Evolution of Endogenous Retroviruses in the Subfamily of Caprinae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources of Genomes and ERV Reference Sequences Used in This Study
2.2. ERVs Mining in the Caprinae Genomes
2.3. ERVs Annotation in the Caprinae Genomes
2.4. Phylogenetic Analysis
2.5. Divergence Analysis of Full ERVs
2.6. PCR Verification
2.7. Genotyping Analysis
2.8. Intersection Analysis
3. Results
3.1. ERV Mining in the Genomes of Caprinae
3.2. Classification of ERVs in the Genomes of Caprinae
3.3. Distribution and Genomic Coverages of ERVs in Different Species of Caprinae
3.4. Kimura Divergence and Genotyping Analysis of Recent and Potentially Active ERVs in the Genomes of Caprinae
3.5. Most lncRNAs and Protein-Coding Genes Contain ERV-Derived Sequences in Sheep and Goats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gifford, R.; Tristem, M. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 2003, 26, 291–315. [Google Scholar] [CrossRef]
- Rasmussen, H.B. Interactions between Exogenous and Endogenous Retroviruses. J. Biomed. Sci. 1997, 4, 1–8. [Google Scholar] [CrossRef]
- Ruprecht, K.; Mayer, J.; Sauter, M.; Roemer, K.; Mueller-Lantzsch, N. Endogenous retroviruses: Endogenous retroviruses and cancer. Cell. Mol. Life Sci. 2008, 65, 3366–3382. [Google Scholar] [CrossRef]
- Isbel, L.; Whitelaw, E. Endogenous retroviruses in mammals: An emerging picture of how ERVs modify expression of adjacent genes. Bioessays 2012, 34, 734–738. [Google Scholar] [CrossRef]
- Lavialle, C.; Cornelis, G.; Dupressoir, A.; Esnault, C.; Heidmann, O.; Vernochet, C.; Heidmann, T. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20120507. [Google Scholar] [CrossRef]
- Jern, P.; Coffin, J.M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 2008, 42, 709–732. [Google Scholar] [CrossRef] [PubMed]
- Stoye, J.P. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat. Rev. Microbiol. 2012, 10, 395–406. [Google Scholar] [CrossRef]
- Hecht, S.J.; Stedman, K.E.; Carlson, J.O.; DeMartini, J.C. Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. Proc. Natl. Acad. Sci. USA 1996, 93, 3297–3302. [Google Scholar] [CrossRef] [PubMed]
- Herniou, E.; Martin, J.; Miller, K.; Cook, J.; Wilkinson, M.; Tristem, M. Retroviral diversity and distribution in vertebrates. J. Virol. 1998, 72, 5955–5966. [Google Scholar] [CrossRef] [PubMed]
- Blikstad, V.; Benachenhou, F.; Sperber, G.O.; Blomberg, J. Endogenous retroviruses: Evolution of human endogenous retroviral sequences: A conceptual account. Cell. Mol. Life Sci. 2008, 65, 3348–3365. [Google Scholar] [CrossRef] [PubMed]
- Stocking, C.; Kozak, C. Endogenous retroviruses: Murine endogenous retroviruses. Cell. Mol. Life Sci. 2008, 65, 3383–3398. [Google Scholar] [CrossRef] [PubMed]
- Estes, R.D. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Huffman, B. The Ultimate Ungulate Page. 2003. Available online: https://www.ultimateungulate.com/Images/imageuse.html (accessed on 7 December 2023).
- Robinson, M. Grzimek’s Animal Life. Ref. Rev. 2011, 25, 47–48. [Google Scholar] [CrossRef]
- Shackleton, D.M. Wild Sheep and Goats and Their Relatives: Status Survey and Conservation Action Plan for Caprinae; IUCN: Gland, Switzerland, 1997. [Google Scholar]
- Alden, C.; Estes, R.D.; Schlitter, D.; McBride, B. National Audubon Society field guide to African wildlife. In National Audubon Society Field Guides; Knopf Doubleday Publishing Group: New York, NY, USA, 1995; Volume 1, pp. 118–142. [Google Scholar]
- Danell, K.; Bergström, R.; Duncan, P.; Pastor, J. Large Herbivore Ecology, Ecosystem Dynamics and Conservation; Cambridge University Press: Cambridge, UK, 2006; Volume 11. [Google Scholar]
- Feldhamer, G.A.; Merritt, J.F.; Krajewski, C.; Rachlow, J.L.; Stewart, K.M. Mammalogy: Adaptation, Diversity, Ecology; Johns Hopkins University Press: Baltimore, MD, USA, 2020. [Google Scholar]
- Matters, N. Convention on International Trade in Endangered Species of Wild Fauna and Flora; CITES: Geneva, Switzerland, 2020. [Google Scholar]
- Chessa, B.; Pereira, F.; Arnaud, F.; Amorim, A.; Goyache, F.; Mainland, I.; Kao, R.R.; Pemberton, J.M.; Beraldi, D.; Stear, M.J.; et al. Revealing the history of sheep domestication using retrovirus integrations. Science 2009, 324, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, F.; Varela, M.; Spencer, T.; Palmarini, M. Endogenous retroviruses: Coevolution of endogenous Betaretroviruses of sheep and their host. Cell. Mol. Life Sci. 2008, 65, 3422–3432. [Google Scholar] [CrossRef] [PubMed]
- Klymiuk, N.; Müller, M.; Brem, G.; Aigner, B. Characterization of endogenous retroviruses in sheep. J. Virol. 2003, 77, 11268–11273. [Google Scholar] [CrossRef] [PubMed]
- Ellinghaus, D.; Kurtz, S.; Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 2008, 9, 18. [Google Scholar] [CrossRef]
- Gremme, G.; Steinbiss, S.; Kurtz, S. GenomeTools: A comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013, 10, 645–656. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef] [PubMed]
- Chen, N. Using Repeat Masker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 2004, 5, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.S.; Eddy, S.R.; Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 2010, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.D.; Tomii, K.; Katoh, K. Application of the MAFFT sequence alignment program to large data—Reexamination of the usefulness of chained guide trees. Bioinformatics 2016, 32, 3246–3251. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 2002, 12, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Chen, C.; Zheng, Y.; Wang, X.; Song, C. Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals 2024, 14, 621. [Google Scholar] [CrossRef] [PubMed]
- Belshaw, R.; Pereira, V.; Katzourakis, A.; Talbot, G.; Pačes, J.; Burt, A.; Tristem, M. Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 2004, 101, 4894–4899. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar]
- McCarthy, E.M.; McDonald, J.F. Long terminal repeat retrotransposons of Mus musculus. Genome Biol. 2004, 5, R14. [Google Scholar] [CrossRef]
- Nelson, P.N.; Hooley, P.; Roden, D.; Davari Ejtehadi, H.; Rylance, P.; Warren, P.; Martin, J.; Murray, P.G. Human endogenous retroviruses: Transposable elements with potential? Clin. Exp. Immunol. 2004, 138, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Katzourakis, A.; Gifford, R.J.; Tristem, M.; Gilbert, M.T.P.; Pybus, O.G. Macroevolution of complex retroviruses. Science 2009, 325, 1512. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, W.; Wang, X.; Shen, D.; Wang, S.; Wang, Y.; Gao, B.; Wimmers, K.; Mao, J.; Li, K. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob. DNA 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Consortium, M.G.S.; Waterston, R.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar] [CrossRef]
- Li, R.; Fan, W.; Tian, G.; Zhu, H.; He, L.; Cai, J.; Huang, Q.; Cai, Q.; Li, B.; Bai, Y. The sequence and de novo assembly of the giant panda genome. Nature 2010, 463, 311–317. [Google Scholar] [CrossRef]
- Lindblad-Toh, K.; Wade, C.M.; Mikkelsen, T.S.; Karlsson, E.K.; Jaffe, D.B.; Kamal, M.; Clamp, M.; Chang, J.L.; Kulbokas, E.J.; Zody, M.C. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 2005, 438, 803–819. [Google Scholar] [CrossRef]
- Tanaka, M.; Robinson, B.A.; Chutiraka, K.; Geary, C.D.; Reed, J.C.; Lingappa, J.R. Mutations of conserved residues in the major homology region arrest assembling HIV-1 Gag as a membrane-targeted intermediate containing genomic RNA and cellular proteins. J. Virol. 2016, 90, 1944–1963. [Google Scholar] [CrossRef]
- Fang, X.; Mou, Y.; Huang, Z.; Li, Y.; Han, L.; Zhang, Y.; Feng, Y.; Chen, Y.; Jiang, X.; Zhao, W. The sequence and analysis of a Chinese pig genome. Gigascience 2012, 1, 16. [Google Scholar] [CrossRef]
- Łopata, K.; Wojdas, E.; Nowak, R.; Łopata, P.; Mazurek, U. Porcine endogenous retrovirus (PERV)–molecular structure and replication strategy in the context of retroviral infection risk of human cells. Front. Microbiol. 2018, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Wei, H.-J.; Lin, L.; George, H.; Wang, T.; Lee, I.-H.; Zhao, H.-Y.; Wang, Y.; Kan, Y.; Shrock, E. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 2017, 357, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Zhao, B.; Chen, Y.; D’Alessandro, E.; Chen, C.; Ji, T.; Wu, X.; Song, C. Distinct retrotransposon evolution profile in the genome of rabbit (Oryctolagus cuniculus). Genome Biol. Evol. 2021, 13, evab168. [Google Scholar] [CrossRef] [PubMed]
- Anai, Y.; Ochi, H.; Watanabe, S.; Nakagawa, S.; Kawamura, M.; Gojobori, T.; Nishigaki, K. Infectious endogenous retroviruses in cats and emergence of recombinant viruses. J. Virol. 2012, 86, 8634–8644. [Google Scholar] [CrossRef] [PubMed]
- Gentles, A.J.; Wakefield, M.J.; Kohany, O.; Gu, W.; Batzer, M.A.; Pollock, D.D.; Jurka, J. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res. 2007, 17, 992–1004. [Google Scholar] [CrossRef] [PubMed]
Groups | Repbase Name | No of ERVs | Length | ||||||
---|---|---|---|---|---|---|---|---|---|
Representative Sequence (bp) | LTR (bp) | gag (aa) | pro (aa) | pol (aa) | IN (aa) | env (aa) | |||
Class I (Gamma retroviruses) | |||||||||
Cap_ERV_1 | OviAri-5.324_LTR | 1425 | 8749 | 260 | 301 | - | 891 | - | 156 |
Cap_ERV_2 | - | 1123 | 8668 | 440 | 364 | - | 1021 | - | 616 |
Cap_ERV_3 | - | 2872 | 8530 | 292 | 443 | - | 932 | - | 471 |
Cap_ERV_4 | OviAri-5.2557_int | 1759 | 8123 | 264 | 559 | - | 1176 | - | 629 |
Cap_ERV_5 | - | 1655 | 8294 | 388 | 341 | - | 1010 | - | 385 |
Cap_ERV_6 | - | 946 | 7492 | 257 | 137 | - | 451 | 57 | - |
Cap_ERV_7 | - | 1792 | 7316 | 274 | 275 | - | 514 | - | 290 |
Cap_ERV_8 | - | 525 | 7049 | 388 | 488 | - | 633 | - | 302 |
Cap_ERV_9 | - | 970 | 6894 | 436 | 526 | - | 569 | - | 301 |
Cap_ERV_10 | OviAri-1.272_LTR | 2469 | 7428 | 381 | 126 | - | 333 | - | 98 |
Cap_ERV_11 | - | 6219 | 7316 | 149 | 179 | - | 286 | - | 103 |
Cap_ERV_12 | OviAri-6.2056 | 3190 | 7762 | 369 | 102 | - | 452 | 37 | - |
Cap_ERV_13 | OviAri-1.306 | 6750 | 8198 | 442 | 565 | - | 1168 | - | 468 |
Cap_ERV_14 | OviAri-3.284_LTR | 741 | 6889 | 412 | 241 | - | 523 | 57 | 321 |
Cap_ERV_15 | - | 757 | 6754 | 276 | 553 | - | 376 | - | 539 |
Cap_ERV_16 | - | 924 | 7459 | 380 | 348 | - | 360 | - | 145 |
Cap_ERV_17 | - | 1453 | 5920 | 156 | 171 | - | 306 | - | 111 |
Cap_ERV_18 | - | 3986 | 6687 | 183 | 168 | - | 349 | - | 113 |
Cap_ERV_19 | - | 7277 | 9580 | 374 | 257 | - | 450 | - | 103 |
Class II (Beta retroviruses) | |||||||||
Cap_ERV_20 | - | 1985 | 7745 | 303 | 532 | 235 | 702 | 44 | 159 |
Cap_ERV_21 | - | 1470 | 7297 | 583 | 527 | 236 | 572 | 44 | 338 |
Cap_ERV_22 | - | 274 | 8844 | 250 | 62 | 182 | 342 | - | - |
Cap_ERV_23 | - | 5472 | 7651 | 158 | 54 | 105 | 58 | - | - |
Cap_ERV_24 | - | 1403 | 7870 | 410 | 616 | 289 | 826 | 46 | 618 |
Cap_ERV_25 | - | 472 | 7691 | 437 | 524 | 199 | 393 | 43 | 160 |
Cap_ERV_26 | - | 439 | 6435 | 143 | 88 | 217 | 508 | 43 | - |
Cap_ERV_27 | - | 3294 | 8439 | 265 | 443 | 94 | 661 | 42 | - |
Cap_ERV_28 | - | 2551 | 4421 | 330 | 125 | 127 | 401 | - | - |
Species | Recent and Potentially Active Full-Length Copies of ERVs | ||||
---|---|---|---|---|---|
Cap_ERV_20 | Cap_ERV_21 | Cap_ERV_24 | Cap_ERV_25 | ||
Sheep | Ovis aries | 60 | 52 | 65 | 41 |
Ovis ammon | 15 | 18 | 21 | 17 | |
Ovis canadensis | 34 | 31 | 33 | 21 | |
Ovis nivicola | 33 | 26 | 28 | 19 | |
Ovis orientalis | 40 | 32 | 37 | 22 | |
Goats | Capra hircus | 49 | 34 | 116 | 27 |
Capra aegagrus | 34 | 17 | 27 | 18 | |
Capra ibex | 18 | 14 | 20 | 5 | |
Capra sibirica | 28 | 21 | 34 | 17 | |
Relatives | Hemitragus hylocrius | 28 | 18 | 36 | 15 |
Budorcas taxicolor | 18 | 21 | 14 | 12 | |
Oreamnos americanus | 25 | 18 | 16 | 11 | |
Ovibos moschatus | 36 | 29 | 32 | 29 | |
Total | 418 | 331 | 479 | 254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moawad, A.S.; Wang, F.; Zheng, Y.; Chen, C.; Saleh, A.A.; Hou, J.; Song, C. Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses 2024, 16, 398. https://doi.org/10.3390/v16030398
Moawad AS, Wang F, Zheng Y, Chen C, Saleh AA, Hou J, Song C. Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses. 2024; 16(3):398. https://doi.org/10.3390/v16030398
Chicago/Turabian StyleMoawad, Ali Shoaib, Fengxu Wang, Yao Zheng, Cai Chen, Ahmed A. Saleh, Jian Hou, and Chengyi Song. 2024. "Evolution of Endogenous Retroviruses in the Subfamily of Caprinae" Viruses 16, no. 3: 398. https://doi.org/10.3390/v16030398
APA StyleMoawad, A. S., Wang, F., Zheng, Y., Chen, C., Saleh, A. A., Hou, J., & Song, C. (2024). Evolution of Endogenous Retroviruses in the Subfamily of Caprinae. Viruses, 16(3), 398. https://doi.org/10.3390/v16030398