Reference Material Production and Milk Protein Concentration as Elements to Improve Bluetongue Serological Diagnosis in Bulk Tank Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Bluetongue Antibody Detection in Serum and Milk Samples
2.3. Milk Reference Material Preparation and Standardization
2.3.1. Homogeneity Test
2.3.2. Assigned Value Test
2.3.3. Stability Test
2.4. Optimization of Antibody Detection by Milk Protein Concentration Treatment
2.5. Statistical Analysis
3. Results
3.1. Characterization of Samples
3.2. Characterization of Milk Reference Material
3.3. Optimization of Antibody Detection by Milk Protein Concentration Procedure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saminathan, M.; Singh, K.P.; Khorajiya, J.H.; Vineetha, S.; Maity, M.; Rahman, A.T.F.; Malik, Y.S.; Gupta, V.K.; Singh, R.K. An Updated Review on Bluetongue Virus: Epidemiology, Pathobiology, and Advances in Diagnosis and Control with Special Reference to India. Vet. Q. 2020, 40, 258–321. [Google Scholar] [CrossRef]
- Alkhamis, M.A.; Vega, C.A.; Jones, N.M.F.; Lin, K.; Perez, A.M.; Vizcaíno, J.M.S. Global Emergence and Evolutionary Dynamics of Bluetongue Virus. Sci. Rep. 2020, 10, 21677. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gu, W.; Li, Z.; Zhang, L.; Liao, D.; Song, J.; Shi, B.; Hasimu, J.; Li, Z.; Yang, Z.; et al. Novel Putative Bluetongue Virus Serotype 29 Isolated from Inapparently Infected Goat in Xinjiang of China. Transbound. Emerg. Dis. 2021, 68, 2543–2555. [Google Scholar] [CrossRef]
- European Union. The European Commission Implementing Regulation (EU) 2020/2002 on laying down rules for the application of Regulation (EU) 2016/429 of the European Parliament and of the Council with regard to Union notification and Union reporting of listed diseases, to formats and procedures for submission and reporting of Union surveillance programmes and of eradication programmes and for application for recognition of disease-free status, and to the computerised information system. Off. J. Eur. Union 2020, L 412/1. [Google Scholar]
- Belbis, G.; Zientara, S.; Bréard, E.; Sailleau, C.; Caignard, G.; Vitour, D.; Attoui, H. Bluetongue Virus: From BTV-1 to BTV-27. Adv. Virus Res. 2017, 99, 161–197. [Google Scholar] [CrossRef]
- Subhadra, S.; Sreenivasulu, D.; Pattnaik, R.; Panda, B.K.; Kumar, S. Bluetongue Virus: Past, Present, and Future Scope. J. Infect. Dev. Ctries. 2023, 17, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Jacquot, M.; Nomikou, K.; Palmarini, M.; Mertens, P.; Biek, R. Bluetongue Virus Spread in Europe Is a Consequence of Climatic, Landscape and Vertebrate Host Factors as Revealed by Phylogeographic Inference. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170919. [Google Scholar] [CrossRef]
- Rushton, J.; Lyons, N. Impatto Economico Della Bluetongue: Analisi Degli Effetti Sulla Produttività. Vet. Ital. 2015, 51, 401–406. [Google Scholar] [CrossRef]
- WOAH. Bluetongue. Available online: https://www.woah.org/en/disease/bluetongue/#:~:text=Bluetongue%20(BT)%20is%20an%20infectious,of%20African%20antelope%20and%20camels (accessed on 29 January 2024).
- Purse, B.V.; Mellor, P.S.; Rogers, D.J.; Samuel, A.R.; Mertens, P.P.C.; Baylis, M. Climate Change and the Recent Emergence of Bluetongue in Europe. Nat. Rev. Microbiol. 2005, 3, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Sperlova, A.; Zendulkova, D. Bluetongue: A Review. Vet. Med. (Praha) 2011, 54, 430–452. [Google Scholar] [CrossRef]
- Zientara, S.; Sánchez-Vizcaíno, J.M. Control of Bluetongue in Europe. Vet. Microbiol. 2013, 165, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Mellor, P.S.; Wittmann, E.J. Bluetongue Virus in the Mediterranean Basin 1998–2001. Vet. J. 2002, 164, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Saegerman, C.; Berkvens, D.; Mellor, P.S. Bluetongue Epidemiology in the European Union. Emerg. Infect. Dis. 2008, 14, 539. [Google Scholar] [CrossRef] [PubMed]
- Flannery, J.; King, S.; Rajko-Nenow, P.; Popova, Z.; Krstevski, K.; Djadjovski, I.; Batten, C. Re-Emergence of BTV Serotype 4 in North Macedonia, July 2020. Transbound. Emerg. Dis. 2021, 68, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Eschbaumer, M.; Hoffmann, B.; Moss, A.; Savini, G.; Leone, A.; König, P.; Zemke, J.; Conraths, F.; Beer, M. Emergence of Bluetongue Virus Serotype 6 in Europe—German Field Data and Experimental Infection of Cattle. Vet. Microbiol. 2010, 143, 189–195. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, K.; Mertens, P.; De Leeuw, I.; Oura, C.; Houdart, P.; Potgieter, A.C.; Maan, S.; Hooyberghs, J.; Batten, C.; Vandemeulebroucke, E.; et al. Emergence of Bluetongue Serotypes in Europe, Part 2: The Occurrence of a BTV-11 Strain in Belgium. Transbound. Emerg. Dis. 2009, 56, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Orłowska, A.; Trębas, P.; Smreczak, M.; Marzec, A.; Żmudziński, J.F. First Detection of Bluetongue Virus Serotype 14 in Poland. Arch. Virol. 2016, 161, 1969–1972. [Google Scholar] [CrossRef] [PubMed]
- Holwerda, M.; Santman-Berends, I.M.G.A.; Harders, F.; Engelsma, M.; Vloet, R.P.M.; Dijkstra, E.; van Gennip, R.G.P.; Mars, M.H.; Spierenburg, M.; Roos, L.; et al. Emergence of Bluetongue Virus Serotype 3 in the Netherlands in September 2023. bioRxiv 2023. [Google Scholar] [CrossRef]
- Boender, G.J.; Hagenaars, T.J.; Holwerda, M.; Spierenburg, M.A.H.; van Rijn, P.A.; van der Spek, A.N.; Eibers, A.R.W. Spatial Transmission Characteristics of the Bluetongue Virus Serotype 3 Epidemic in The Netherlands, 2023. Viruses 2024, 16, 625. [Google Scholar] [CrossRef] [PubMed]
- European Commission Bluetongue—Surveillance, Eradication Programmes and Disease-Free Status. Available online: https://food.ec.europa.eu/animals/animal-diseases/surveillance-eradication-programmes-and-disease-free-status/bluetongue_en#disease-free (accessed on 3 May 2024).
- Dijkstra, E.; Vellema, P.; Peterson, K.; Ter Bogt-Kappert, C.; Dijkman, R.; Harkema, L.; van Engelen, E.; Aalberts, M.; Santman-berends, I.; van den Brom, R. Monitoring and Surveillance of Small Ruminant Health in The Netherlands. Pathogens 2022, 11, 635. [Google Scholar] [CrossRef]
- EURL, GL-LCV-14. Rev. 01. 22/06/2021. Eu Diagnostic Manual for African Horse Sickness and Bluetongue. European Union Reference Laboratory for African Horse Sickness and Bluetongue Website. Available online: https://www.mapa.gob.es/en/ganaderia/temas/laboratorios/eudiagnosismanualahsbtrev01_tcm38-576045.pdf (accessed on 25 January 2024).
- WOAH. Bluetongue (Infection with Bluetongue Virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; 2023; Chapter 3.1.3. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.01.03_BLUETONGUE.pdf (accessed on 25 January 2024).
- Elbers, A.R.W.; Backx, A.; Meroc, E.; Gerbier, G.; Staubach, C.; Hendrickx, G.; van der Spek, A.; Mintiens, K. Field Observations during the Bluetongue Serotype 8 Epidemic in 2006. I. Detection of First Outbreaks and Clinical Signs in Sheep and Cattle in Belgium, France and the Netherlands. Prev. Vet. Med. 2008, 87, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Hadorn, D.C.; Racloz, V.; Schwermer, H.; Stärk, K.D.C. Establishing a Cost-Effective National Surveillance System for Bluetongue Using Scenario Tree Modelling. Vet. Res. 2009, 40, 57. [Google Scholar] [CrossRef] [PubMed]
- Büchi, M.; Abril, C.; Vögtlin, A.; Schwermer, H. Antikörperprävalenz Gegen das Blauzungenvirus Serotyp 8 in Tankmilchproben von Milchviehbetrieben Aus Risikogebieten für die Übertragung des Blauzungenvirus Nach Einem Impfprogramm in der Schweiz. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Mars, M.H.; van Maanen, C.; Vellema, P.; Kramps, J.A.; van Rijn, P.A. Evaluation of an Indirect ELISA for Detection of Antibodies in Bulk Milk against Bluetongue Virus Infections in the Netherlands. Vet. Microbiol. 2010, 146, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.S.; Sun, E.C.; Liu, N.H.; Yang, T.; Xu, Q.Y.; Qin, Y.L.; Zhao, J.; Feng, Y.F.; Li, J.P.; Wei, P.; et al. Monoclonal Antibodies against VP7 of Bluetongue Virus. Hybridoma 2012, 31, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Kramps, J.A.; van Maanen, K.; Mars, M.H.; Popma, J.K.; van Rijn, P.A. Validation of a Commercial ELISA for the Detection of Bluetongue Virus (BTV)-Specific Antibodies in Individual Milk Samples of Dutch Dairy Cows. Vet. Microbiol. 2008, 130, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Chaignat, V.; Nitzsche, S.; Schärrer, S.; Feyer, D.; Schwermer, H.; Thur, B. Milk Concentration Improves Bluetongue Antibody Detection by Use of an Indirect ELISA. Vet. Microbiol. 2010, 143, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Hultén, C.; Frössling, J.; Chenais, E.; Sternberg Lewerin, S. Seroprevalence after Vaccination of Cattle and Sheep against Bluetongue Virus (Btv) Serotype 8 in Sweden. Transbound. Emerg. Dis. 2013, 60, 438–447. [Google Scholar] [CrossRef]
- European Union. The European Commission Regulation (EU) 2017/625 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products. Off. J. Eur. Union 2017, L 95/1. [Google Scholar]
- Durán-Ferrer, M.; Villalba, R.; Fernández-Pacheco, P.; Tena-Tomás, C.; Jiménez-Clavero, M.A.; Bouzada, J.A.; Ruano, M.J.; Fernández-Pinero, J.; Arias, M.; Castillo-Olivares, J.; et al. Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses 2022, 14, 1545. [Google Scholar] [CrossRef]
- MAPA Lengua Azul. Available online: https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/sanidad-animal/enfermedades/lengua-azul/lengua_azul.aspx (accessed on 29 January 2024).
- ISO 13528:2022; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/78879.html (accessed on 29 January 2024).
- Wingfield, P.T. Protein Precipitation Using Ammonium Sulfate. Curr. Protoc. Protein Sci. 2001, 13, A-3F. [Google Scholar] [CrossRef] [PubMed]
- Veling, J.; Barkema, H.W.; Van Der Schans, J.; Van Zijderveld, F.; Verhoeff, J. Herd-Level Diagnosis for Salmonella Enterica Subsp. Enterica Serovar Dublin Infection in Bovine Dairy Herds. Prev. Vet. Med. 2002, 53, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Bartels, C.J.M.; Van Maanen, C.; Van Der Meulen, A.M.; Dijkstra, T.; Wouda, W. Evaluation of Three Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Neospora Caninum in Bulk Milk. Vet. Parasitol. 2005, 131, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Mars, M.H.; Van Maanen, C. Diagnostic Assays Applied in BVDV Control in The Netherlands. Prev. Vet. Med. 2005, 72, 43–48. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, A.L.; Ruiz-Fons, F.; Barandika, J.F.; Aduriz, G.; Juste, R.A.; Hurtado, A. Border Disease Virus Seroprevalence Correlates to Antibodies in Bulk-Tank Milk and Reproductive Performance of Dairy Sheep Flocks. J. Dairy Sci. 2010, 93, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Muratore, E.; Bertolotti, L.; Nogarol, C.; Caruso, C.; Lucchese, L.; Iotti, B.; Ariello, D.; Moresco, A.; Masoero, L.; Nardelli, S.; et al. Surveillance of Infectious Bovine Rhinotracheitis in Marker-Vaccinated Dairy Herds: Application of a Recombinant GE ELISA on Bulk Milk Samples. Vet. Immunol. Immunopathol. 2017, 185, 1–6. [Google Scholar] [CrossRef]
- Parker, A.M.; House, J.K.; Hazelton, M.S.; Bosward, K.L.; Morton, J.M.; Sheehy, P.A. Bulk Tank Milk Antibody ELISA as a Biosecurity Tool for Detecting Dairy Herds with Past Exposure to Mycoplasma Bovis. J. Dairy Sci. 2017, 100, 8296–8309. [Google Scholar] [CrossRef] [PubMed]
- Hirsbrunner, G.; Böttcher, J.; Yáñez, U.; Álvarez, J.; Pisón, C.; Acción, A.; Becerra, J.J.; Jiménez, A.; Gisbert, P.; Herradón, P.G.; et al. Prevalence, Risk Factors, and Relationship between Reproductive Performance and the Presence of Antibodies against Coxiellosis in Dairy Farm Milk Tanks in the Northwest of Spain. Animals 2024, 14, 367. [Google Scholar] [CrossRef]
- Paulie, S.; Perlmann, P.; Perlmann, H. Enzyme Linked Immunosorbent Assay. In Cell Biology, 3rd ed.; A Laboratory Handbook; Academic Press: Cambridge, MA, USA, 2023; pp. 533–538. [Google Scholar] [CrossRef]
- Oura, C.; Batten, C. Final Report from Bluetongue Community Reference Laboratory. Presented at the Annual Meeting of the National Bluetongue Reference Labs, Brussels, Belgium, 10 December 2007.
- Righi, C.; Iscaro, C.; Ferroni, L.; Rosati, S.; Pellegrini, C.; Nogarol, C.; Rossi, E.; Dettori, A.; Feliziani, F.; Petrini, S. Validation of a Commercial Indirect ELISA Kit for the Detection of Bovine Alphaherpesvirus 1 (BoHV-1)-Specific Glycoprotein E Antibodies in Bulk Milk Samples of Dairy Cows. Vet. Sci. 2022, 9, 311. [Google Scholar] [CrossRef]
- Colitti, B.; Muratore, E.; Careddu, M.E.; Bertolotti, L.; Iotti, B.; Giacobini, M.; Profiti, M.; Nogarol, C.; Böttcher, J.; Ponzo, A.; et al. Field Application of an Indirect GE ELISA on Pooled Milk Samples for the Control of IBR in Free and Marker Vaccinated Dairy Herds. BMC Vet. Res. 2018, 14, 387. [Google Scholar] [CrossRef]
- Schroeder, C.; Horner, S.; Burger, N.; Engemann, C.; Bange, U.; Knoop, E.V.; Gabert, J. Improving the Sensitivity of the IBR-GE ELISA for Testing IBR Marker Vaccinated Cows from Bulk Milk Development and Evaluation of Diagnostic Tools View Project. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Tignon, M.; De Baere, M.; Hanon, J.B.; Goolaerts, A.; Houtain, J.Y.; Delooz, L.; Cay, A.B. Characterization of Three Commercial ELISA Kits for Detection of BOHV-1 GE Specific Antibodies in Serum and Milk Samples and Applicability of Bulk Milk for Determination of Herd Status. J. Virol. Methods 2017, 245, 66–72. [Google Scholar] [CrossRef] [PubMed]
Herd | Sample (n) | ELISA Quantitative Values | ELISA Qualitative Result (Sample Result/n) |
---|---|---|---|
Herd-1 | Blood (10) | 90.5 ± 17.08 | POS (10/10) |
IM (10) | 267.3 ± 91.76 | POS (9/10); NEG (1/10) | |
BTM (1) | 297 | POS (1/1) | |
Herd-2 | Blood (10) | 96.6 ± 0.97 | POS (10/10) |
IM (10) | 274.1 ± 40.81 | POS (10/10) | |
BTM (0) | No sample | No sample | |
Herd-3 | Blood (10) | 87.6 ± 7.66 | POS (10/10) |
IM (9) | 102.6 ± 65.82 | POS (3/9) NEG (5/9) DOUBT (1/9) | |
BTM (1) | 136 | POS (1/1) | |
Herd-4 | Blood (10) | 82.0 ± 8.94 | POS (10/10) |
IM (10) | 38.8 ± 20.35 | NEG (10/10) | |
BTM (1) | 56 | POS (1/1) | |
Herd-5 | Blood (10) | 18.7 ± 3.77 | NEG (10/10) |
IM (10) | 3.5 ± 2.37 | NEG (10/10) | |
BTM (1) | 4 | NEG (1/1) | |
Herd-6 | Blood (10) | 19.0 ± 3.83 | NEG (10/10) |
IM (10) | 2.7 ± 1.16 | NEG (10/10) | |
BTM (1) | 4 | NEG (1/1) |
Identification | Type | Origin | Qualitative Assigned Value (n) | S/P% (Av) | SD |
---|---|---|---|---|---|
O236 | IM | Herd-1 | POS (14) | 289.4 | 25.20 |
O237 | IM | Herd-3 | POS (14) | 167.6 | 21.52 |
O238 | BTM | Herd-1 | POS (14) | 261.9 | 31.20 |
O239 | BTM | Herd-4 | POS (14) | 72.1 | 11.08 |
O240 | BTM | Herd-5 | NEG (14) | 3.2 | 0.97 |
O241 | BTM | Herd-6 | NEG (14) | 3.3 | 0.83 |
Identification | Qualitative (n) | h) | Ss | 0.3σ | Ss < 0.3σ |
---|---|---|---|---|---|
O236 | POS (6) | 268.6 | 0 | 29 | Accepted |
O237 | POS (6) | 152.7 | 1.75 | 29 | Accepted |
O238 | POS (6) | 241.7 | 0 | 29 | Accepted |
O239 | POS (6) | 64.2 | 0 | 29 | Accepted |
O240 | NEG (6) | 2.5 | 0 | 29 | Accepted |
O241 | NEG (6) | 2.8 | 0.33 | 29 | Accepted |
Identification | Stability Conditions | Qualitative (n) | Av) | ) | 0.3σ | σ | |
---|---|---|---|---|---|---|---|
O236 | 4 °C | POS (4) | 289.4 | 314.8 | 25.4 | 29 | Accepted |
O237 | POS (4) | 167.6 | 189.2 | 21.6 | 29 | Accepted | |
O238 | POS (4) | 261.9 | 278.7 | 16.8 | 29 | Accepted | |
O239 | POS (4) | 72.1 | 80.4 | 8.3 | 29 | Accepted | |
O240 | NEG (4) | 3.3 | 2.7 | 0.6 | 29 | Accepted | |
O241 | NEG (4) | 3.3 | 2.7 | 0.6 | 29 | Accepted | |
O236 | Room temperature | POS (4) | 289.4 | 314.8 | 25.4 | 29 | Accepted |
O237 | POS (4) | 167.6 | 175.5 | 7.9 | 29 | Accepted | |
O238 | POS (4) | 261.9 | 284.5 | 22.6 | 29 | Accepted | |
O239 | POS (4) | 72.1 | 81.8 | 9.7 | 29 | Accepted | |
O240 | NEG (4) | 3.2 | 2.5 | 0.7 | 29 | Accepted | |
O241 | NEG (4) | 3.3 | 2.8 | 0.5 | 29 | Accepted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Trancón, D.; Valero-Lorenzo, M.; Agüero, M.; Villalba, R. Reference Material Production and Milk Protein Concentration as Elements to Improve Bluetongue Serological Diagnosis in Bulk Tank Milk. Viruses 2024, 16, 915. https://doi.org/10.3390/v16060915
Romero-Trancón D, Valero-Lorenzo M, Agüero M, Villalba R. Reference Material Production and Milk Protein Concentration as Elements to Improve Bluetongue Serological Diagnosis in Bulk Tank Milk. Viruses. 2024; 16(6):915. https://doi.org/10.3390/v16060915
Chicago/Turabian StyleRomero-Trancón, David, Marta Valero-Lorenzo, Montserrat Agüero, and Rubén Villalba. 2024. "Reference Material Production and Milk Protein Concentration as Elements to Improve Bluetongue Serological Diagnosis in Bulk Tank Milk" Viruses 16, no. 6: 915. https://doi.org/10.3390/v16060915
APA StyleRomero-Trancón, D., Valero-Lorenzo, M., Agüero, M., & Villalba, R. (2024). Reference Material Production and Milk Protein Concentration as Elements to Improve Bluetongue Serological Diagnosis in Bulk Tank Milk. Viruses, 16(6), 915. https://doi.org/10.3390/v16060915