Anti SARS-CoV-2 Monoclonal Antibodies in Pre-Exposure or Post-Exposure in No- or Weak Responder to Vaccine Kidney Transplant Recipients: Is One Strategy Better than Another?
Abstract
:1. Introduction
2. Materials and Methods
- −
- Tixagevimab-cilgavimab in pre-exposure COVID-19 according to this scheme: intramuscular injections of 150 mg tixagevimab-150 mg cilgavimab between 23 December 2021 and February 2022, then 2 intramuscular injections of 150 mg tixagevimab-150 mg cilgavimab between April 2022 and May 2022 and then 2 intramuscular injections of 300 mg tixagevimab-300 mg cilgavimab between November and December during consultation. The last prophylaxis injection must have been less than 6 months old. (Group 1: prophylactic group)
- −
- Tixagevimab-cilgavimab curative treatment: mAbs should be administered within 5 days of onset of symptoms in KTRs without oxygen therapy, independently of the presence of symptoms or the reason for testing (symptoms, COVID-19 contact or systematic testing). Tixagevimab-cilgavimab in curative treatment was given intravenously at 600 mg a day in the hospital. (Group 2: curative group)
- −
- No specific treatment (Group 3: no treatment). The reasons why the KTRs did not receive mAbs prophylaxis were mostly patient refusal or curative anticoagulant.
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://fr.statista.com/statistiques/1101324/mortscoronavirusmonde/#:~:text=Cette%20statistique%20montre%20le%20nombre,2023%2C%20dont%20167.985%20en%20France (accessed on 1 August 2023).
- Caillard, S.; Anglicheau, D.; Matignon, M.; Durrbach, A.; Greze, C.; Frimat, L.; Thaunat, O.; Legris, T.; Moal, V.; Westeel, P.F.; et al. An initial report from the French SOT COVID Registry suggests high mortality due to COVID-19 in recipients of kidney transplants. Kidney Int. 2020, 98, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Anon. European Centre for Disease Prevention and Control: COVID-19 Vaccination and Prioritization Strategies in the EU/EEA. 2020. Available online: https://www.ecdc.europa.eu/en/publications-data/covid-19-vaccination-and-prioritisation-strategies-eueea (accessed on 2 April 2021).
- Centers for Disease Control and Prevention: COVID-19 Vaccination Program Operational Guidance. 2021. Available online: https://www.cdc.gov/vaccines/covid-19/covid19-vaccination-guidance.html (accessed on 2 April 2021).
- Bertrand, D.; Hamzaoui, M.; Lemée, V.; Lamulle, J.; Hanoy, M.; Laurent, C.; Lebourg, L.; Etienne, I.; Lemoine, M.; Le Roy, F.; et al. Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients. JASN 2021, 32, 2147–2152. [Google Scholar] [CrossRef] [PubMed]
- Caillard, S.; Chavarot, N.; Bertrand, D.; Kamar, N.; Thaunat, O.; Moal, V.; Masset, C.; Hazzan, M.; Gatault, P.; Sicard, A.; et al. Occurrence of severe COVID-19 in vaccinated transplant patients. Kidney Int. 2021, 100, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Collier, A.Y.; Rowe, M.; Mardas, F.; Ventura, J.D.; Wan, H.; Miller, J.; Powers, O.; Chung, B.; Siamatu, M.; et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants. N. Engl. J. Med. 2022, 386, 1579–1580. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Ustianowski, A.; Thomas, S.; Templeton, A.; Yuan, Y.; Seegobin, S.; Houlihan, C.F.; Menendez-Perez, I.; Pollett, S.; Arends, R.H.; et al. AZD7442 (Tixagevimab/Cilgavimab) for Post-Exposure Prophylaxis of Symptomatic Coronavirus Disease 2019. Clin. Infect. Dis. 2023, 76, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab–Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- ATU/RTU—Evusheld (Tixagévimab/Cilgavimab)—ANSM. Available online: https://ansm.sante.fr/tableau-acces-derogatoire/tixagevimab-150-mg-cilgavimab-150-mg-solution-injectable-evusheld (accessed on 14 January 2022).
- Bruel, T.; Hadjadj, J.; Maes, P.; Planas, D.; Seve, A.; Staropoli, I.; Guivel-Benhassine, F.; Porrot, F.; Bolland, W.H.; Nguyen, Y.; et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat. Med. 2022, 28, 1297–1302. [Google Scholar] [CrossRef]
- Bertrand, D.; Laurent, C.; Lemée, V.; Lebourg, L.; Hanoy, M.; Le Roy, F.; Nezam, D.; Pruteanu, D.; Grange, S.; de Nattes, T.; et al. Efficacy of anti–SARS-CoV-2 monoclonal antibody prophylaxis and vaccination on the Omicron variant of COVID-19 in kidney transplant recipients. Kidney Int. 2022, 102, 440–442. [Google Scholar] [CrossRef]
- Benotmane, I.; Velay, A.; Gautier-Vargas, G.; Olagne, J.; Thaunat, O.; Fafi-Kremer, S.; Caillard, S. Pre-exposure prophylaxis with 300 mg Evusheld elicits limited neutralizing activity against the Omicron variant. Kidney Int. 2022, 102, 442–444. [Google Scholar] [CrossRef]
- Benotmane, I.; Olagne, J.; Gautier-Vargas, G.; Cognard, N.; Heibel, F.; Braun-Parvez, L.; Keller, N.; Martzloff, J.; Perrin, P.; Pszczolinski, R.; et al. Tixagevimab-cilgavimab as an Early Treatment for COVID-19 in Kidney Transplant Recipients. Transplantation 2023, 107, e215–e218. [Google Scholar] [CrossRef]
- Lafont, E.; Pere, H.; Lebeaux, D.; Cheminet, G.; Thervet, E.; Guillemain, R.; Flahault, A. Targeted SARS-CoV-2 treatment is associated with decreased mortality in immunocompromised patients with COVID-19. J. Antimicrob. Chemother. 2022, 77, 2688–2692. [Google Scholar] [CrossRef]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Suribhatla, R.; Starkey, T.; Ionescu, M.C.; Pagliuca, A.; Richter, A.; Lee, L.Y.W. Systematic review and meta-analysis of the clinical effectiveness of tixagevimab/cilgavimab for prophylaxis of COVID-19 in immunocompromised patients. Br. J. Haematol. 2023, 201, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Alhumaid, S.; Al Mutair, A.; Alali, J.; Al Dossary, N.; Albattat, S.H.; Al HajjiMohammed, S.M.; Almuaiweed, F.S.; AlZaid, M.R.; Alomran, M.J.; Alqurini, Z.S.; et al. Efficacy and Safety of Tixagevimab/Cilgavimab to Prevent COVID-19 (Pre-Exposure Prophylaxis): A Systematic Review and Meta-Analysis. Diseases 2022, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Anon. KDIGO—Kidney Disease Improving Global Outcomes. Available online: https://kdigo.org/ (accessed on 1 July 2010).
- Arora, P.; Kempf, A.; Nehlmeier, I.; Schulz, S.R.; Jäck, H.M.; Pöhlmann, S.; Hoffmann, M. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect. Dis. 2023, 23, 22–23. [Google Scholar] [CrossRef] [PubMed]
- O’brien, M.P.; Forleo-Neto, E.; Musser, B.J.; Isa, F.; Chan, K.-C.; Sarkar, N.; Bar, K.J.; Barnabas, R.V.; Barouch, D.H.; Cohen, M.S.; et al. Subcutaneous REGEN-COV Antibody Combination to Prevent COVID-19. N. Engl. J. Med. 2021, 385, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, H.; Gigan, M.; Vermorel, A.; Charrier, M.; Guirle, L.; Jambon, F.; Lacapère, A.; Ménard, C.; Moreau, K.; Neau-Cransac, M.; et al. COVID-19 morbidity decreases with tixagevimab–cilgavimab preexposure prophylaxis in kidney transplant recipient nonresponders or low-vaccine responders. Kidney Int. 2022, 102, 936–938. [Google Scholar] [CrossRef]
- Montgomery, H.; Hobbs, F.D.R.; Padilla, F.; Arbetter, D.; Templeton, A.; Seegobin, S.; Kim, K.; Campos, J.A.S.; Arends, R.H.; Brodek, B.H.; et al. Efficacy and safety of intramuscular administration of tixagevimab–cilgavimab for early outpatient treatment of COVID-19 (TACKLE): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Bender Ignacio, R.A.; Wohl, D.A.; Arends, R.; Pilla Reddy, V.; Mu, Y.; Javan, A.C.; Hughes, M.D.; Eron, J.J.; Currier, J.S.; Smith, D.; et al. Comparative Pharmacokinetics of Tixagevimab/Cilgavimab (AZD7442) Administered Intravenously Versus Intramuscularly in Symptomatic SARS-CoV-2 Infection. Clin. Pharma Ther. 2022, 112, 1207–1213. [Google Scholar] [CrossRef]
- Gueguen, J.; Colosio, C.; Del Bello, A.; Scemla, A.; N’Guyen, Y.; Rouzaud, C.; Carvalho-Schneider, C.; Vargas, G.G.; Tremolières, P.; Eddine, A.J.; et al. Early Administration of Anti–SARS-CoV-2 Monoclonal Antibodies Prevents Severe COVID-19 in Kidney Transplant Patients. Kidney Int. Rep. 2022, 7, 1241–1247. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Ulloa, A.C.; Buchan, S.A.; Daneman, N.; Brown, K.A. Estimates of SARS-CoV-2 Omicron Variant Severity in Ontario, Canada. JAMA 2022, 327, 1286. [Google Scholar] [CrossRef]
- Benotmane, I.; Velay, A.; Gautier-Vargas, G.; Olagne, J.; Obrecht, A.; Cognard, N.; Heibel, F.; Braun-Parvez, L.; Keller, N.; Martzloff, J.; et al. Breakthrough COVID-19 cases despite prophylaxis with 150 mg of tixagevimab and 150 mg of cilgavimab in kidney transplant recipients. Am. J. Transplant. 2022, 22, 2675–2681. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, D.; Laurent, C.; Lemée, V.; Lebourg, L.; Hanoy, M.; Le Roy, F.; Nezam, D.; Pruteanu, D.; Grange, S.; de Nattes, T.; et al. Efficacy of Tixagevimab/Cilgavimab Prophylaxis and Vaccination on Omicron Variants (BA.1, BA.2, BA.5, and BQ.1.1) in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2023, 18, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.C.; Joung, S.Y.; Wang, M.; Tran, T.A.; Bravo, M.; Masoom, H.; Chang, C.; Mendez, M.; Sun, N.; Patel, J.; et al. Assessing the post hoc effectiveness of tixagevimab−cilgavimab for prevention of SARS-CoV-2 infections in solid organ transplant recipients. Transpl. Infect. Dis. 2023, 26, e14182. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us (accessed on 26 January 2023).
- Gupta, A.; Konnova, A.; Smet, M.; Berkell, M.; Savoldi, A.; Morra, M.; De Winter, F.H.; Peserico, D.; Danese, E.; Hotterbeekx, A.; et al. Host immunological responses facilitate development of SARS-CoV-2 mutations in patients receiving monoclonal antibody treatments. J. Clin. Investig. 2023, 133, e166032. [Google Scholar] [CrossRef] [PubMed]
- Libster, R.; Marc, G.P.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe COVID-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Richier, Q.; Hueso, T.; Tiberghien, P.; Lacombe, K. COVID-19: Still a Place for the Convalescent Plasma? Focus on the Immunocompromised Patients. Rev. Med. Interne 2023, 44, 467–471. [Google Scholar] [CrossRef] [PubMed]
- VanBlargan, L.A.; Errico, J.M.; Halfmann, P.J.; Zost, S.J.; Crowe, J.E.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M.S. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022, 28, 490–495. [Google Scholar] [CrossRef]
- Vangeel, L.; Chiu, W.; De Jonghe, S.; Maes, P.; Slechten, B.; Raymenants, J.; André, E.; Leyssen, P.; Neyts, J.; Jochmans, D. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir. Res. 2022, 198, 105252. [Google Scholar] [CrossRef]
- Bates, T.A.; McBride, S.K.; Leier, H.C.; Guzman, G.; Lyski, Z.L.; Schoen, D.; Winders, B.; Lee, J.Y.; Lee, D.X.; Messer, W.B.; et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci. Immunol. 2022, 7, eabn8014. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Group 1 n = 112 | p Group 1 vs. 2 | Groupe 2 n = 40 | p Group 2 vs. 3 | Group 3 n = 27 | p Group 1 vs. 3 |
---|---|---|---|---|---|---|
Age, years | 57.2 ± 14.2 | 0.49 | 55.8 ± 14.5 | 0.55 | 56.8 ± 13.5 | 0.89 |
Male sexe, n (%) | 66 (58.9) | 0.84 | 23 (57.5) | 0.87 | 15 (55.5) | 0.72 |
Time from KT, median (range) | 63.6 (35–125) | 0.32 | 88.2 (31–166) | 0.79 | 63.4 (32–141) | 0.74 |
First transplantation, n (%) | 93 (83) | 0.29 | 35 (87.5) | 0.33 | 24 (88.9) | 0.07 |
Induction therapy for KT n (%): | 0.78 | 0.32 | 0.23 | |||
ATG | 51 (46) | 18 (47) | 14 (54) | |||
Anti-R-IL2 | 60 (54) | 20 (53) | 12 (46) | |||
eGFR, mL/min per 1.73 m2 | 46.1 ± 21.2 | 0.47 | 43.5 ± 18.6 | 0.3 | 38.5 ± 18.3 | 0.05 |
Body mass index, kg/m2 | 27.2 ± 5.1 | 0.64 | 27.0 ± 5.1 | 0.71 | 26.2 ± 4.5 | 0.31 |
Nephropathy: | 0.11 | 0.35 | 0.54 | |||
Diabetes, n (%) | 6 (5.4) | 1 (2.5) | 1 (3.7) | |||
Glomerulonephritis, n (%) | 48 (42.8) | 14 (35) | 12 (44.4) | |||
Unkown cause, n (%) | 6 (5.4) | 6 (15) | 2 (7.4) | |||
Interstitial nephropathy, n (%) | 10 (8.9) | 2 (5.0) | 2 (7.4) | |||
Polycystic kideney, n (%) | 22 (19.6) | 10 (25) | 4 (14.8) | |||
Malformative uropathy, n (%) | 11 (9.8) | 6 (15) | 3 (11.1) | |||
Hypertension, n (%) | 8 (7.1) | 1 (2.5) | 3 (11.1) | |||
Other cause, n (%) | 1 (0.9) | 0 (0) | 0 (0) | |||
Comorbidities: | ||||||
Hypertension, n (%) | 89 (79.5) | 0.46 | 34 (85) | 0.98 | 23 (85.2) | 0.51 |
Diabetes mellitus, n (%) | 32 (28.6) | 0.41 | 9 (22.5) | 0.69 | 5 (18.5) | 0.26 |
Cardiac disease, n (%) | 39 (34.8) | 0.54 | 12 (30) | 0.23 | 12 (44.4) | 0.38 |
Vascular disease, n (%) | 11 (9.8%) | 0.57 | 3 (7.5) | 0.99 | 2 (7.4) | 0.62 |
Respiratory disease, n (%) | 13 (11.6%) | 0.33 | 7 (17.5) | 0.63 | 6 (22.2) | 0.14 |
Cancer, n (%) | 22 (19.6%) | 0.78 | 7 (17.5) | 0.63 | 6 (22.2) | 0.75 |
Immunosupressive drugs at inclusion: | ||||||
Mycophenolic acid, n (%) | 97 (86.6) | 0.91 | 35 (87.5) | 0.49 | 22 (81.5) | 0.48 |
Azathioprine, n (%) | 6 (5.4) | 0.61 | 3 (7.5) | 0.61 | 3 (11.1) | 0.27 |
Ciclosporin, n (%) | 7 (6.2) | 0.09 | 6 (15) | 0.65 | 3 (11.1) | 0.37 |
mTOR inhibitor, n (%) | 3 (2.6) | 0.3 | 0 (0) | 1 | 0 (0) | 0.39 |
Tacrolimus, n (%) | 84 (75) | 0.73 | 29 (72.5) | 0.15 | 15 (55.5) | 0.04 |
Belatacept, n (%) | 17 (15.2) | 0.43 | 4 (10) | 0.04 | 8 (29.6) | 0.07 |
Corticosteroids, n (%) | 70 (62.5) | 0.03 | 17 (42.5) | 0.45 | 14 (51.8) | 0.29 |
Group 1 n = 112 | p Group 1 vs. 2 | Group 2 n = 40 | p Group 2 vs. 3 | Group 3 n = 27 | p Group 1 vs. 3 | |
---|---|---|---|---|---|---|
Symptomatic COVID-19, n (%) | 90 (80.3) | 0.31 | 35 (87.5) | 0.08 | 19 (70.3) | 0.25 |
COVID-19-related hospitalization, n (%) | 17 (15.1) | 0.71 | 7 (17.5) | 0.24 | 8 (29.6) | 0.07 |
COVID-19 related hospitalization in intensive care unit, n (%) | 2 (1.8) | 0.4 | 0 (0) | 0.005 | 5 (18.5) | 0.0003 |
Oxygen therapy, n (%) | 12 (10.7) | 0.29 | 2 (5) | 0.01 | 7 (25.9) | 0.04 |
COVID-19-related death, n (%) | 2 (1.8) | 0.77 | 1 (2.5) | 0.14 | 3 (11.1) | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, A.; Laurent, C.; Lebourg, L.; Lemée, V.; Hanoy, M.; Le Roy, F.; Grange, S.; Lemoine, M.; Guerrot, D.; Bertrand, D. Anti SARS-CoV-2 Monoclonal Antibodies in Pre-Exposure or Post-Exposure in No- or Weak Responder to Vaccine Kidney Transplant Recipients: Is One Strategy Better than Another? Viruses 2024, 16, 381. https://doi.org/10.3390/v16030381
Romero A, Laurent C, Lebourg L, Lemée V, Hanoy M, Le Roy F, Grange S, Lemoine M, Guerrot D, Bertrand D. Anti SARS-CoV-2 Monoclonal Antibodies in Pre-Exposure or Post-Exposure in No- or Weak Responder to Vaccine Kidney Transplant Recipients: Is One Strategy Better than Another? Viruses. 2024; 16(3):381. https://doi.org/10.3390/v16030381
Chicago/Turabian StyleRomero, Anais, Charlotte Laurent, Ludivine Lebourg, Veronique Lemée, Mélanie Hanoy, Frank Le Roy, Steven Grange, Mathilde Lemoine, Dominique Guerrot, and Dominique Bertrand. 2024. "Anti SARS-CoV-2 Monoclonal Antibodies in Pre-Exposure or Post-Exposure in No- or Weak Responder to Vaccine Kidney Transplant Recipients: Is One Strategy Better than Another?" Viruses 16, no. 3: 381. https://doi.org/10.3390/v16030381
APA StyleRomero, A., Laurent, C., Lebourg, L., Lemée, V., Hanoy, M., Le Roy, F., Grange, S., Lemoine, M., Guerrot, D., & Bertrand, D. (2024). Anti SARS-CoV-2 Monoclonal Antibodies in Pre-Exposure or Post-Exposure in No- or Weak Responder to Vaccine Kidney Transplant Recipients: Is One Strategy Better than Another? Viruses, 16(3), 381. https://doi.org/10.3390/v16030381