Antiviral Chemotherapy in Avian Medicine—A Review
Abstract
:1. Introduction
2. Acyclovir
3. Abacavir and Its Derivates
4. Adefovir and Its Derivates
5. Amantadine
6. Ampligen
7. Azo Derivates
8. Baloxavir Marboxil
9. Didanosine
10. Docosanol
11. Entecavir
12. Fluoroarabinosylpyrimidine Nucleosides
13. Ganciclovir
14. Interferon
15. Ivermectin
16. Novel Peptides
17. Lamivudine
18. Nitazoxanide
19. Oseltamivir
20. Penciclovir and Famciclovir
21. Ribavirin
22. Zidovudine
23. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carpenter, J.W.; Marion, C.J. Chapter 5: Birds. In Exotic Animal Formulary, 5th ed; W.B. Saunders: St. Louis, MO, USA, 2018; pp. 291–293. [Google Scholar]
- Carpenter, J.W.; Marion, C.J. Chapter 6: Backyard Poultry and Waterfowl. In Exotic Animal Formulary, 5th ed; W.B. Saunders: St. Louis, MO, USA, 2018; p. 558. [Google Scholar]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/virbagen-omega (accessed on 3 February 2024).
- Sorrell, S.; Pugalendhi, S.J.; Gunn-Moore, D. Current treatment options for feline infectious peritonitis in the UK. Companion Anim. 2022, 27, 79–90. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU). 2022/1255 of 19 July 2022 Designating Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans, in Accordance with Regulation (EU) 2019/6 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/1255/oj (accessed on 8 February 2024).
- Dal Pozzo, F.; Thiry, E. Antiviral chemotherapy in veterinary medicine: Current applications and perspectives. Rev. Sci. Tech. 2014, 33, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Rollinson, E.A. Prospects for antiviral chemotherapy in veterinary medicine. I: Feline virus diseases. Antivir. Chem. Chemother. 1992, 3, 249–262. [Google Scholar] [CrossRef]
- Rollinson, E.A. Prospects for antiviral chemotherapy in veterinary medicine. II: Avian, piscine, canine, porcine, bovine and equine virus diseases. Antivir. Chem. Chemother. 1992, 3, 311–326. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Chesnokov, A.; De La Cruz, J.; Pascua, P.N.Q.; Mishin, V.P.; Jang, Y.; Jones, J.; Di, H.; Ivashchenko, A.A.; Killian, M.L.; et al. Antiviral susceptibility of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses isolated from birds and mammals in the United States, 2022. Antivir. Res. 2023, 217, 105679. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, T.; Mishin, V.P.; Sleeman, K.; Balish, A.; Jones, J.; Creanga, A.; Marjuki, H.; Uyeki, T.M.; Nguyen, D.H.; et al. Antiviral susceptibility of highly pathogenic avian influenza A(H5N1) viruses isolated from poultry, Vietnam, 2009–2011. Emerg. Infect. Dis. 2013, 19, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Kayed, A.E.; Kutkat, O.; Kandeil, A.; Moatasim, Y.; El Taweel, A.; El Sayes, M.; El-Shesheny, R.; Aboulhoda, B.E.; Abdeltawab, N.F.; Kayali, G.; et al. Comparative pathogenic potential of avian influenza H7N3 viruses isolated from wild birds in Egypt and their sensitivity to commercial antiviral drugs. Arch. Virol. 2023, 168, 82. [Google Scholar] [CrossRef] [PubMed]
- Cross, G. Antiviral therapy. Semin. Avian Exot. Pet Med. 1995, 4, 96–102. [Google Scholar] [CrossRef]
- Gnann, J.W., Jr.; Barton, N.H.; Whitley, R.J. Acyclovir: Mechanism of action, pharmacokinetics, safety and clinical applications. Pharmacotherapy 1983, 3, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Furman, P.A.; St Clair, M.H.; Spector, T. Acyclovir triphosphate is a suicide inactivator of the herpes simplex virus DNA polymerase. J. Biol. Chem. 1984, 259, 9575–9579. [Google Scholar] [CrossRef] [PubMed]
- Saral, R.; Ambinder, R.F.; Burns, W.H.; Angelopulos, C.M.; Griffin, D.E.; Burke, P.J.; Lietman, P.S. Acyclovir prophylaxis against herpes simplex virus infection in patients with leukemia. A randomized, double-blind, placebo-controlled study. Ann. Intern. Med. 1983, 99, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.G. Use of acyclovir in an outbreak of Pacheco’s parrot disease. AAV Today 1987, 1, 55–56. [Google Scholar] [CrossRef]
- Norton, T.M.; Gaskin, J.; Kollias, G.V.; Homer, B.; Clark, C.H.; Wilson, R. Efficacy of acyclovir against herpesvirus infection in Quaker parakeets. Am. J. Vet. Res. 1991, 52, 2007–2009. [Google Scholar] [CrossRef] [PubMed]
- Norton, T.M.; Kollias, G.V.; Clark, C.H.; Gaskin, J.; Wilson, R.C.; Coniglario, J. Acyclovir (Zovirax) pharmacokinetics in Quaker parakeets, Myiopsitta monachus. J. Vet. Pharmacol. Ther. 1992, 15, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Shivaprasad, H.L.; Phalen, D.N. A novel herpesvirus associated with respiratory disease in Bourke’s parrots (Neopsephotus bourkii). Avian Pathol. 2012, 41, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Thiry, E.; Vindevogel, H.; Leroy, P.; Pastoret, P.P.; Schwers, A.; Brochier, B.; Anciaux, Y.; Hoyois, P. In vivo and in vitro effect of acyclovir on pseudorabies virus, infectious bovine rhinotracheitis virus and pigeon herpesvirus. Ann. Rech. Vet. 1983, 14, 239–245. [Google Scholar] [PubMed]
- Samorek-Salamonowicz, E.; Cakala, A.; Wijaszka, T. Effect of acyclovir on the replication of turkey herpesvirus and Marek’s disease virus. Res. Vet. Sci. 1987, 42, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Samorek, S.E.; Cakala, A. Effects of acyclovir on the replication of virulent and vaccinal herpesvirus in vitro and in vivo. Zesz. Nauk. Akad. Roln Wroc. Wet. 1988, 45, 109–117. [Google Scholar]
- Johnson, J.C.; Attanasio, R. Synergistic inhibition of anatid herpesvirus replication by acyclovir and phosphonocompounds. Intervirology 1987, 28, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.M.; Hunter, R.P.; Papich, M.; Raphael, B.L.; Calle, P.P.; Clippinger, T.L.; Cook, R.A. Pharmacokinetics and safety of acyclovir in tragopans (Tragopan species). J. Avian Med. Surg. 2005, 19, 271–276. [Google Scholar] [CrossRef]
- Suresh, K.A.; Venkata Subbaiah, K.C.; Lavanya, R.; Chandrasekhar, K.; Chamarti, N.R.; Kumar, M.S.; Wudayagiri, R.; Valluru, L. Design, Synthesis and Biological Evaluation of Novel Phosphorylated Abacavir Derivatives as Antiviral Agents against Newcastle Disease Virus Infection in Chicken. Appl. Biochem. Biotechnol. 2016, 180, 61–81. [Google Scholar]
- Geetha, S.; Emmanuel, F.M.; Rodger, D.M. Abacavir/Lamividine combination in the treatment of HIV: A review. Ther. Clin. Risk Manag. 2010, 6, 83–94. [Google Scholar]
- Kesharwani, R.K.; Srivastava, V.; Singh, P.; Rizvi, S.I.; Adeppa, K.; Misra, K. A novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β). Appl. Biochem. Biotechnol. 2015, 176, 1996–2017. [Google Scholar] [CrossRef] [PubMed]
- Balzarini, J.; Stefano, A.; Alshaimaa, H.A.; Susan, M.D.; Carlo-Federico, P.; Chris, M. Improved antiviral activity of the aryloxymethoxyalaninyl phosphoramidate (APA) prodrug of abacavir (ABC) is due to the formation of markedly increased carbovir 50-triphosphate metabolite levels. FEBS Lett. 2004, 573, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Youcef, M.; Jan, B.; Christopher, M. Aryloxy phosphoramidate triesters: A technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem 2009, 4, 1779–1791. [Google Scholar]
- Rao, V.K.; Reddy, S.S.; Krishna, S.B.; Reddy, S.C.; Reddy, P.N.; Reddy, C.M.T.; Raju, C.N.; Ghosh, S.K. Design, synthesis and anti colon cancer activity evaluation of phosphorylated derivatives of Lamivudine (3TC). Lett. Drug Des. Discov. 2011, 8, 59–64. [Google Scholar]
- Sekhar, K.C.; Janardhan, A.; Kumar, Y.N.; Narasimha, G.; Raju, C.N.; Ghosh, S.K. Amino acid esters substituted phosphorylated emtricitabine and didanosine derivatives as antiviral and anticancer agents. Appl. Biochem. Biotechnol. 2014, 173, 1303–1318. [Google Scholar] [CrossRef] [PubMed]
- Faletto, M.B.; Miller, W.H.; Garvey, E.P.; St. Clair, M.H.; Daluge, S.M.; Good, S.S. Unique Intracellular Activation of a New Anit-HIV Agent (1592U89) in the Human T-Lymphoblastoid Cell Line CEM-T4. Antimicrob. Agents Chemother. 1997, 41, 1099–1107. [Google Scholar] [CrossRef]
- Daluge, S.M.; Good, S.S.; Faletto, M.B. A novel carbocyclic nucleoside analog with potent, selective antihuman immunodeficiency virus activity. Antimicrob. Agents Chemother. 1997, 41, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Foster, R.H.; Faulds, D. Abacavir. Drugs 1998, 55, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.A.; Venkata Subbaiah, K.C.; Thirunavukkarasu, C.; Chennakesavulu, S.; Rachamallu, A.; Chamarti, N.R.; Wudayagiri, R.; Valluru, L. Phosphorylated abacavir analogue (ABC-1) has ameliorative action against Newcastle disease virus induced pathogenesis in chicken. Biotechnol. Appl. Biochem. 2019, 66, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Noble, S.; Goa, K.L. Adefovir Dipivoxil. Drugs 1999, 58, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Balzarini, J. Metabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives. Pharm. World Sci. 1993, 16, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Naesens, L.; Snoeck, R.; Andrei, G.; Balzarini, J.; Neyts, J.; De Clercq, E. HPMPC (cidofovir), PMEA (adefovir) and related acyclic nucleoside phosphonate analogues: A review of their pharmacology and clinical potential in the treatment of viral infections. Antivir. Chem. Chemother. 1997, 8, 1–23. [Google Scholar] [CrossRef]
- Holy, A.; Votruba, I.; Merta, A.; Cerný, J.; Veselý, J.; Vlach, J.; Sedivá, K.; Rosenberg, I.; Otmar, M.; Hrebabecký, H.; et al. Acyclic nucleotide analogues: Synthesis, antiviral activity and inhibitory effects on some cellular and virus-encoded enzymes in vitro. Antivir. Res. 1990, 13, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Balzarini, J.; Hao, Z.; Herdewijn, P.; Johns, D.G.; De Clercq, E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc. Natl. Acad. Sci. USA 1991, 88, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Chassot, S.; Lambert, V.; Kay, A.; Trépo, C.; Cova, L. Duck hepatitis B virus (DHBV) as a model for understanding hepadnavirus neutralization. Arch. Virol. Suppl. 1993, 8, 133–139. [Google Scholar] [PubMed]
- Schultz, U.; Grgacic, E.; Nassal, M. Duck hepatitis B virus: An invaluable model system for HBV infection. Adv. Virus Res. 2004, 63, 1–70. [Google Scholar] [PubMed]
- Heijtink, R.A.; Kruining, J.; De Wilde, G.A.; Balzarini, J.; De Clercq, E.; Schalm, S.W. Inhibitory effects of acyclic nucleoside phosphonates on human hepatitis B virus and duck hepatitis B virus infections in tissue culture. Antimicrob. Agents Chemother. 1994, 38, 2180–2182. [Google Scholar] [CrossRef] [PubMed]
- Heijtink, R.A.; De Wilde, G.A.; Kruining, J.; Berk, L.; Balzarini, J.; De Clercq, E.; Holy, A.; Schalm, S.W. Inhibitory effect of 9-(2-phosphonylmethoxyethyl)-adenine (PMEA) on human and duck hepatitis B virus infection. Antivir. Res. 1993, 21, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, A.J.; Colledge, D.L.; Toole, J.J.; Angus, P.W.; Smallwood, R.A.; Locarnini, S.A. Inhibition of duck hepatitis B virus replication by 9-(2-phosphonylmethoxyethyl)adenine, an acyclic phosphonate nucleoside analogue. Antimicrob. Agents Chemother. 1998, 42, 3130–3135. [Google Scholar] [CrossRef] [PubMed]
- Colledge, D.; Civitico, G.; Locarnini, S.; Shaw, T. In vitro antihepadnaviral activities of combinations of penciclovir, lamivudine, and adefovir. Antimicrob. Agents Chemother. 2000, 44, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Le Guerhier, F.; Thermet, A.; Guerret, S.; Chevallier, M.; Jamard, C.; Gibbs, C.S.; Trépo, C.; Cova, L.; Zoulim, F. Antiviral effect of adefovir in combination with a DNA vaccine in the duck hepatitis B virus infection model. J. Hepatol. 2003, 38, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D. Amantadine. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–4. [Google Scholar]
- Hay, A.J.; Wolstenholme, A.J.; Skehel, J.J.; Smith, M.H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985, 4, 3021–3024. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.V.; Stone, T.W. The mechanism of action of amantadine in Parkinsonism: A review. Arch. Int. Pharmacodyn. Ther. 1975, 216, 246–262. [Google Scholar] [PubMed]
- Rychel, J.K. Diagnosis and treatment of osteoarthritis. Top. Companion Anim. Med. 2010, 25, 20–25. [Google Scholar] [CrossRef] [PubMed]
- KuKanich, B. Outpatient oral analgesics in dogs and cats beyond nonsteroidal anti-inflammatory drugs: An evidencebased approach. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1109–1125. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. China’s chicken farmers under fire for antiviral abuse. Nature 2005, 435, 1009. [Google Scholar] [CrossRef] [PubMed]
- Hussein, I.; Abdelwhab, E. Why the Veterinary Use of Antivirals in Egypt Should Stop? Nature Middle East: Dubai, United Arab Emirates, 2016. [Google Scholar]
- Yuan, S.; Jiang, S.C.; Zhang, Z.W.; Fu, Y.F.; Zhu, F.; Li, Z.L.; Hu, J. Abuse of amantadine in poultry may be associated with higher fatality rate of H5N1 infections in humans. J. Med. Virol. 2022, 94, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Bean, W.J.; Threlkeld, S.C.; Webster, R.G. Biologic potential of amantadine-resistant influenza A virus in an avian model. J. Infect. Dis. 1989, 159, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Ilyushina, N.A.; Govorkova, E.A.; Webster, R.G. Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 2005, 341, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Abdelwhab, E.M.; Veits, J.; Mettenleiter, T.C. Biological fitness and natural selection of amantadine resistant variants of avian influenza H5N1 viruses. Virus Res. 2017, 228, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.; Narayan, O.; Rouse, B.T. Prevention of malignant avian influenza by 1-adamantanamine hydrochloride. Arch. Gesamte Virusforsch. 1970, 32, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.G.; Kawaoka, Y.; Bean, W.J. Vaccination as a strategy to reduce the emergence of amantadine- and rimantadine-resistant strains of A/Chick/Pennsylvania/83 (H5N2) influenza virus. J. Antimicrob. Chemother. 1986, 18 (Suppl. B), 157–164. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.W.; Brugh, M.; Webster, R.G. Emergence of amantadine-resistant H5N2 avian influenza virus during a simulated layer flock treatment program. Avian Dis. 1987, 31, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Bean, W.J.; Webster, R.G. Biological properties of amantadine-resistant influenza-virus mutants. Antivir. Res. 1988, 9, 128. [Google Scholar]
- Scholtissek, C.; Faulkner, G.P. Amantadine-resistant and -sensitive influenza A strains and recombinants. J. Gen. Virol. 1979, 44, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Clubb, S.L.; Meyer, M.J. Clinical management of psittacine birds affected with proventricular dilatation disease. In Proceeding of the Annual Conference Association of Avian Veterinarians, Wellington, New Zealand, 2–6 September 2006; pp. 85–90. [Google Scholar]
- Hoppes, S.; Gray, P.L.; Payne, S.; Shivaprasad, H.L.; Tizard, I. The isolation, pathogenesis, diagnosis, transmission, and control of avian bornavirus and proventricular dilatation disease. Vet. Clin. N. Am. Exot. Anim. Pract. 2010, 13, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.J.; Sanchez-Migallon Guzman, D.; Knych, H.K.; Drazenovich, T.L.; Paul-Murphy, J.R. Pharmacokinetics of amantadine after oral administration of single and multiple doses to orange-winged Amazon parrots (Amazona amazonica). Am. J. Vet. Res. 2020, 81, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Wang, Y.; Dixon, R.; Bowden, S.; Qiao, M.; Einck, L.; Locarnini, S. The use of ampligen alone and in combination with ganciclovir and coumermycin A1 for the treatment of ducks congenitally-infected with duck hepatitis B virus. Antivir. Res. 1993, 21, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, S.M. Metal complexes of azo compounds derived from 4-acetamidophenol and substituted aniline. Arab. J. Chem. 2012, 5, 251–256. [Google Scholar] [CrossRef]
- Tevyashova, A.N.; Shtil, A.A.; Olsufyeva, E.N.; Luzikov, Y.N.; Reznikova, M.I.; Dezhenkova, L.G.; Isakova, E.B.; Bukhman, V.M.; Durandin, N.A.; Vinogradov, A.M.; et al. Modification of olivomycin A at the side chain of the aglycon yields the derivative with perspective antitumor characteristics. Bioorg. Med. Chem. 2011, 19, 7387–7393. [Google Scholar] [CrossRef] [PubMed]
- Naicker, K.P.; Jiang, S.; Lu, H.; Ni, J.; Boyer-Chatenet, L.; Wang, L.-X.; Debnath, A.K. Synthesis and anti-HIV-1 activity of 4-[4-(4,6-bisphenylamino[1,3,5]triazin-2-ylamino)-5-methoxy-2methylphenylazo]-5-hydroxynaphthalene-2,7disulfonic acid and its derivatives. Bioorg. Med. Chem. 2004, 12, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Farghaly, T.A.; Abdalla, M.M. Synthesis, tautomerism, and antimicrobial, anti-HCV, antiSSPE, antioxidant, and antitumor activities of arylazobenzosuberones. Bioorg. Med. Chem. 2009, 17, 8012–8019. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Vazzana, I.; Tasso, B.; Boido, V.; Sparatore, F.; Fermeglia, M.; Paneni, M.S.; Posocco, P.; Pricl, S.; Colla, P.L.; et al. Antiviral and cytotoxic activities of aminoarylazo compounds and aryltriazene derivatives. Bioorg. Med. Chem. 2009, 17, 4425–4440. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, H.; Pass, M.; Rezaeian, K.; Talei, G. Solvatochromism, spectral properties and antimicrobial activities of new azo–azomethine dyes with N2S2O2 donor set of atoms. J. Mol. Struct. 2014, 1072, 232–237. [Google Scholar] [CrossRef]
- Mahata, D.; Mandal, S.M.; Bharti, R.; Gupta, V.K.; Mandal, M.; Nag, A.; Nando, G.B. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability. Int. J. Biol. Macromol. 2014, 69, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.A.; Eldien, H.F.; Girges, M.M.; Berghot, M.A. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety. J. Saudi Chem. Soc. 2016, 20, 151–157. [Google Scholar] [CrossRef]
- Shridhar, A.H.; Keshavayya, J.; Peethambar, S.K.; Joy Hoskeri, H. Synthesis and biological activities of Bis alkyl 1,3,4-oxadiazole incorporated azo dye derivatives. Arab. J. Chem. 2016, 9 (Suppl. 2), S1643–S1648. [Google Scholar] [CrossRef]
- Tahir, T.; Ashfaq, M.; Shahzad, M.; Tabassum, R. Antiviral evaluation of bioactive azo derivatives to treat endemic poultry viruses. Thai Vet. Med. 2020, 54, 435–443. [Google Scholar] [CrossRef]
- Abraham, G.M.; Morton, J.B.; Saravolatz, L.D. Baloxavir: A Novel Antiviral Agent in the Treatment of Influenza. Clin. Infect. Dis. 2020, 71, 1790–1794. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Ando, Y.; Kobayashi, M.; Toba, S.; Nobori, H.; Sanaki, T.; Noshi, T.; Kawai, M.; Yoshida, R.; Sato, A.; et al. Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection. Viruses 2022, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Twabela, A.; Okamatsu, M.; Matsuno, K.; Isoda, N.; Sakoda, Y. Evaluation of Baloxavir Marboxil and Peramivir for the Treatment of High Pathogenicity Avian Influenza in Chickens. Viruses 2020, 12, 1407. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, L.; Vella, S. A brief history of antiretroviral therapy of HIV infection: Success and challenges. Ann. Dell’istituto Super. Sanitã 2011, 47, 44–48. [Google Scholar]
- Zameeruddin, M.; Swapnil, S.K.; Jadhav, S.B.; Kadam, V.S.; Bharkad, V.B.; Solanke, S.B. Analytical Methods for Estimation of Didanosine: A Review. World J. Pharm. Pharmaceut. Sci. 2014, 3, 653–666. [Google Scholar]
- Sekhar, K.C.; Basha, S.K.T.; Bhuvaneswar, C.; Bhaskar, B.V.; Rajendra, W.; Raju, C.N.; Ghosh, S.K. Didanosine phosphoramidates: Synthesis, docking to viral NA, antibacterial and antiviral activity. Med. Chem. Res. 2014, 24, 209–219. [Google Scholar] [CrossRef]
- Brittain, H.G. Analytical Profiles of Drug Substances and Excipients; Academic Press: New York, NY, USA, 2002; pp. 179–211. [Google Scholar]
- Ribera, E.; Tuset, M.; Martin, M. Characteristics of antiretroviral drugs. Enfermedades Infecc. Y Microbiol. Clin. 2011, 29, 362–391. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.A.; Kadiam, V.S.C.; Basha, T.S.K.; Chamarti, N.R.; Kumar, S.M.; Wudayagiri, R.; Valluru, L. Synthesis and Antiviral Activity of Novel Phosphorylated Derivatives of Didanosine Against Newcastle Disease Virus in Chicken. Archiv. Pharm. 2016, 349, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Karam Anandan, S.; Rayapu, L.; Darasi, S.; Devalam, R.P.; Chamarti, N.R.; Chinnasamy, T.; Valluru, L. The investigation of the efficacy of the prodrug DDI-10 against Newcastle disease virus infection in young chicken. Microbes Infect. Chemother. 2022, 2, e1333. [Google Scholar] [CrossRef]
- Katz, D.H.; Marcelletti, J.F.; Pope, L.E.; Khalil, M.H.; Katz, L.R.; Mcfadden, R. N-docosanol: Broad spectrum anti-viral activity against lipid-enveloped viruses. Ann. N. Y. Acad. Sci. 1994, 724, 472–488. [Google Scholar] [CrossRef] [PubMed]
- Marcelletti, J.F.; Lusso, P.; Katz, D.H. N-Docosanol inhibits in vitro replication of HIV and other retroviruses. AIDS Res. Hum. Retrovir. 1996, 12, 71–74. [Google Scholar] [CrossRef]
- Katz, D.H.; Marcelletti, J.F.; Khalil, M.H.; Pope, L.E.; Katz, L.R. Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses including herpes simplex. Proc. Natl. Acad. Sci. USA 1991, 88, 10825–10829. [Google Scholar] [CrossRef] [PubMed]
- Pope, L.E.; Marcelletti, J.F.; Katz, L.R.; Katz, D.H. Anti-herpes simplex virus activity of n-docosanol correlates with intracellular metabolic conversion of the drug. J. Lipid Res. 1996, 37, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Orabi, A.; Hussein, A.; Saleh, A.A.; Megahed, A.M.; Metwally, M.; Moeini, H.; Metwally, A.S. Therapeutic efficacy of n-Docosanol against velogenic Newcastle disease virus infection in domestic chickens. Front. Microbiol. 2022, 13, 1049037. [Google Scholar] [CrossRef]
- Langley, D.R.; Walsh, A.W.; Baldick, C.J.; Eggers, B.J.; Rose, R.E.; Levine, S.M.; Kapur, A.J.; Colonno, R.J.; Tenney, D.J. Inhibition of hepatitis B virus polymerase by entecavir. J. Virol. 2007, 81, 3992–4001. [Google Scholar] [CrossRef] [PubMed]
- Sims, K.A.; Woodland, A.M. Entecavir: A new nucleoside analog for the treatment of chronic hepatitis B infection. Pharmacotherapy 2006, 26, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Foster, W.K.; Miller, D.S.; Marion, P.L.; Colonno, R.J.; Kotlarski, I.; Jilbert, A.R. Entecavir therapy combined with DNA vaccination for persistent duck hepatitis B virus infection. Antimicrob. Agents Chemother. 2003, 47, 2624–2635. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.S.; Boyle, D.; Feng, F.; Reaiche, G.Y.; Kotlarski, I.; Colonno, R.; Jilbert, A.R. Antiviral therapy with entecavir combined with post-exposure “prime-boost” vaccination eliminates duck hepatitis B virus-infected hepatocytes and prevents the development of persistent infection. Virology 2008, 373, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.J.; Lopez, C.; Watanabe, K.A. 2′-Fluoro-arabinosyl pyrimidine nucleoside: Chemistry, antiviral, and potential anticancer activities. In Medicinal Chemistry Advances; de las Heras, F.G., Vega, G., Eds.; Pergamon Press: New York, NY, USA, 1981; pp. 27–40. [Google Scholar]
- Fox, J.J.; Watanabe, K.A.; Lopez, C.; Philips, F.S.; Leyland-Jones, B. Chemistry and potent antiviral activity of 2′-fluoro-5-substituted-arabinosyl-pyrimidine-nucleosides. In Herpesvirus: Clinical, Pharmacological and Basic Aspects; Shiota, H., Cheng, Y.-C., Prusoff, W.H., Eds.; Excerpta Medica: Amsterdam, The Netherlands, 1982; pp. 135–147. [Google Scholar]
- Lopez, C.; Watanabe, K.A.; Fox, J.J. 2′-Fluoro-5-iodo-aracytosine, a potent and selective anti-herpesvirus agent. Antimicrob. Agents Chemother. 1980, 17, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Schinazi, R.F.; Peters, J.; Sokol, M.K.; Nahmias, A. Therapeutic activities of l-(2-fluoro-2-deoxy-13-D-arabinofuranosyl)-5-iodocytosine and -thymine alone and in combination with acyclovir and vidarabine in mice infected intracerebrally with herpes simplex virus. Antimicrob. Agents Chemother. 1983, 24, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Trousdale, M.D.; Nesburn, A.B.; Su, T.-L.; Lopez, C.; Watanabe, K.A.; Fox, J.J. Activity of 1-(2′-fluoro-2′-deoxy-[3-D-arabinofuranosyl)thymine against herpes simplex virus in cell culture and rabbit eyes. Antimicrob. Agents Chemother. 1983, 23, 808–813. [Google Scholar] [CrossRef]
- Schat, K.A.; Schinazi, R.F.; Calnek, B.W. Cell-specific antiviral activity of 1-(2-fluoro-2-deoxy-beta-D-arabinofuranosyl)-5-iodocytosine (FIAC) against Marek’s disease herpesvirus and turkey herpesvirus. Antivir. Res. 1984, 4, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Matthews, T.; Boehme, R. Antiviral activity and mechanism of action of ganciclovir. Rev. Infect. Dis. 1988, 10 (Suppl. 3), S490–S494. [Google Scholar] [CrossRef] [PubMed]
- Hadziyannis, S.J.; Manesis, E.K.; Papakonstantinou, A. Oral ganciclovir treatment in chronic hepatitis B virus infection: A pilot study. J. Hepatol. 1999, 31, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bowden, S.; Shaw, T.; Luscombe, C.; Locarini, S. Inhibition of Duck Hepatitis B Virus Replication in vivo by the Nucleoside Analogue Ganciclovir (9-[2-hydroxy-1-(hydroxymethyl) ethoxymethyl] Guanine). Antivir. Chem. Chemother. 1991, 2, 107–114. [Google Scholar] [CrossRef]
- Luscombe, C.; Pedersen, J.; Bowden, S.; Locarnini, S. Alterations in intrahepatic expression of duck hepatitis B viral markers with ganciclovir chemotherapy. Liver 1994, 14, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.; Bowden, S.; Locarnini, S. Reversion of duck hepatitis B virus DNA replication in vivo following cessation of treatment with the nucleoside analogue ganciclovir. Antivir. Res. 1995, 27, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Luscombe, C.; Pedersen, J.; Uren, E.; Locarnini, S. Long-term ganciclovir chemotherapy for congenital duck hepatitis B virus infection in vivo: Effect on intrahepatic-viral DNA, RNA, and protein expression. Hepatology 1996, 24, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luscombe, C.; Bowden, S.; Shaw, T.; Locarnini, S. Inhibition of duck hepatitis B virus DNA replication by antiviral chemotherapy with ganciclovir-nalidixic acid. Antimicrob. Agents Chemother. 1995, 39, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Corum, O.; Uney, K.; Durna Corum, D.; Atik, O.; Coskun, D.; Zhunushova, A.; Elmas, M. Effect of ketoprofen on intravenous pharmacokinetics of ganciclovir in chukar partridges (Alectoris chukar). J. Vet. Pharmacol. Ther. 2022, 45, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Negishi, H.; Taniguchi, T.; Yanai, H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb. Perspect. Biol. 2018, 10, a028423. [Google Scholar] [CrossRef] [PubMed]
- Pluta, W.; Dudzinska, W.; Lubkowska, A. The use of interferon in medicine. J. Educ. Health Sport 2020, 10, 223–237. [Google Scholar] [CrossRef]
- Baron, S.; Dianzani, F. General Considerations of the Interferon System. Tex. Rep. Biol. Med. 1977, 35, 1–10. [Google Scholar] [PubMed]
- Chen, S.; Zhang, W.; Zhou, Q.; Wang, A.; Sun, L.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; Sun, K.; et al. Cross-species antiviral activity of goose interferon lambda against duck plague virus is related to its positive self-regulatory feedback loop. J. Gen. Virol. 2017, 98, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Xiang, B.; Li, Y.; Li, Y.; Sun, M.; Kang, Y.; Xie, P.; Chen, L.; Lin, Q.; Liao, M.; et al. Therapeutic Effect of Duck Interferon-Alpha Against H5N1 Highly Pathogenic Avian Influenza Virus Infection in Peking Ducks. J. Interferon Cytokine Res. 2018, 38, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Stanford, M. Interferon treatment of circovirus infection in grey parrots (Psittacus e erithacus). Vet. Rec. 2004, 154, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Reuter, A.; Horie, M.; Höper, D.; Ohnemus, A.; Narr, A.; Rinder, M.; Beer, M.; Staeheli, P.; Rubbenstroth, D. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells. J. Gen. Virol. 2016, 97, 2096–2103. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Schat, K.A. Inhibitory effects of nitric oxide and gamma interferon on in vitro and in vivo replication of Marek’s disease virus. J. Virol. 2000, 74, 3605–3612. [Google Scholar] [CrossRef] [PubMed]
- Sekellick, M.J.; Carra, S.A.; Bowman, A.; Hopkins, D.A.; Marcus, P.I. Transient resistance of influenza virus to interferon action attributed to random multiple packaging and activity of NS genes. J. Interferon Cytokine Res. 2000, 20, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Liu, J.; Wu, Z.G.; Lin, C.Y.; Wang, M. The interferon-alpha genes from three chicken lines and its effects on H9N2 influenza viruses. Anim. Biotechnol. 2004, 15, 77–88. [Google Scholar] [CrossRef]
- Meng, S.; Yang, L.; Xu, C.; Qin, Z.; Xu, H.; Wang, Y.; Sun, L.; Liu, W. Recombinant chicken interferon-alpha inhibits H9N2 avian influenza virus replication in vivo by oral administration. J. Interferon Cytokine Res. 2011, 31, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Marcus, P.I.; Girshick, T.; van der Heide, L.; Sekellick, M.J. Super-sentinel chickens and detection of low-pathogenicity influenza virus. Emerg. Infect. Dis. 2007, 13, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, E.; Pezzullo, M.; De Burghgraeve, T.; Kaptein, S.; Pastorino, B.; Dallmeier, K.; de Lamballerie, X.; Neyts, J.; Hanson, A.M.; Frick, D.N.; et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: New prospects for an old drug. J. Antimicrob. Chemother. 2012, 67, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Wald, M.E.; Claus, C.; Konrath, A.; Nieper, H.; Muluneh, A.; Schmidt, V.; Vahlenkamp, T.W.; Sieg, M. Ivermectin Inhibits the Replication of Usutu Virus In Vitro. Viruses 2022, 14, 1641. [Google Scholar] [CrossRef]
- Kinobe, R.T.; Owens, L. A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin’s possible mode of action against SARS-CoV-2. Fundam. Clin. Pharmacol. 2021, 35, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, A.; Singh, G.P.; Jamil, S. Ivermectin as a multifaceted drug in COVID-19: Current insights. Med. J. Armed Forces India 2021, 77 (Suppl. 2), S254–S256. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.K.; Dehgani-Mobaraki, P. The mechanisms of action of ivermectin against SARS-CoV-2—An extensive review. J. Antibiot. 2022, 75, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Heidary, F.; Gharebaghi, R. Ivermectin: A systematic review from antiviral effects to COVID-19 complementary regimen. J. Antibiot. 2020, 73, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Agliani, G.; Giglia, G.; Marshall, E.M.; Gröne, A.; Rockx, B.H.G.; van den Brand, J.M.A. Pathological features of West Nile and Usutu virus natural infections in wild and domestic animals and in humans: A comparative review. One Health 2023, 16, 100525. [Google Scholar] [CrossRef] [PubMed]
- Lühken, R.; Jöst, H.; Cadar, D.; Thomas, S.M.; Bosch, S.; Tannich, E.; Becker, N.; Ziegler, U.; Lachmann, L.; Schmidt-Chanasit, J. Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerg. Infect. Dis. 2017, 23, 1994–2001. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M. Ivermectin as a possible treatment for West Nile virus in raptors. HawkChalk 2018, 58, 80–82. [Google Scholar]
- Parra, A.L.; Bezerra, L.P.; Shawar, D.E.; Neto, N.A.; Mesquita, F.P.; da Silva, G.O.; Souza, P.N. Synthetic antiviral peptides: A new way to develop targeted antiviral drugs. Future Virol. 2022, 17, 577–591. [Google Scholar] [CrossRef]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020, 10, 766–788. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yin, L.; Zhou, Q.; Peng, P.; Du, Y.; Liu, L.; Zhang, Y.; Xue, C.; Cao, Y. Epidemiological investigation of fowl adenovirus infections in poultry in China during 2015–2018. BMC Vet. Res. 2019, 15, 271. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liu, M.; Wang, C.; Zhou, X.; Li, F.; Song, J.; Pu, J.; Sun, Y.; Wang, M.; Shahid, M.; et al. Characterization of fowl adenovirus serotype 4 circulating in chickens in China. Vet. Microbiol. 2019, 238, 108427. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wei, Q.; Si, F.; Wang, F.; Lu, Q.; Guo, Z.; Chai, Y.; Zhu, R.; Xing, G.; Jin, Q.; et al. Design and Identification of a Novel Antiviral Affinity Peptide against Fowl Adenovirus Serotype 4 (FAdV-4) by Targeting Fiber2 Protein. Viruses 2023, 15, 821. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chi, X.; Wang, M. Structural characteristics and antiviral activity of multiple peptides derived from MDV glycoproteins B and H. Virol. J. 2011, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Kewn, S.; Veal, G.J.; Hoggard, P.G.; Barry, M.G.; Back, D.J. Lamivudine (3TC) phosphorylation and drug interactions in vitro. Biochem. Pharmacol. 1997, 54, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Soudeyns, H.; Yao, X.I.; Gao, Q.; Belleau, B.; Kraus, J.L.; Nguyen-Ba, N.; Spira, B.; Wainberg, M.A. Anti-human immunodeficiency virus type 1 activity and in vitro toxicity of 2-deoxy-3-thiacytidine (BCH-189), a novel heterocyclic nucleoside analog. Antimicrob. Agents Chemother. 1991, 35, 1386–1390. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.A.; Cammack, N.; Jenkinson, H.J.; Mutton, I.M.; Pearson, B.A.; Storer, R.; Cameron, J.M.; Penn, C.R. The separated enantiomers of 2-deoxy-3-thiacytidine (BCH 189) both inhibit human immunodeficiency virus replication in vitro. Antimicrob. Agents Chemother. 1992, 36, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Geleziunas, R.; Arts, E.J.; Boulerice, F.; Goldman, H.; Wainberg, M.A. Effect of 3-azido-3-deoxythymidine on human immunodeficiency virus type 1 replication in human fetal brain macrophages. Antimicrob. Agents Chemother. 1993, 37, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.M.; Marr, C.L.; Penn, C.R.; Cameron, J.M.; Bethell, R.C. The intracellular phosphorylation of (-)-2-deoxy-3-thiacytidine (3TC) and the incorporation of 3TC 5-monophosphate into DNA by HIV-1 reverse transcriptase and human DNA polymerase gamma. Biochem. Pharmacol. 1995, 50, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, M.; Kemp, S.D.; Parry, N.R.; Larder, B.A. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc. Natl. Acad. Sci. USA 1993, 90, 5653–5656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, S.; Li, S.; Su, H.; Chang, S.; Li, Y.; Sun, X.; Zhao, P.; Cui, Z. Lamivudine Inhibits the Replication of ALV-J Associated Acutely Transforming Virus and its Helper Virus and Tumor Growth In Vitro and In Vivo. Front. Microbiol. 2015, 6, 1306. [Google Scholar] [CrossRef] [PubMed]
- Colledge, D.; Locarnini, S.; Shaw, T. Synergistic inhibition of hepadnaviral replication by lamivudine in combination with penciclovir in vitro. Hepatology 1997, 26, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, J.F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antivir. Res. 2014, 110, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, D.B.; Shitu, Z.; Mostafa, A. Drug repurposing of nitazoxanide: Can it be an effective therapy for COVID-19? J. Genet. Eng. Biotechnol. 2020, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Korba, B.E.; Montero, A.B.; Farrar, K.; Gaye, K.; Mukerjee, S.; Ayers, M.S.; Rossignol, J.F. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication. Antivir. Res. 2008, 77, 56–63. [Google Scholar] [CrossRef]
- Piacentini, S.; La Frazia, S.; Riccio, A.; Pedersen, J.Z.; Topai, A.; Nicolotti, O.; Rossignol, J.F.; Santoro, M.G. Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: Role of glycoprotein-specific thiol oxidoreductase ERp57. Sci. Rep. 2018, 8, 10425. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.; Rivara, M.; Zuliani, V.; Radi, M. Drug repurposing approaches to fight Dengue virus infection and related diseases. Front. Biosci. 2018, 23, 997–1019. [Google Scholar]
- Tan, X.; Hu, L.; Luquette, L.J., 3rd; Gao, G.; Liu, Y.; Qu, H.; Xi, R.; Lu, Z.J.; Park, P.J.; Elledge, S.J. Systematic identification of synergistic drug pairs targeting HIV. Nat. Biotechnol. 2012, 30, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Forrest, J.C.; Zhang, X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antivir. Res. 2015, 114, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Antony, F.; Vashi, Y.; Morla, S.; Vandna Mohan, H.; Kumar, S. Therapeutic potential of Nitazoxanide against Newcastle disease virus: A possible modulation of host cytokines. Cytokine 2020, 131, 155115. [Google Scholar] [CrossRef] [PubMed]
- Bardsley-Elliot, A.; Noble, S. Oseltamivir. Drugs 1999, 58, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.; van der Goot, J.A.; Koch, G.; van Boven, M.; Kimman, T.G. Oseltamivir reduces transmission, morbidity, and mortality of highly pathogenic avian influenza in chickens. Int. Congr. Ser. 2004, 1263, 495–498. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, Y.N.; Park, J.K.; Yuk, S.S.; Lee, J.W.; Kim, J.I.; Han, J.S.; Lee, J.B.; Park, S.Y.; Choi, I.S.; et al. Antiviral efficacy of oseltamivir against avian influenza virus in avian species. Avian Dis. 2011, 55, 677–679. [Google Scholar] [CrossRef]
- Kaleta, E.F.; Blanco Peña, K.M.; Yilmaz, A.; Redmann, T.; Hofheinz, S. Avian influenza A viruses in birds of the order Psittaciformes: Reports on virus isolations, transmission experiments and vaccinations and initial studies on innocuity and efficacy of oseltamivir in ovo. Dtsch. Tierarztl. Wochenschr. 2007, 114, 260–267. [Google Scholar] [PubMed]
- Yen, H.L.; Ilyushina, N.A.; Salomon, R.; Hoffmann, E.; Webster, R.G.; Govorkova, E.A. Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. J. Virol. 2007, 81, 12418–12426. [Google Scholar] [CrossRef] [PubMed]
- Orozovic, G.; Orozovic, K.; Lennerstrand, J.; Olsen, B. Detection of resistance mutations to antivirals oseltamivir and zanamivir in avian influenza A viruses isolated from wild birds. PLoS ONE 2011, 6, e16028. [Google Scholar] [CrossRef] [PubMed]
- Moscona, A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med. 2009, 360, 953–956. [Google Scholar] [CrossRef] [PubMed]
- McKimm-Breschkin, J.L.; Selleck, P.W.; Usman, T.B.; Johnson, M.A. Reduced sensitivity of influenza A (H5N1) to oseltamivir. Emerg. Infect. Dis. 2007, 13, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Hodge, R.A.V. Famciclovir and Penciclovir. The Mode of Action of Famciclovir Including Its Conversion to Penciclovir. Antivir. Chem. Chemother. 1993, 4, 67–84. [Google Scholar] [CrossRef]
- Korba, B.E.; Boyd, M.R. Penciclovir is a selective inhibitor of hepatitis B virus replication in cultured human hepatoblastoma cells. Antimicrob. Agents Chemother. 1996, 40, 1282–1284. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T. Inhibition of hepatitis B virus DNA polymerase by enantiomers of penciclovir triphosphate and metabolic basis for selective inhibition of HBV replication by penciclovir. Hepatology 1996, 24, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Vere Hodge, R.A.; Perkins, R.M. Mode of action of 9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine (BRL 39123) against herpes simplex virus in MRC-5 cells. Antimicrob. Agents Chemother. 1989, 33, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hodge, R.; Vere, A.; Cheng, Y.-C. The Mode of Action of Penciclovir. Antivir. Chem. Chemother. 1993, 4, 13–24. [Google Scholar] [CrossRef]
- Shaw, T.; Amor, P.; Civitico, G.; Boyd, M.; Locarnini, S. In vitro antiviral activity of penciclovir, a novel purine nucleoside, against duck hepatitis B virus. Antimicrob. Agents Chemother. 1994, 38, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Tsiquaye, K.N.; Slomka, M.J.; Maung, M. Oral famciclovir against duck hepatitis B virus replication in hepatic and nonhepatic tissues of ducklings infected in ovo. J. Med. Virol. 1994, 42, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Luscombe, C.; Wang, Y.Y.; Shaw, T.; Locarnini, S. The guanine nucleoside analog penciclovir is active against chronic duck hepatitis B virus infection in vivo. Antimicrob. Agents Chemother. 1996, 40, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Tsiquaye, K.N.; Sutton, D.; Maung, M.; Boyd, M.R. Antiviral Activities and Pharmacokinetics of Penciclovir and Famciclovir in Pekin Ducks Chronically Infected with Duck Hepatitis B Virus. Antivir. Chem. Chemother. 1996, 7, 153–159. [Google Scholar] [CrossRef]
- Lin, E.; Luscombe, C.; Colledge, D.; Wang, Y.Y.; Locarnini, S. Long-Term Therapy with the Guanine Nucleoside Analog Penciclovir Controls Chronic Duck Hepatitis B Virus Infection In Vivo. Antimicrob. Agents Chemother. 1998, 42, 2132–2137. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, A.; Locarnini, S.; Chou, S.T.; Smallwood, R.; Angus, P. Effect of nucleoside analogue therapy on duck hepatitis B viral replication in hepatocytes and bile duct epithelial cells in vivo. J. Gastroenterol. Hepatol. 2000, 15, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Graci, J.D.; Cameron, C.E. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol. 2006, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Omer, M.O.; Almalki, W.H.; Shahid, I.; Khuram, S.; Altaf, I.; Imran, S. Comparative study to evaluate the anti-viral efficacy of Glycyrrhiza glabra extract and ribavirin against the Newcastle disease virus. Pharmacogn. Res. 2014, 6, 6–11. [Google Scholar]
- Ramírez-Olivencia, G.; Estébanez, M.; Membrillo, F.J.; Ybarra, M.C. Uso de ribavirina en virus distintos de la hepatitis C. Una revisión de la evidencia. Enfermedades Infecc. Y Microbiol. Clin. 2019, 37, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Musser, J.M.; Heatley, J.J.; Koinis, A.V.; Suchodolski, P.F.; Guo, J.; Escandon, P.; Tizard, I.R. Ribavirin Inhibits Parrot Bornavirus 4 Replication in Cell Culture. PLoS ONE 2015, 10, e0134080. [Google Scholar] [CrossRef] [PubMed]
- Honkavuori, K.S.; Shivaprasad, H.L.; Williams, B.L.; Quan, P.-L.; Hornig, M.; Street, C.; Palacios, G.; Hutchison, S.K.; Franca, M.; Egholm, M.; et al. Novel borna virus in psittacine birds with proventricular dilatation disease. Emerg. Infect. Dis. 2008, 14, 1883–1886. [Google Scholar] [CrossRef] [PubMed]
- Kistler, A.L.; Gancz, A.; Clubb, S.; Skewes-Cox, P.; Fischer, K.; Sorber, K.; Chiu, C.Y.; Lublin, A.; Mechani, S.; Farnoushi, Y.; et al. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: Identification of a candidate etiologic agent. Virol. J. 2008, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Rinder, M.; Baas, N.; Hagen, E.; Drasch, K.; Korbel, R. Canary Bornavirus (Orthobornavirus serini) Infections Are Associated with Clinical Symptoms in Common Canaries (Serinus canaria dom.). Viruses 2022, 14, 2187. [Google Scholar] [CrossRef] [PubMed]
- Szotowska, I.; Ledwoń, A.; Dolka, I.; Bonecka, J.; Szeleszczuk, P. Bornaviral infections in Atlantic canaries (Serinus canaria) in Poland. Avian Pathol. 2023, 52, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Rubbenstroth, D. Avian Bornavirus Research-A Comprehensive Review. Viruses 2022, 14, 1513. [Google Scholar] [CrossRef] [PubMed]
- Furman, P.A.; Barry, D.W. Spectrum of antiviral activity and mechanism of action of zidovudine. An overview. Am. J. Med. 1988, 85, 176–181. [Google Scholar] [PubMed]
- Nair, V.; Fadly, A. Leukosis/sarcoma group. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 553–592. [Google Scholar]
- Payne, L.N.; Nair, V. The long view: 40 years of avian leukosis research. Avian Pathol. 2012, 41, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zhang, Y.; Li, Y.; Cui, Z.; Chang, S.; Zhao, P. Epidemiological investigation of the novel genotype avian hepatitis E virus and co-infected immunosuppressive viruses in farms with hepatic rupture haemorrhage syndrome, recently emerged in China. Transbound. Emerg. Dis. 2019, 66, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lin, L.; Shi, M.; Li, H.; Gu, Z.; Li, M.; Gao, Y.; Teng, H.; Mo, M.; Wei, T.; et al. Vertical transmission of ALV from ALV-J positive parents caused severe immunosuppression and significantly reduced marek’s disease vaccine efficacy in three-yellow chickens. Vet. Microbiol. 2020, 244, 108683. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Su, Q.; Liu, B.; Li, Y.; Sun, W.; Liu, Y.; Xue, R.; Chang, S.; Wang, Y.; Zhao, P. Enhanced Antiviral Ability by a Combination of Zidovudine and Short Hairpin RNA Targeting Avian Leukosis Virus. Front. Microbiol. 2022, 12, 808982. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szotowska, I.; Ledwoń, A. Antiviral Chemotherapy in Avian Medicine—A Review. Viruses 2024, 16, 593. https://doi.org/10.3390/v16040593
Szotowska I, Ledwoń A. Antiviral Chemotherapy in Avian Medicine—A Review. Viruses. 2024; 16(4):593. https://doi.org/10.3390/v16040593
Chicago/Turabian StyleSzotowska, Ines, and Aleksandra Ledwoń. 2024. "Antiviral Chemotherapy in Avian Medicine—A Review" Viruses 16, no. 4: 593. https://doi.org/10.3390/v16040593
APA StyleSzotowska, I., & Ledwoń, A. (2024). Antiviral Chemotherapy in Avian Medicine—A Review. Viruses, 16(4), 593. https://doi.org/10.3390/v16040593