A Mutation in the Herpes Simplex Virus Type 1 (HSV-1) UL29 Gene is Associated with Anti-Herpesvirus Drugs’ Susceptibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Sequencing
2.3. Construction of Recombinant Viruses
2.4. Detection of TK and ICP8 Proteins
2.5. Plaque Titration
2.6. Antiviral Drug Compounds
2.7. Drug Susceptibility Test
2.8. Statistical Analysis
3. Results
3.1. Genomic Sequence Analysis of the HSV-1_VZV_TK_ Clone α Strain
3.2. ACV Susceptibility of HSV-1_VZV_TK_UL29mut Bearing a P597L Substitution
3.3. Susceptibility of HSV-1_BAC_UL29mut to ACV and Other Drugs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujii, H.; Harada, S.; Yoshikawa, T.; Yamada, S.; Omura, N.; Shibamura, M.; Inagaki, T.; Kato, H.; Fukushi, S.; Saijo, M. Differences in the Likelihood of Acyclovir Resistance-Associated Mutations in the Thymidine Kinase Genes of Herpes Simplex Virus 1 and Varicella-Zoster Virus. Antimicrob. Agents Chemother. 2019, 63, e00017-19. [Google Scholar] [CrossRef] [PubMed]
- Danve-Szatanek, C.; Aymard, M.; Thouvenot, D.; Morfin, F.; Agius, G.; Bertin, I.; Billaudel, S.; Chanzy, B.; Coste-Burel, M.; Finkielsztejn, L.; et al. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up. J. Clin. Microbiol. 2004, 42, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Stranska, R.; Schuurman, R.; Nienhuis, E.; Goedegebuure, I.W.; Polman, M.; Weel, J.F.; Wertheim-Van Dillen, P.M.; Berkhout, R.J.; van Loon, A.M. Survey of acyclovir-resistant herpes simplex virus in the Netherlands: Prevalence and characterization. J. Clin. Virol. 2005, 32, 7–18. [Google Scholar] [CrossRef]
- Saijo, M.; Suzutani, T.; Itoh, K.; Hirano, Y.; Murono, K.; Nagamine, M.; Mizuta, K.; Niikura, M.; Morikawa, S. Nucleotide sequence of thymidine kinase gene of sequential acyclovir-resistant herpes simplex virus type 1 isolates recovered from a child with Wiskott-Aldrich syndrome: Evidence for reactivation of acyclovir-resistant herpes simplex virus. J. Med. Virol. 1999, 58, 387–393. [Google Scholar] [CrossRef]
- Kleiboeker, S.B. Prevalence of cytomegalovirus antiviral drug resistance in transplant recipients. Antivir. Res. 2023, 215, 105623. [Google Scholar] [CrossRef]
- Acquier, M.; Taton, B.; Alain, S.; Garrigue, I.; Mary, J.; Pfirmann, P.; Visentin, J.; Hantz, S.; Merville, P.; Kaminski, H.; et al. Cytomegalovirus DNAemia Requiring (Val)Ganciclovir Treatment for More Than 8 Weeks Is a Key Factor in the Development of Antiviral Drug Resistance. Open Forum Infect. Dis. 2023, 10, ofad018. [Google Scholar] [CrossRef] [PubMed]
- Bacon, T.H.; Levin, M.J.; Leary, J.J.; Sarisky, R.T.; Sutton, D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin. Microbiol. Rev. 2003, 16, 114–128. [Google Scholar] [CrossRef]
- Fyfe, J.A. Differential phosphorylation of (E)-5-(2-bromovinyl)-2′-deoxyuridine monophosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus. Mol. Pharmacol. 1982, 21, 432–437. [Google Scholar]
- Cheng, Y.C.; Dutschman, G.; Fox, J.J.; Watanabe, K.A.; Machida, H. Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases. Antimicrob. Agents Chemother. 1981, 20, 420–423. [Google Scholar] [CrossRef]
- Elion, G.B. Acyclovir: Discovery, mechanism of action, and selectivity. J. Med. Virol. 1993, 41 (Suppl. 1), 2–6. [Google Scholar] [CrossRef]
- Darby, G.; Field, H.J.; Salisbury, S.A. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature 1981, 289, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Coen, D.M.; Schaffer, P.A.; Furman, P.A.; Keller, P.M.; St Clair, M.H. Biochemical and genetic analysis of acyclovir-resistant mutants of herpes simplex virus type 1. Am. J. Med. 1982, 73, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.; Ellis, M.N. Sensitivity monitoring of clinical isolates of herpes simplex virus to acyclovir. J. Med. Virol. 1993, 41 (Suppl. S1), 58–66. [Google Scholar] [CrossRef]
- Collins, P.; Larder, B.A.; Oliver, N.M.; Kemp, S.; Smith, I.W.; Darby, G. Characterization of a DNA polymerase mutant of herpes simplex virus from a severely immunocompromised patient receiving acyclovir. J. Gen. Virol. 1989, 70 Pt 2, 375–382. [Google Scholar] [CrossRef]
- Lea, A.P.; Bryson, H.M. Cidofovir. Drugs 1996, 52, 225–230; discussion 231. [Google Scholar] [CrossRef]
- Wagstaff, A.J.; Bryson, H.M. Foscarnet. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with viral infections. Drugs 1994, 48, 199–226. [Google Scholar] [CrossRef]
- Lalezari, J.P. Cidofovir: A new therapy for cytomegalovirus retinitis. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol 1997, 14 (Suppl. S1), S22–S26. [Google Scholar] [CrossRef]
- Lehman, I.R.; Boehmer, P.E. Replication of herpes simplex virus DNA. J. Biol. Chem. 1999, 274, 28059–28062. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Satoh, M.; Fujii, H.; Yamada, S.; Shibamura, M.; Yoshikawa, T.; Harada, S.; Takeyama, H.; Saijo, M. Acyclovir Sensitivity and Neurovirulence of Herpes Simplex Virus Type 1 with Amino Acid Substitutions in the Viral Thymidine Kinase Gene, Which Were Detected in the Patients with Intractable Herpes Simplex Encephalitis Previously Reported. Jpn. J. Infect. Dis. 2018, 71, 343–349. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Fujii, H.; Okutani, A.; Shibamura, M.; Omura, N.; Egawa, K.; Kato, H.; Inagaki, T.; Harada, S.; Yamada, S.; et al. Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8. PLoS ONE 2018, 13, e0192725. [Google Scholar] [CrossRef]
- Tischer, B.K.; von Einem, J.; Kaufer, B.; Osterrieder, N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2006, 40, 191–197. [Google Scholar] [PubMed]
- Tanaka, M.; Kagawa, H.; Yamanashi, Y.; Sata, T.; Kawaguchi, Y. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: Viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J. Virol. 2003, 77, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
- Andrei, G.; Snoeck, R.; De Clercq, E. Susceptibilities of several drug-resistant herpes simplex virus type 1 strains to alternative antiviral compounds. Antimicrob. Agents Chemother. 1995, 39, 1632–1635. [Google Scholar] [CrossRef]
- Bevilacqua, F.; Davis-Poynter, N.; Worrallo, J.; Gower, D.; Collins, P.; Darby, G. Construction of a herpes simplex virus/varicella-zoster virus (HSV/VZV) thymidine kinase recombinant with the pathogenic potential of HSV and a drug sensitivity profile resembling that of VZV. J. Gen. Virol. 1995, 76 Pt 8, 1927–1935. [Google Scholar] [CrossRef] [PubMed]
- Suzutani, T.; Machida, H.; Sakuma, T. Efficacies of antiherpesvirus nucleosides against two strains of herpes simplex virus type 1 in Vero and human embryo lung fibroblast cells. Antimicrob. Agents Chemother. 1988, 32, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Bowen, C.D.; Paavilainen, H.; Renner, D.W.; Palomaki, J.; Lehtinen, J.; Vuorinen, T.; Norberg, P.; Hukkanen, V.; Szpara, M.L. Comparison of Herpes Simplex Virus 1 Strains Circulating in Finland Demonstrates the Uncoupling of Whole-Genome Relatedness and Phenotypic Outcomes of Viral Infection. J. Virol. 2019, 93, e01824-18. [Google Scholar] [CrossRef]
- Makhov, A.M.; Griffith, J.D. Visualization of the annealing of complementary single-stranded DNA catalyzed by the herpes simplex virus type 1 ICP8 SSB/recombinase. J. Mol. Biol. 2006, 355, 911–922. [Google Scholar] [CrossRef]
- Reuven, N.B.; Staire, A.E.; Myers, R.S.; Weller, S.K. The herpes simplex virus type 1 alkaline nuclease and single-stranded DNA binding protein mediate strand exchange in vitro. J. Virol. 2003, 77, 7425–7433. [Google Scholar] [CrossRef]
- Gao, M.; Knipe, D.M. Potential role for herpes simplex virus ICP8 DNA replication protein in stimulation of late gene expression. J. Virol. 1991, 65, 2666–2675. [Google Scholar] [CrossRef]
- Mapelli, M.; Panjikar, S.; Tucker, P.A. The crystal structure of the herpes simplex virus 1 ssDNA-binding protein suggests the structural basis for flexible, cooperative single-stranded DNA binding. J. Biol. Chem. 2005, 280, 2990–2997. [Google Scholar] [CrossRef]
- Makhov, A.M.; Boehmer, P.E.; Lehman, I.R.; Griffith, J.D. Visualization of the unwinding of long DNA chains by the herpes simplex virus type 1 UL9 protein and ICP8. J. Mol. Biol. 1996, 258, 789–799. [Google Scholar] [CrossRef] [PubMed]
- McNamee, E.E.; Taylor, T.J.; Knipe, D.M. A dominant-negative herpesvirus protein inhibits intranuclear targeting of viral proteins: Effects on DNA replication and late gene expression. J. Virol. 2000, 74, 10122–10131. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Knipe, D.M. Genetic evidence for multiple nuclear functions of the herpes simplex virus ICP8 DNA-binding protein. J. Virol. 1989, 63, 5258–5267. [Google Scholar] [CrossRef]
- Packard, J.E.; Dembowski, J.A. HSV-1 DNA Replication-Coordinated Regulation by Viral and Cellular Factors. Viruses 2021, 13, 2015. [Google Scholar] [CrossRef]
- Hernandez, T.R.; Lehman, I.R. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. J. Biol. Chem. 1990, 265, 11227–11232. [Google Scholar] [CrossRef]
- Shankar, S.; Pan, J.; Yang, P.; Bian, Y.; Oroszlan, G.; Yu, Z.; Mukherjee, P.; Filman, D.J.; Hogle, J.M.; Shekhar, M.; et al. Viral DNA polymerase structures reveal mechanisms of antiviral drug resistance. Cell 2024, 187, 5572–5586.e15. [Google Scholar] [CrossRef] [PubMed]
- Weller, S.K.; Spadaro, A.; Schaffer, J.E.; Murray, A.W.; Maxam, A.M.; Schaffer, P.A. Cloning, sequencing, and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Mol. Cell Biol. 1985, 5, 930–942. [Google Scholar]
- Summers, B.C.; Leib, D.A. Herpes simplex virus type 1 origins of DNA replication play no role in the regulation of flanking promoters. J. Virol. 2002, 76, 7020–7029. [Google Scholar] [CrossRef]
- Jiang, C.; Hwang, Y.T.; Hwang, C.B. Herpes simplex virus type 1 recombinants without the oriL sequence replicate DNA with increased fidelity. Virology 2006, 347, 277–285. [Google Scholar] [CrossRef]
- Spector, T.; Averett, D.R.; Nelson, D.J.; Lambe, C.U.; Morrison, R.W., Jr.; St Clair, M.H.; Furman, P.A. Potentiation of antiherpetic activity of acyclovir by ribonucleotide reductase inhibition. Proc. Natl. Acad. Sci. USA 1985, 82, 4254–4257. [Google Scholar] [CrossRef]
- Piret, J.; Boivin, G. Antiviral drug resistance in herpesviruses other than cytomegalovirus. Rev. Med. Virol. 2014, 24, 186–218. [Google Scholar] [CrossRef] [PubMed]
- Chou, S. Advances in the genotypic diagnosis of cytomegalovirus antiviral drug resistance. Antivir. Res. 2020, 176, 104711. [Google Scholar] [CrossRef] [PubMed]
- Larder, B.A.; Derse, D.; Cheng, Y.C.; Darby, G. Properties of purified enzymes induced by pathogenic drug-resistant mutants of herpes simplex virus. Evidence for virus variants expressing normal DNA polymerase and altered thymidine kinase. J. Biol. Chem. 1983, 258, 2027–2033. [Google Scholar] [CrossRef] [PubMed]
Gene | Gene Function | Position * | HSV-1_VZV_TK_Clone α | HSV-1_BAC | HSV-1 F | a.a Change | Frequency | Quality |
---|---|---|---|---|---|---|---|---|
UL13 | protein kinase | 26,904 | T | T | C | C507Y | 100 | 776.4 |
UL29 | ICP8 | 60,180 | A | G | G | P597L ** | 100 | 555.8 |
61,007 | A | A | G | NC | 100 | 755.9 | ||
UL34 | ER modeling | 69,681 | A | A | G | S45N | 98.1 | 462.7 |
UL36 | tegument protein | 71,717 | T | T | C | M2434V | 100 | 73.8 |
71,723 | C | C | T | NC | 100 | 102.0 | ||
73,069 | C | C | T | NC | 100 | 384.7 | ||
UL38 | capsid protein | 84,529 | C | C | T | C35R | 100 | 961.3 |
UL39 | ICP6 | 87,759 | T | T | C | A474V | 100 | 618.4 |
88,762 | T | T | C | NC | 98.4 | 559.4 | ||
UL48 | VP16 | 103,969 | A | A | G | T212A | 100 | 820.1 |
104,340 | C | C | T | NC | 100 | 865.1 | ||
UL50 | dUTPase | 107,306 | A | A | C | P134T | 96.1 | 403.2 |
UL55 | non-structural protein | 115,491 | A | A | G | M35I | 100 | 423.7 |
UL56 | structural protein | 116,406 | T | T | C | A137T | 100 | 401.9 |
US2 | tegument protein | 134,690 | A | A | G | L34F | 97.1 | 304.5 |
Cells | Viruses | IC50 (Mean ±SD μg/mL) | |||||
---|---|---|---|---|---|---|---|
ACV | BVDU | Ara-T | PCV | CDV | FOS | ||
Vero cells | HSV-1_BAC_UL29mut | 0.65 ± 0.09 | 0.75 ± 0.13 | 4.67 ± 0.51 | 0.51 ± 0.06 | 0.45 ± 0.03 | 12.0 ± 0.45 * |
HSV-1_BAC_UL29mut_rev | 0.47 ± 0.03 | 1.35 ± 0.13 | 4.37 ± 0.82 | 0.56 ± 0.02 | 0.32 ± 0.04 | 21.3 ± 0.47 | |
HSV-1_BAC | 0.41 ± 0.06 | 1.15 ± 0.25 | 4.29 ± 0.01 | 0.56 ± 0.03 | 0.47 ± 0.04 | 22.7 ± 1.91 | |
HEL cells | HSV-1_BAC_UL29mut | 1.39 ± 0.02 * | 0.11 ± 0.01 | 0.42 ± 0.15 | 1.38 ± 0.44 | 0.52 ± 0.18 | 28.2 ± 1.61 * |
HSV-1_BAC_UL29mut_rev | 0.45 ± 0.21 | 0.19 ± 0.04 | 0.66 ± 0.17 | 1.77 ± 0.20 | 0.33 ± 0.03 | 48.6 ± 5.43 | |
HSV-1_BAC | 0.60 ± 0.14 | 0.14 ± 0.02 | 0.68 ± 0.08 | 1.59 ± 0.11 | 0.44 ± 0.04 | 51.5 ± 9.14 | |
ARPE19 cells | HSV-1_BAC_UL29mut | 113 ± 1.26 * | NT | NT | NT | NT | NT |
HSV-1_BAC_UL29mut_rev | 27.9 ± 9.20 | NT | NT | NT | NT | NT | |
HSV-1_BAC | 24.7 ± 11.0 | NT | NT | NT | NT | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, S.; Harada, S.; Fujii, H.; Kinoshita, H.; Nguyen, P.H.A.; Shibamura, M.; Yoshikawa, T.; Kawahara, M.; Ebihara, H.; Saijo, M.; et al. A Mutation in the Herpes Simplex Virus Type 1 (HSV-1) UL29 Gene is Associated with Anti-Herpesvirus Drugs’ Susceptibility. Viruses 2024, 16, 1813. https://doi.org/10.3390/v16121813
Yamada S, Harada S, Fujii H, Kinoshita H, Nguyen PHA, Shibamura M, Yoshikawa T, Kawahara M, Ebihara H, Saijo M, et al. A Mutation in the Herpes Simplex Virus Type 1 (HSV-1) UL29 Gene is Associated with Anti-Herpesvirus Drugs’ Susceptibility. Viruses. 2024; 16(12):1813. https://doi.org/10.3390/v16121813
Chicago/Turabian StyleYamada, Souichi, Shizuko Harada, Hikaru Fujii, Hitomi Kinoshita, Phu Hoang Anh Nguyen, Miho Shibamura, Tomoki Yoshikawa, Madoka Kawahara, Hideki Ebihara, Masayuki Saijo, and et al. 2024. "A Mutation in the Herpes Simplex Virus Type 1 (HSV-1) UL29 Gene is Associated with Anti-Herpesvirus Drugs’ Susceptibility" Viruses 16, no. 12: 1813. https://doi.org/10.3390/v16121813
APA StyleYamada, S., Harada, S., Fujii, H., Kinoshita, H., Nguyen, P. H. A., Shibamura, M., Yoshikawa, T., Kawahara, M., Ebihara, H., Saijo, M., & Fukushi, S. (2024). A Mutation in the Herpes Simplex Virus Type 1 (HSV-1) UL29 Gene is Associated with Anti-Herpesvirus Drugs’ Susceptibility. Viruses, 16(12), 1813. https://doi.org/10.3390/v16121813