 108 PFU IN and challenged 5 days later | BALB/c | Anti-SARS-CoV-2 mAb NC0321 expressed from IN administered rSIV.F/HN lentiviral vector | Du et al., 2022 [66] |
Ad5 | CMV | 2.5 × 108 PFU IN and challenged 5 days later | C57BL/6 | N/A | Yang et al., 2022 [67] |
Ad5 | CMV | 2.5 × 108 PFU IN and challenged 5 days later | C57BL/6 | IgY-RBD antibody | El-Kafrawy et al., 2022 [68] |
Ad5 | CMV | 2.5 × 108 PFU IN and challenged 5 days later | IFNAR−/−, STAT1−/− | Investigated whether pre-existing immunity to seasonal CoV spikes could have a protective effect against SARS-CoV-2 | Liu et al., 2023 [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goens, M.M.; Howard, E.L.; Warner, B.M.; Susta, L.; Wootton, S.K. Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression. Viruses 2024, 16, 1794. https://doi.org/10.3390/v16111794
Goens MM, Howard EL, Warner BM, Susta L, Wootton SK. Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression. Viruses. 2024; 16(11):1794. https://doi.org/10.3390/v16111794
Chicago/Turabian StyleGoens, Melanie M., Erin L. Howard, Bryce M. Warner, Leonardo Susta, and Sarah K. Wootton. 2024. "Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression" Viruses 16, no. 11: 1794. https://doi.org/10.3390/v16111794
APA StyleGoens, M. M., Howard, E. L., Warner, B. M., Susta, L., & Wootton, S. K. (2024). Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression. Viruses, 16(11), 1794. https://doi.org/10.3390/v16111794