Beyond Antivirals: Alternative Therapies for Long COVID
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Alternative Therapies and Cognitive Impairment
4.2. Alternative Therapies and Systemic Health Benefits
4.3. Emerging Treatments
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ely, E.W.; Brown, L.M.; Fineberg, H.V. Long Covid Defined. N. Engl. J. Med. 2024, 391, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Fesharaki-Zadeh, A.; Lowe, N.; Arnsten, A.F.T. Clinical Experience with the α2A-adrenoceptor Agonist, Guanfacine, and N-acetylcysteine for the Treatment of Cognitive Deficits in “Long-COVID19”. Neuroimmunol. Rep. 2023, 3, 100154. [Google Scholar] [CrossRef]
- Hansen, K.S.; Mogensen, T.H.; Agergaard, J.; Schiøttz-Christensen, B.; Østergaard, L.; Vibholm, L.K.; Leth, S. High-dose coenzyme Q10 therapy versus placebo in patients with post COVID-19 condition: A randomized, phase 2, crossover trial. Lancet Reg. Health Eur. 2023, 24, 100539. [Google Scholar] [CrossRef] [PubMed]
- Livieratos, A.; Gogos, C.; Akinosoglou, K. SARS-CoV-2 Variants and Clinical Outcomes of Special Populations: A Scoping Review of the Literature. Viruses 2024, 16, 1222. [Google Scholar] [CrossRef] [PubMed]
- Livieratos, A.; Gogos, C.; Akinosoglou, K. Impact of Prior COVID-19 Immunization and/or Prior Infection on Immune Responses and Clinical Outcomes. Viruses 2024, 16, 685. [Google Scholar] [CrossRef]
- Dietz, T.K.; Brondstater, K.N. Long COVID management: A mini review of current recommendations and underutilized modalities. Front. Med. 2024, 11, 1430444. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Klein, J.; Wood, J.; Jaycox, J.R.; Dhodapkar, R.M.; Lu, P.; Gehlhausen, J.R.; Tabachnikova, A.; Greene, K.; Tabacof, L.; Malik, A.A.; et al. Distinguishing features of long COVID identified through immune profiling. Nature 2023, 623, 139–148. [Google Scholar] [CrossRef]
- Glynne, P.; Tahmasebi, N.; Gant, V.; Gupta, R. Long COVID following mild SARS-CoV-2 infection: Characteristic T cell alterations and response to antihistamines. J. Investig. Med. 2022, 70, 61–67. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Guntur, V.P.; Nemkov, T.; de Boer, E.; Mohning, M.P.; Baraghoshi, D.; Cendali, F.I.; San-Millán, I.; Petrache, I.; D’Alessandro, A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022, 12, 1026. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Resendiz, K.J.G.; Benitez-Trinidad, A.B.; Covantes-Rosales, C.E.; Toledo-Ibarra, G.A.; Ortiz-Lazareno, P.C.; Girón-Pérez, D.A.; Bueno-Durán, A.Y.; Pérez-Díaz, D.A.; Barcelos-García, R.G.; Girón-Pérez, M.I. Loss of mitochondrial membrane potential (ΔΨ(m)) in leucocytes as post-COVID-19 sequelae. J. Leukoc. Biol. 2022, 112, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A. COVID-19 and Mitochondrial Non-Coding RNAs: New Insights From Published Data. Front. Physiol. 2021, 12, 805005. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.D.; Lemle, M.D.; Komaroff, A.L.; Snyder, S.H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2021, 118, e2024358118. [Google Scholar] [CrossRef]
- Zubchenko, S.; Kril, I.; Nadizhko, O.; Matsyura, O.; Chopyak, V. Herpesvirus infections and post-COVID-19 manifestations: A pilot observational study. Rheumatol. Int. 2022, 42, 1523–1530. [Google Scholar] [CrossRef]
- Charfeddine, S.; Ibn Hadj Amor, H.; Jdidi, J.; Torjmen, S.; Kraiem, S.; Hammami, R.; Bahloul, A.; Kallel, N.; Moussa, N.; Touil, I.; et al. Long COVID 19 Syndrome: Is It Related to Microcirculation and Endothelial Dysfunction? Insights from TUN-EndCOV Study. Front. Cardiovasc. Med. 2021, 8, 745758. [Google Scholar] [CrossRef]
- Wallukat, G.; Hohberger, B.; Wenzel, K.; Fürst, J.; Schulze-Rothe, S.; Wallukat, A.; Hönicke, A.S.; Müller, J. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun. 2021, 4, 100100. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, D.; Chen, D.G.; Ng, R.H.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef]
- Tejerina, F.; Catalan, P.; Rodriguez-Grande, C.; Adan, J.; Rodriguez-Gonzalez, C.; Muñoz, P.; Aldamiz, T.; Diez, C.; Perez, L.; Fanciulli, C.; et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in patients with persistent symptoms after COVID-19. BMC Infect. Dis. 2022, 22, 211. [Google Scholar] [CrossRef]
- Ceulemans, L.J.; Khan, M.; Yoo, S.J.; Zapiec, B.; Van Gerven, L.; Van Slambrouck, J.; Vanstapel, A.; Van Raemdonck, D.; Vos, R.; Wauters, E.; et al. Persistence of SARS-CoV-2 RNA in lung tissue after mild COVID-19. Lancet Respir. Med. 2021, 9, e78–e79. [Google Scholar] [CrossRef]
- Larsen, N.W.; Stiles, L.E.; Shaik, R.; Schneider, L.; Muppidi, S.; Tsui, C.T.; Geng, L.N.; Bonilla, H.; Miglis, M.G. Characterization of autonomic symptom burden in long COVID: A global survey of 2,314 adults. Front. Neurol. 2022, 13, 1012668. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Bin Seo, Y.; Seo, J.W.; Lee, J.; Nham, E.; Seong, H.; Yoon, J.G.; Noh, J.Y.; Cheong, H.J.; Kim, W.J.; et al. Effectiveness of Antiviral Therapy on Long COVID: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7375. [Google Scholar] [CrossRef] [PubMed]
- Rahmah, L.; Abarikwu, S.O.; Arero, A.G.; Essouma, M.; Jibril, A.T.; Fal, A.; Flisiak, R.; Makuku, R.; Marquez, L.; Mohamed, K.; et al. Oral antiviral treatments for COVID-19: Opportunities and challenges. Pharmacol. Rep. 2022, 74, 1255–1278. [Google Scholar] [CrossRef] [PubMed]
- Barletta, M.A.; Marino, G.; Spagnolo, B.; Bianchi, F.P.; Falappone, P.C.F.; Spagnolo, L.; Gatti, P. Coenzyme Q10 + alpha lipoic acid for chronic COVID syndrome. Clin. Exp. Med. 2023, 23, 667–678. [Google Scholar] [CrossRef]
- Bramante, C.T.; Beckman, K.B.; Mehta, T.; Karger, A.B.; Odde, D.J.; Tignanelli, C.J.; Buse, J.B.; Johnson, D.M.; Watson, R.H.B.; Daniel, J.J.; et al. Favorable Antiviral Effect of Metformin on SARS-CoV-2 Viral Load in a Randomized, Placebo-Controlled Clinical Trial of COVID-19. Clin. Infect. Dis. 2024, 79, 354–363. [Google Scholar] [CrossRef]
- Bramante, C.T.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.K.; Anderson, B.J.; Huling, J.D.; Tignanelli, C.J.; et al. Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): A multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial. Lancet Infect. Dis. 2023, 23, 1119–1129. [Google Scholar] [CrossRef]
- Bonilla, H.; Tian, L.; Marconi, V.C.; Shafer, R.; McComsey, G.A.; Miglis, M.; Yang, P.; Bonilla, A.; Eggert, L.; Geng, L.N. Low-dose naltrexone use for the management of post-acute sequelae of COVID-19. Int. Immunopharmacol. 2023, 124, 110966. [Google Scholar] [CrossRef]
- Isman, A.; Nyquist, A.; Strecker, B.; Harinath, G.; Lee, V.; Zhang, X.; Zalzala, S. Low-dose naltrexone and NAD+ for the treatment of patients with persistent fatigue symptoms after COVID-19. Brain Behav. Immun. Health 2024, 36, 100733. [Google Scholar] [CrossRef]
- Tamariz, L.; Bast, E.; Klimas, N.; Palacio, A. Low-dose Naltrexone Improves post-COVID-19 condition Symptoms. Clin. Ther. 2024, 46, e101–e106. [Google Scholar] [CrossRef]
- O’Kelly, B.; Vidal, L.; McHugh, T.; Woo, J.; Avramovic, G.; Lambert, J.S. Safety and efficacy of low dose naltrexone in a long covid cohort; an interventional pre-post study. Brain Behav. Immun. Health 2022, 24, 100485. [Google Scholar] [CrossRef] [PubMed]
- Milne, A.; Maskell, S.; Sharp, C.; Hamilton, F.W.; Arnold, D.T. Impact of Dexamethasone on Persistent Symptoms of COVID-19: An Observational Study. Wellcome Open Res. 2023, 8, 145. [Google Scholar] [CrossRef]
- Bonet, D.B.; Vélez, O.A.C.; Jordà, X.D.; Serrano, M.C.; Rivera, M.P.; Admetlló, M.; Blasco, A.H.; Godia, E.C.; Navarro, E.M.; Ezquerra, G.M.; et al. Treatment of COVID-19 during the Acute Phase in Hospitalized Patients Decreases Post-Acute Sequelae of COVID-19. J. Clin. Med. 2023, 12, 4158. [Google Scholar] [CrossRef] [PubMed]
- Hogeweg, M.; Doevelaar, A.; Rieckmann, S.; Seibert, F.; Scholten, D.; Segelmacher, M.; Stervbo, U.; Babel, N.; Westhoff, T.H. Intravenous immunoglobulins in the treatment of post-COVID: A case-control study. J. Intern. Med. 2023, 293, 656–658. [Google Scholar] [CrossRef]
- Thompson, J.S.; Thornton, A.C.; Ainger, T.; Garvy, B.A. Long-term high-dose immunoglobulin successfully treats Long COVID patients with pulmonary, neurologic, and cardiologic symptoms. Front. Immunol. 2022, 13, 1033651. [Google Scholar] [CrossRef]
- Patterson, B.K.; Yogendra, R.; Guevara-Coto, J.; Mora-Rodriguez, R.A.; Osgood, E.; Bream, J.; Parikh, P.; Kreimer, M.; Jeffers, D.; Rutland, C.; et al. Case series: Maraviroc and pravastatin as a therapeutic option to treat long COVID/Post-acute sequelae of COVID (PASC). Front. Med. 2023, 10, 1122529. [Google Scholar] [CrossRef]
- Khosravi, A.; Ghodsi, S.; Memarjafari, M.; Nematollahi, A.; Sheikh-Sharbafan, R.; Sadre-Bafghi, S.A.; Moosavi, S.V.; Abdollahzadeh, M.; Jalali, A.; Farahani, M.M. Long-Term Major Adverse Cardiovascular Events in Patients with Moderate and Severe COVID-19: A Focus on Early Statin Use and Previous CVD. J. Tehran Univ. Heart Cent. 2023, 18, 183–195. [Google Scholar] [CrossRef]
- Liu, T.H.; Ho, C.H.; Chen, D.T.; Wu, J.Y.; Huang, P.Y.; Lai, C.C.; Hsieh, K.Y.; Su, K.P. Omega-3 polyunsaturated fatty acids and the psychiatric post-acute sequelae of COVID-19: A one-year retrospective cohort analysis of 33,908 patients. Brain Behav. Immun. 2023, 114, 453–461. [Google Scholar] [CrossRef]
- Izzo, R.; Trimarco, V.; Mone, P.; Aloè, T.; Marzani, M.C.; Diana, A.; Fazio, G.; Mallardo, M.; Maniscalco, M.; Marazzi, G.; et al. Combining L-Arginine with vitamin C improves long-COVID symptoms: The LINCOLN Survey. Pharmacol. Res. 2022, 183, 106360. [Google Scholar] [CrossRef]
- Jaeger, B.R.; Arron, H.E.; Booyens, R.M.; Kappert, C.; van Helden, J.; Weimer, M.; Weingärtner, O.; Seibel, R.; Reichl, F.; Khan, A.; et al. Long Covid Patients Successfully Treated by Means of Heparin-Mediated Extracorporeal LDL Precipitation (H.E.L.P.). Apheresis. Infect. Dis. Diagn. Treat. 2023, 7, 216. [Google Scholar] [CrossRef]
- Achleitner, M.; Steenblock, C.; Dänhardt, J.; Jarzebska, N.; Kardashi, R.; Kanczkowski, W.; Straube, R.; Rodionov, R.N.; Bornstein, N.; Tselmin, S.; et al. Clinical improvement of Long-COVID is associated with reduction in autoantibodies, lipids, and inflammation following therapeutic apheresis. Mol. Psychiatry 2023, 28, 2872–2877. [Google Scholar] [CrossRef] [PubMed]
- Safety and Efficacy of Anakinra Treatment for Patients with Post Acute Covid Syndrome (PRECISION). ClinicalTrials.gov Identifier: NCT05926505. Available online: https://clinicaltrials.gov/study/NCT05926505?cond=NCT05926505&term=Long%20COVID&limit=100&aggFilters=status:rec&rank=1 (accessed on 20 September 2024).
- Reclaim: Recovering from COVID-19 Lingering Symptoms Adaptive Integrative Medicine (RECLAIM). ClinicalTrials.gov Identifier: NCT05513560. Available online: https://clinicaltrials.gov/study/NCT05513560?cond=NCT05513560&limit=100&aggFilters=status:rec&rank=1 (accessed on 20 September 2024).
- Solidarity Finland Plus Long-COVID. ClinicalTrials.gov Identifier: NCT05220280. Available online: https://clinicaltrials.gov/study/NCT05220280 (accessed on 20 September 2024).
- Fluvoxamine for Long COVID-19. ClinicalTrials.gov Identifier: NCT05874037. Available online: https://clinicaltrials.gov/study/NCT05874037?cond=NCT05874037&term=Long%20COVID&limit=100&aggFilters=status:rec&rank=1 (accessed on 20 September 2024).
- A Multicenter, Adaptive, Randomized, Double-Blinded, Placebo-Controlled Study in Participants with Long COVID-19: The REVIVE Trial (REVIVE). ClinicalTrials.gov Identifier: NCT06128967. Available online: https://clinicaltrials.gov/study/NCT06128967?cond=NCT06128967&limit=100&aggFilters=status:rec&rank=1 (accessed on 20 September 2024).
- Effectiveness of Testofen Compared to Placebo on Long COVID Symptoms. ClinicalTrials.gov Identifier: NCT05795816. Available online: https://clinicaltrials.gov/study/NCT05795816?cond=NCT05795816&limit=100&aggFilters=status:rec&rank=1 (accessed on 20 September 2024).
- Immunerecov Contributes to Improvement of Respiratory and Immunological Response in Post-COVID-19 Patients. (IRPC). ClinicalTrials.gov Identifier: NCT06166030. Available online: https://clinicaltrials.gov/study/NCT06166030?cond=NCT06166030&limit=100&aggFilters=status:rec&rank=1 (accessed on 20 September 2024).
- Ortelli, P.; Quercia, A.; Cerasa, A.; Dezi, S.; Ferrazzoli, D.; Sebastianelli, L.; Saltuari, L.; Versace, V.; Quartarone, A. Lowered Delta Activity in Post-COVID-19 Patients with Fatigue and Cognitive Impairment. Biomedicines 2023, 11, 2228. [Google Scholar] [CrossRef] [PubMed]
- Versace, V.; Sebastianelli, L.; Ferrazzoli, D.; Romanello, R.; Ortelli, P.; Saltuari, L.; D’Acunto, A.; Porrazzini, F.; Ajello, V.; Oliviero, A.; et al. Intracortical GABAergic dysfunction in patients with fatigue and dysexecutive syndrome after COVID-19. Clin. Neurophysiol. 2021, 132, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Ozawa, M.; Kiso, M.; Yamashita, M.; Maekawa, T.; Kubota, M.; Sugano, S.; Kawaoka, Y. Stimulation of alpha2-adrenergic receptors impairs influenza virus infection. Sci. Rep. 2018, 8, 4631. [Google Scholar] [CrossRef]
- Shi, Z.; Puyo, C.A. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther. Clin. Risk Manag. 2020, 16, 1047–1055. [Google Scholar] [CrossRef]
- Younger, J.; Parkitny, L.; McLain, D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin. Rheumatol. 2014, 33, 451–459. [Google Scholar] [CrossRef]
- Sifuentes-Franco, S.; Sánchez-Macías, D.C.; Carrillo-Ibarra, S.; Rivera-Valdés, J.J.; Zuñiga, L.Y.; Sánchez-López, V.A. Antioxidant and Anti-Inflammatory Effects of Coenzyme Q10 Supplementation on Infectious Diseases. Healthcare 2022, 10, 487. [Google Scholar] [CrossRef]
- Cao, W.; Liu, X.; Bai, T.; Fan, H.; Hong, K.; Song, H.; Han, Y.; Lin, L.; Ruan, L.; Li, T. High-Dose Intravenous Immunoglobulin as a Therapeutic Option for Deteriorating Patients With Coronavirus Disease 2019. Open Forum Infect. Dis. 2020, 7, ofaa102. [Google Scholar] [CrossRef]
- Klinkmann, G.; Altrichter, J.; Reuter, D.A.; Mitzner, S. Therapeutic apheresis in sepsis. Ther. Apher. Dial. 2022, 26, 64–72. [Google Scholar] [CrossRef]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Asher, A.; Tintle, N.L.; Myers, M.; Lockshon, L.; Bacareza, H.; Harris, W.S. Blood omega-3 fatty acids and death from COVID-19: A pilot study. Prostaglandins Leukot. Essent. Fat. Acids 2021, 166, 102250. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Noh, J.Y.; Song, J.Y.; Cheong, H.J.; Kim, W.J. Metformin reduces the risk of developing influenza A virus related cardiovascular disease. Heliyon 2023, 9, e20284. [Google Scholar] [CrossRef] [PubMed]
- Trimarco, V.; Izzo, R.; Lombardi, A.; Coppola, A.; Fiorentino, G.; Santulli, G. Beneficial effects of L-Arginine in patients hospitalized for COVID-19: New insights from a randomized clinical trial. Pharmacol. Res. 2023, 191, 106702. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Sitapati, A.M.; Zhang, J.; Zou, J.; Bui, Q.M.; Ren, J.; Longhurst, C.A.; Criqui, M.H.; Messer, K. Relation of Statin Use Prior to Admission to Severity and Recovery Among COVID-19 Inpatients. Am. J. Cardiol. 2020, 136, 149–155. [Google Scholar] [CrossRef]
- Zhang, X.J.; Qin, J.J.; Cheng, X.; Shen, L.; Zhao, Y.C.; Yuan, Y.; Lei, F.; Chen, M.M.; Yang, H.; Bai, L.; et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab. 2020, 32, 176–187.e4. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Kotsaki, A.; Gounaridi, I.M.; Christaki, E.; Metallidis, S.; Adamis, G.; Fragkou, A.; Fantoni, M.; Rapti, A.; Kalomenidis, I.; et al. Efficacy and safety of early soluble urokinase plasminogen receptor plasma-guided anakinra treatment of COVID-19 pneumonia: A subgroup analysis of the SAVE-MORE randomised trial. EClinicalMedicine 2023, 56, 101785. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Panagopoulos, P.; Metallidis, S.; Dalekos, G.N.; Poulakou, G.; Gatselis, N.; Karakike, E.; Saridaki, M.; Loli, G.; Stefos, A.; et al. An open label trial of anakinra to prevent respiratory failure in COVID-19. Elife 2021, 10, e66125. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Poulakou, G.; Milionis, H.; Metallidis, S.; Adamis, G.; Tsiakos, K.; Fragkou, A.; Rapti, A.; Damoulari, C.; Fantoni, M.; et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: A double-blind, randomized controlled phase 3 trial. Nat. Med. 2021, 27, 1752–1760. [Google Scholar] [CrossRef]
- Huet, T.; Beaussier, H.; Voisin, O.; Jouveshomme, S.; Dauriat, G.; Lazareth, I.; Sacco, E.; Naccache, J.M.; Bézie, Y.; Laplanche, S.; et al. Anakinra for severe forms of COVID-19: A cohort study. Lancet Rheumatol. 2020, 2, e393–e400. [Google Scholar] [CrossRef]
- Hashimoto, K. Overview of the potential use of fluvoxamine for COVID-19 and long COVID. Discov. Ment. Health 2023, 3, 9. [Google Scholar] [CrossRef]
- Tsiakalos, A.; Ziakas, P.D.; Polyzou, E.; Schinas, G.; Akinosoglou, K. Early Fluvoxamine Reduces the Risk for Clinical Deterioration in Symptomatic Outpatients with COVID-19: A Real-World, Retrospective, before-after Analysis. Microorganisms 2023, 11, 2073. [Google Scholar] [CrossRef] [PubMed]
- Reis, G.; Dos Santos Moreira-Silva, E.A.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; Dos Santos, C.V.Q.; de Souza Campos, V.H.; Nogueira, A.M.R.; de Almeida, A.; et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial. Lancet Glob. Health 2022, 10, e42–e51. [Google Scholar] [CrossRef] [PubMed]
- Chanchlani, N.; Lin, S.; Chee, D.; Hamilton, B.; Nice, R.; Arkir, Z.; Bewshea, C.; Cipriano, B.; Derikx, L.; Dunlop, A.; et al. Adalimumab and Infliximab Impair SARS-CoV-2 Antibody Responses: Results from a Therapeutic Drug Monitoring Study in 11 422 Biologic-Treated Patients. J. Crohn’s Colitis 2022, 16, 389–397. [Google Scholar] [CrossRef]
- Amodeo, A.; Persani, L.; Bonomi, M.; Cangiano, B. Use of testosterone replacement therapy to treat long-COVID-related hypogonadism. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024, 230097. [Google Scholar] [CrossRef]
- Sarhan, N.M.; Warda, A.E.A.; Ibrahim, H.S.G.; Schaalan, M.F.; Fathy, S.M. Evaluation of infliximab/tocilizumab versus tocilizumab among COVID-19 patients with cytokine storm syndrome. Sci. Rep. 2023, 13, 6456. [Google Scholar] [CrossRef]
- Yassin, A.; Shabsigh, R.; Al-Zoubi, R.M.; Aboumarzouk, O.M.; Alwani, M.; Nettleship, J.; Kelly, D. Testosterone and Covid-19: An update. Rev. Med. Virol. 2023, 33, e2395. [Google Scholar] [CrossRef]
- Mostafa-Hedeab, G.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Jeandet, P.; Saad, H.M.; Batiha, G.E. A raising dawn of pentoxifylline in management of inflammatory disorders in Covid-19. Inflammopharmacology 2022, 30, 799–809. [Google Scholar] [CrossRef]
- Sarhan, R.M.; Altyar, A.E.; Essam Abou Warda, A.; Saied, Y.M.; Ibrahim, H.S.G.; Schaalan, M.F.; Fathy, S.; Sarhan, N.; Boshra, M.S. Pentoxifylline Effects on Hospitalized COVID-19 Patients with Cytokine Storm Syndrome: A Randomized Clinical Trial. Pharmaceuticals 2023, 16, 631. [Google Scholar] [CrossRef]
- Mateus-Silva, J.R.; Oliveira, C.R.; Brandao-Rangel, M.A.R.; Silva-Reis, A.; Olimpio, F.; Zamarioli, L.D.S.; Aimbire, F.; Vieira, R.P. A Nutritional Blend Suppresses the Inflammatory Response from Bronchial Epithelial Cells Induced by SARS-CoV-2. J. Diet. Suppl. 2023, 20, 156–170. [Google Scholar] [CrossRef]
- Gomaa, A.A.; Abdel-Wadood, Y.A.; Thabet, R.H.; Gomaa, G.A. Pharmacological evaluation of vitamin D in COVID-19 and long COVID-19: Recent studies confirm clinical validation and highlight metformin to improve VDR sensitivity and efficacy. Inflammopharmacology 2024, 32, 249–271. [Google Scholar] [CrossRef]
- Looi, M.K. What is the future for covid drugs and treatments? BMJ 2023, 381, 1001. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.K.; Ng, Y.L.; Ahidjo, B.A.; Aw, Z.Q.; Chen, H.; Wong, Y.H.; Lee, R.C.H.; Loe, M.W.C.; Liu, J.; Tan, K.S.; et al. Evaluation of In Vitro and In Vivo Antiviral Activities of Vitamin D for SARS-CoV-2 and Variants. Pharmaceutics 2023, 15, 925. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, E.M.; Keck, K.; Windisch, R.; Stroik, M.R.; Thurman, A.L.; Zabner, J.; Thornell, I.M.; Pezzulo, A.A.; Klesney-Tait, J.; Comellas, A.P. Vitamin D-mediated effects on airway innate immunity in vitro. PLoS ONE 2022, 17, e0269647. [Google Scholar] [CrossRef] [PubMed]
- Topan, A.; Lupse, M.; Calin, M.; Jianu, C.; Leucuta, D.C.; Briciu, V. 25 Hydroxyvitamin D Serum Concentration and COVID-19 Severity and Outcome-A Retrospective Survey in a Romanian Hospital. Nutrients 2023, 15, 1227. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Sandoval, J.C.; Castillos-Ávalos, V.J.; Paz-Cortés, A.; Santillan-Ceron, A.; Hernandez-Jimenez, S.; Mehta, R.; Correa-Rotter, R. Very Low Vitamin D Levels are a Strong Independent Predictor of Mortality in Hospitalized Patients with Severe COVID-19. Arch. Med. Res. 2022, 53, 215–222. [Google Scholar] [CrossRef]
- di Filippo, L.; Uygur, M.; Locatelli, M.; Nannipieri, F.; Frara, S.; Giustina, A. Low vitamin D levels predict outcomes of COVID-19 in patients with both severe and non-severe disease at hospitalization. Endocrine 2023, 80, 669–683. [Google Scholar] [CrossRef]
- Argano, C.; Mallaci Bocchio, R.; Natoli, G.; Scibetta, S.; Lo Monaco, M.; Corrao, S. Protective Effect of Vitamin D Supplementation on COVID-19-Related Intensive Care Hospitalization and Mortality: Definitive Evidence from Meta-Analysis and Trial Sequential Analysis. Pharmaceuticals 2023, 16, 130. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Borghi, C. Vitamin D Supplementation and COVID-19 Outcomes: Mounting Evidence and Fewer Doubts. Nutrients 2022, 14, 3584. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Brown, G.M.; Pandi-Perumal, S.R. Possible Application of Melatonin in Long COVID. Biomolecules 2022, 12, 1646. [Google Scholar] [CrossRef]
- Jarrott, B.; Head, R.; Pringle, K.G.; Lumbers, E.R.; Martin, J.H. “LONG COVID”-A hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol. Res. Perspect. 2022, 10, e00911. [Google Scholar] [CrossRef]
- Acuña-Castroviejo, D.; Escames, G.; Figueira, J.C.; de la Oliva, P.; Borobia, A.M.; Acuña-Fernández, C. Clinical trial to test the efficacy of melatonin in COVID-19. J. Pineal Res. 2020, 69, e12683. [Google Scholar] [CrossRef] [PubMed]
- Artigas, L.; Coma, M.; Matos-Filipe, P.; Aguirre-Plans, J.; Farrés, J.; Valls, R.; Fernandez-Fuentes, N.; de la Haba-Rodriguez, J.; Olvera, A.; Barbera, J.; et al. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm. PLoS ONE 2020, 15, e0240149. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Ma, Q.; Dominquez-Rodriguez, A.; Marik, P.E.; Abreu-Gonzalez, P. Melatonin Inhibits COVID-19-induced Cytokine Storm by Reversing Aerobic Glycolysis in Immune Cells: A Mechanistic Analysis. Med. Drug Discov. 2020, 6, 100044. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.L.; Dubocovich, M.L. Melatonin multifaceted pharmacological actions on melatonin receptors converging to abrogate COVID-19. J. Pineal Res. 2021, 71, e12732. [Google Scholar] [CrossRef]
- Tan, S.H.; Karri, V.; Tay, N.W.R.; Chang, K.H.; Ah, H.Y.; Ng, P.Q.; Ho, H.S.; Keh, H.W.; Candasamy, M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed. Pharmacother. 2019, 111, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Sumsuzzman, D.M.; Choi, J.; Jin, Y.; Hong, Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 2021, 127, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S.; Daglia, M.; Sureda, A.; Selamoglu, Z.; Gulhan, M.F.; Nabavi, S.M. Melatonin and Respiratory Diseases: A Review. Curr. Top. Med. Chem. 2017, 17, 467–488. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res. 2018, 65, e12525. [Google Scholar] [CrossRef]
Author and Country | Patient Population | Study Design | Intervention and Dosage | Outcomes |
---|---|---|---|---|
Therapeutic Category: Antihypertensive/ADHD Treatment | ||||
Fesharaki-Zadeh A. et al., 2023 (USA) [2] | 12 patients, aged 21–73 years | Open-label clinical experience | Guanfacine: Initiated at 1 mg orally for 1 month, increased to 2 mg after if well tolerated N-acetylcysteine: 600 mg orally daily Arms: Combined treatment No control group | A total of 8/12 reported cognitive improvements such as enhanced working memory, concentration, and executive functions |
Therapeutic Category: Antioxidant | ||||
Hansen K.S. et al., 2023 (Denmark) [3] | 121 patients, aged 22–70 years | Phase 2 RCT | Coenzyme Q10: Daily dose of 500 mg, administered as five 100 mg oral capsules to maximize absorption Dosing period for 6 weeks, followed by a 4-week washout before switching treatments in a crossover design Arms: Coenzyme Q10 vs. placebo | The largest non-significant reduction in symptoms was in neurological and musculoskeletal symptoms, but it was not statistically significant |
Barletta M.A. et al., 2023 (Italy) [25] | 174 patients, aged 18–81 years | Prospective observational study | 100 mg of alpha lipoic acid/Coenzyme Q10 each twice daily for 2 months Arms: 116 patients on combination vs. 58 patients control | A total of 53.5% of treated patients achieved complete response (a ≥ 50% reduction in Fatigue Severity Scale) vs. 3.5% in the control |
Therapeutic Category: Antidiabetic | ||||
Bramante C.T. et al., 2024 (USA) [26] | 999 patients, aged 30–85 years | Phase 3 RCT | Metformin: 500 mg on the first day, 500 mg twice until day five, and 500 mg or 1000 mg morning/evening, respectively, until day 14 Fluvoxamine: 50 mg the first day, and 50 mg twice daily until day 14 Ivermectin: A median dose of 430 µg/kg/day for 3 days Arms: Each drug was compared to a placebo group | Long COVID reduction by 42% due to metformin Long COVID 65% reduction if metformin treatment started within four days |
Bramante C.T. et al., 2023 (USA) [27] | 1431 patients, aged 30–85 years | Phase 3 RCT | Metformin: 500 mg on the first day, 500 mg twice until day five, and 500 mg or 1000 mg morning/evening, respectively, until day 14 Ivermectin: Up to 470 μg/kg daily for 3 days. Fluvoxamine: Once 50 mg the first day, and 50 mg twice daily until day 14 Arms: Each drug was compared to a placebo group | Long COVID metformin reduced the rate 41% Until day 300 of 6.3% vs. 10.4% for controls developed Long COVID Administered within 3 days of symptom onset, it provided an even greater reduction in long COVID risk, with an HR of 0.37 (95% CI 0.15–0.95) |
Therapeutic Category: Immunomodulator | ||||
Bonilla H. et al., 2023 (USA) [28] | 59 patients, aged 34–59 years | Retrospective observational study | Low-dose naltrexone: Average of 2 mg daily, median duration of treatment was 143 days Arms: Combined treatment No control group | Fatigue significant reduction (p = 0.013). Post-exertional malaise improved (p = 0.010). Unrefreshing sleep and abnormal sleep patterns were significantly improved (p = 0.010 and p = 0.016, respectively) |
Isman A. et al., 2024 (USA) [29] | 36 patients, aged 28–69 years | Observational, open-label pilot study | Low-dose naltrexone: 4.5 mg/day, the dose was gradually increased over the first 9 days NAD+: Using iontophoresis patches, delivering 400 mg of NAD+ weekly Interventions lasted 12 weeks Arms: Combined treatment No control group | SF-36 score increased from 36.5 to 52.1 at 12 weeks, showing a significant improvement (p < 0.0001) Both physical and mental fatigue scores showed substantial improvement |
Tamariz L. et al., 2023 (USA) [30] | 108 patients, aged | Retrospective cohort study | LDN, amitriptyline, duloxetine Arms: LDN vs. physical therapy | Relative hazard of improvement for LDN group was 5.04 (95% CI: 1.22–20.77) vs. control Fatigue and pain were improved for LDN group |
O’Kelly B. et al., 2022 (Ireland) [31] | 52 patients, aged 33–49 years | Interventional study | 1 mg of LDN daily in the first month and 2 mg daily in the second month. Arms: No control group | Statistical improvement in multiple metrics including fatigue levels, measurements of pain, cognitive performance, and sleep quality |
Milne A. et al., 2023 (UK) [32] | 198 patients, aged 51–72 years | Observational case–control study | Dexamethasone: 39 patients received 6 mg of oral dexamethasone once daily during their hospital stay, median duration of treatment was 7 days Arms: Dexamethasone vs. control | Most significant reductions (8-month follow-up) were in fatigue (33% for dexamethasone vs. 52% in for placebo, p = 0.07) and insomnia (15% in the dexamethasone group vs. 39% in control group, p = 0.01) |
Badenes Bonet D. et al., 2023 (Spain) [33] | 1966 patients, mean age 56.4 years | One-year prospective observational study | Dexamethasone: 6 mg daily for 10 days Arms: Dexamethasone vs. control | The median duration for symptoms for patients treated with dexamethasone was 133 days (compared to 271 days for those not treated with dexamethasone) |
Hogeweg M. et al., 2023 (Germany) [34] | 30 patients | Retrospective case–control study | Intravenous immunoglobulins: 3–4 monthly courses of IVIg, administered at a dose of 0.5 g/kg (Group A) Inhaled glucocorticoids: budesonide inhalation at a dosage of 0.2 mg twice daily (Group B) Supportive Therapy: Mon-pharmacological treatments managing post-COVID symptoms (Group C) Arms: No combinations and compared to supportive therapy | Symptom Improvement (ISARIC Score): Change in score was significantly higher in group A (−5.44 ± 2.35; p < 0.001) compared to Group B (−0.3 ± 0.82) and Group C (−0.89 ± 0.93) |
Thompson J.S. et al., 2022 (USA) [35] | 9 patients, aged 34–79 years | Observational case study | The standard treatment involved 0.5 g/kg of IVIg bi-weekly for a trial period of 3 months. Arms: IVIg vs. untreated patients | Six patients received IVIg treatment, and all reported significant to remarkable improvements, particularly in cognitive dysfunction, fatigue, and pulmonary issues |
Therapeutic Category: Statin | ||||
Khosravi A et al., 2023 (Iran) [37] | 858 patients, aged 18–85 years | Prospective cohort study | Atorvastatin 20 mg daily or Rosuvastatin 10 mg daily for at least 15 days Arms: Statin vs. control | MACE risk After median follow-up of 13 months statins (HR: 0.831; 95% CI: 0.529–0.981) |
Therapeutic Category: Other | ||||
Liu T.H. et al., 2023 (China) [38] | 33,908 patients, aged 18–85 years | One-year retrospective cohort analysis | Omega-3 polyunsaturated fatty acids supplements Omega-3 intake was within 6 months prior to their COVID-19 diagnosis Arms: Omega-3 vs. no use | Depression: HR = 0.828; (95% CI:0.714–0.960) Myalgia: HR = 0.606; (95% CI: 0.417–0.880) Cough: HR = 0.814; (95% CI: 0.683 to 0.970) |
Izzo R. et al., 2022 (Italy) [39] | 1390 patients, aged 18–90 years | Nationwide survey-based observational study | L-Arginine: 1.66 g (two vials/day). Vitamin C: 500 mg of liposomal Vitamin C daily. Patients in the alternative treatment group received a multivitamin combination Arms: Combined treatment. No control group | Fatigue: Absent in 94.9% of patients in the L-Arginine + Vitamin C group compared to 0.4% in the control group Dyspnea: Absent in 74.2% of patients in the L-Arginine + Vitamin C group compared to 5.4% in the control group |
Jaeger B.R. et al., 2023 (Germany) [40] | 17 patients, aged 23–63 years | Pilot study | H.E.L.P. Apheresis: In each session, 400,000 units of unfractionated heparin were used in the process During each treatment, between 2 and 4 L of blood were processed. The treatment lasted between 2 and 4 h per session Arms: No control group | A total of 16 patients experienced significant symptom improvement Follow-up between 6 and 10 months after the last treatment, 15 patients maintained their improvements |
Achleitner M. et al., 2023 (Germany) [41] | 27 patients Mean age of 49.7 years for men and 44.9 years for women | Prospective observational study | Therapeutic Apheresis: Each session lasted 114 min on average, and 8000 units of heparin were used per treatment. Arms: No control group | A total of 70% of the patients reported a significant improvement in symptoms such as fatigue, post-exertional malaise, and brain fog |
Trial Number and Estimated Completion Date | Patient Population | Study Design | Intervention and Dosage | Outcome Measure |
---|---|---|---|---|
Therapeutic Category: Immunomodulator | ||||
NCT05926505 (August 2025) [42] | 182 patients 18 years and older | Phase 2–3 RCT | Anakinra injected subcutaneously as 100 mg once daily for 4 weeks Placebo injected subcutaneously once daily for 4 weeks | Score of PACS progression reversal Changes in concentration of cytokines produced |
NCT05513560 (December 2025) [43] | 1000 patients 18 years and older | Phase 2–3 RCT | Ibudilast 10 mg pills, 2 pills twice per day Pentoxifylline 400 mg pill 3 times per day Placebo matching ibudilast OR pentoxifylline dosing schedule | SF-36 physical component score |
NCT05220280 (December 2025) [44] | 400 patients 18 years and older | Phase 4, Randomized, Open Label | Oral imatinib 400 mg tablet once a day for 14 days Infliximab as a single infusion of 5 mg/kg | Health-related quality of life Mortality |
Therapeutic Category: Anti-depressant/Antidiabetic | ||||
NCT05874037 (May 2025) [45] | 300 patients 25 years and older | Phase 2–3 RCT | An amount of 25 mg/50 mg/100 mg fluvoxamine doses to assess impact on each patient Customized dose of fluvoxamine vs. placebo for 16 weeks | Patient-reported assessments on improvement of Long COVID symptoms Biomarkers of underlying inflammatory pathophysiology |
NCT06128967 (May 2025) [46] | 1500 patients 18 years and older | Phase 3 RCT | Fluvoxamine Maleate 100 mg per pill Oral 750 mg Metformin extended release Placebo matching dosing schedules | Improvement on Fatigue Severity Score Scale |
Therapeutic Category: Other | ||||
NCT05795816 (November 2025) [47] | 150 patients 18 years and older | Phase 3 RCT | Testofen: Twice daily 300 mg dose Microcrystalline cellulose: Same dosing schedule as testofen | Change in energy and fatigue |
NCT06166030 (December 2024) [48] | 58 patients 18 years and older | Phase 3 Non-Randomized, Open Label | One month administration of ImmuneRecov | Lung function tests and immune reaction |
Treatment | % Improvement in Cognitive Symptoms | Mechanism |
---|---|---|
Guanfacine + NAC | 67% | Strengthens prefrontal cortex connectivity, reduces oxidative stress |
LDN | 54% | Modulates immune response, reduces chronic inflammation |
CoQ10 | Moderate, non-significant improvement in fatigue | Supports mitochondrial function, reduces oxidative stress |
IVIg | 70–75% | Neutralizes autoantibodies, reduces neuro-inflammation |
Omega-3 Fatty Acids | Modest, non-significant improvement in mood, myalgia | Reduces inflammation, supports endothelial function |
Dexamethasone | 33% reduction in fatigue | Reduces systemic inflammation |
Metformin | Preventative (up to 63% reduction) | Reduces inflammation, modulates immune response |
Therapeutic Apheresis | 70% reported symptom improvement | Removes inflammatory cytokines and autoantibodies, reduces immune dysregulation |
L-Arginine | 94.9% absence of fatigue, improvement in oxygen delivery | Enhances nitric oxide production, improves endothelial function, reduces inflammation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livieratos, A.; Gogos, C.; Akinosoglou, K. Beyond Antivirals: Alternative Therapies for Long COVID. Viruses 2024, 16, 1795. https://doi.org/10.3390/v16111795
Livieratos A, Gogos C, Akinosoglou K. Beyond Antivirals: Alternative Therapies for Long COVID. Viruses. 2024; 16(11):1795. https://doi.org/10.3390/v16111795
Chicago/Turabian StyleLivieratos, Achilleas, Charalambos Gogos, and Karolina Akinosoglou. 2024. "Beyond Antivirals: Alternative Therapies for Long COVID" Viruses 16, no. 11: 1795. https://doi.org/10.3390/v16111795
APA StyleLivieratos, A., Gogos, C., & Akinosoglou, K. (2024). Beyond Antivirals: Alternative Therapies for Long COVID. Viruses, 16(11), 1795. https://doi.org/10.3390/v16111795