Modelling the Influence of Climate and Vector Control Interventions on Arbovirus Transmission
Abstract
:1. Introduction
2. Methods
2.1. Model Development
2.2. Model Application: Arbovirus Transmission and Control in the UK
2.2.1. Parameterising the Model for Culicoides-Borne Viruses
2.2.2. Climate Data
2.2.3. Comparing Vectorial Capacity of Viruses
2.2.4. Uncertainty Analysis
2.2.5. Comparing of Viruses
2.2.6. Feeding Multiple Times per Gonotrophic Cycle
2.2.7. Vector Control
3. Results
3.1. Model Development
3.2. Comparing Vectorial Capacity of Viruses
3.3. Uncertainty Analysis
3.4. Comparing of Viruses
3.5. Feeding Multiple Times per Gonotrophic Cycle
3.6. Vector Control
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Garrett-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull. World Health Organ. 1964, 30, 241. [Google Scholar] [PubMed]
- Macdonald, G. The epidemiology and control of malaria. In The Epidemiology and Control of Malaria; Oxford University Press: Oxford, UK, 1957. [Google Scholar]
- Smith, D.; Ellis McKenzie, F. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar. J. 2004, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.; Godfray, H.; Tatem, A.; Gething, P.; Cohen, J.; McKenzie, F.; Perkins, T.; Reiner, R.; Tusting, L.; Sinka, M.; et al. Vectorial capacity and vector control: Reconsidering sensitivity to parameters for malaria elimination. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 107–117. [Google Scholar] [CrossRef]
- Catano-Lopez, A.; Rojas-Diaz, D.; Laniado, H.; Arboleda-Sánchez, S.; Puerta-Yepes, M.; Lizarralde-Bejarano, D. An alternative model to explain the vectorial capacity using as example Aedes aegypti case in dengue transmission. Heliyon 2019, 5, e02577. [Google Scholar] [CrossRef] [PubMed]
- Alto, B.; Juliano, S. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): Implications for range expansion. J. Med. Entomol. 2001, 38, 646–656. [Google Scholar] [CrossRef]
- Wittmann, E.; Mellor, P.; Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis. Med. Vet. Entomol. 2002, 16, 147–156. [Google Scholar] [CrossRef]
- Löwenberg Neto, P.; Navarro-Silva, M. Development, longevity, gonotrophic cycle and oviposition of Aedes albopictus Skuse (Diptera: Culicidae) under cyclic temperatures. Neotrop. Entomol. 2004, 33, 29–33. [Google Scholar] [CrossRef]
- Mullens, B.; Gerry, A.; Lysyk, T.; Schmidtmann, E. Environmental effects on vector competence and virogenesis of bluetongue virus in Culicoides: Interpreting laboratory data in a field context. Vet. Ital. 2004, 40, 160–166. [Google Scholar]
- Gunay, F.; Alten, B.; Ozsoy, E. Estimating reaction norms for predictive population parameters, age specific mortality, and mean longevity in temperature-dependent cohorts of Culex quinquefasciatus Say (Diptera: Culicidae). J. Vector Ecol. 2010, 35, 354–362. [Google Scholar] [CrossRef]
- Tjaden, N.; Thomas, S.; Fischer, D.; Beierkuhnlein, C. Extrinsic incubation period of dengue: Knowledge, backlog, and applications of temperature dependence. PLoS Negl. Trop. Dis. 2013, 7, e2207. [Google Scholar] [CrossRef]
- Carpenter, S.; Wilson, A.; Barber, J.; Veronesi, E.; Mellor, P.; Venter, G.; Gubbins, S. Temperature dependence of the extrinsic incubation period of orbiviruses in Culicoides biting midges. PLoS ONE 2011, 6, e27987. [Google Scholar] [CrossRef] [PubMed]
- Brand, S.; Keeling, M. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J. R. Soc. Interface 2017, 14, 20160481. [Google Scholar] [CrossRef] [PubMed]
- Jetten, T.; Martens, W.; Takken, W. Model simulations to estimate malaria risk under climate change. J. Med. Entomol. 1996, 33, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Jetten, T.; Focks, D. Potential changes in the distribution of dengue transmission under climate warming. Am. J. Trop. Med. Hyg. 1997, 57, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Bomblies, A.; Eltahir, E. Assessment of the impact of climate shifts on malaria transmission in the Sahel. EcoHealth 2009, 6, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, P.; Vancutsem, C.; Klaver, R.; Rowland, J.; Connor, S. A vectorial capacity product to monitor changing malaria transmission potential in epidemic regions of Africa. J. Trop. Med. 2012, 2012, 595948. [Google Scholar] [CrossRef] [PubMed]
- Yamana, T.; Eltahir, E. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ. Health Perspect. 2013, 121, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, L.; Whitehead, S.; Thomas, M. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 2017, 15, e2003489. [Google Scholar] [CrossRef]
- Viennet, E.; Mincham, G.; Frentiu, F.; Jansen, C.; Montgomery, B.; Harley, D.; Flower, R.; Williams, C.; Faddy, H. Epidemic potential for local transmission of Zika virus in 2015 and 2016 in Queensland, Australia. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef]
- Wimberly, M.; Davis, J.; Evans, M.; Hess, A.; Newberry, P.; Solano-Asamoah, N.; Murdock, C. Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. PLoS Negl. Trop. Dis. 2020, 14, e0008614. [Google Scholar] [CrossRef]
- Chitnis, N.; Smith, T.; Steketee, R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. J. Biol. Dyn. 2008, 2, 259–285. [Google Scholar] [CrossRef] [PubMed]
- Briët, O.; Impoinvil, D.; Chitnis, N.; Pothin, E.; Lemoine, J.; Frederic, J.; Smith, T. Models of effectiveness of interventions against malaria transmitted by Anopheles albimanus. Malar. J. 2019, 18, 263. [Google Scholar] [CrossRef] [PubMed]
- Denz, A.; Njoroge, M.; Tambwe, M.; Champagne, C.; Okumu, F.; van Loon, J.; Hiscox, A.; Saddler, A.; Fillinger, U.; Moore, S.; et al. Predicting the impact of outdoor vector control interventions on malaria transmission intensity from semi-field studies. Parasites Vectors 2021, 14, 64. [Google Scholar] [CrossRef]
- Fairbanks, E.; Saeung, M.; Pongsiri, A.; Vajda, E.; Wang, Y.; McIver, D.; Richardson, J.; Tatarsky, A.; Lobo, N.; Moore, S.; et al. Inference for entomological semi-field experiments: Fitting a mathematical model assessing personal and community protection of vector-control interventions. Comput. Biol. Med. 2024, 168, 107716. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.; Clark, G.; Lorenz, L.; Amerasinghe, P.; Reiter, P.; Edman, J. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. J. Med. Entomol. 1993, 30, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Meiswinkel, R.; Elbers, A. The dying of the light: Crepuscular activity in Culicoides and impact on light trap efficacy at temperate latitudes. Med. Vet. Entomol. 2016, 30, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Gerry, A.; Mullens, B. Seasonal abundance and survivorship of Culicoides sonorensis (Diptera: Ceratopogonidae) at a southern California dairy, with reference to potential bluetongue virus transmission and persistence. J. Med. Entomol. 2000, 37, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Gubbins, S.; Turner, J.; Baylis, M.; Van der Stede, Y.; van Schaik, G.; Abrahantes, J.; Wilson, A. Inferences about the transmission of Schmallenberg virus within and between farms. Prev. Vet. Med. 2014, 116, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.; Harrup, L.; Silk, R.; Veronesi, E.; Gubbins, S.; Bachanek-Bankowska, K.; Carpenter, S. Blood-feeding, susceptibility to infection with Schmallenberg virus and phylogenetics of Culicoides (Diptera: Ceratopogonidae) from the United Kingdom. Parasites Vectors 2018, 11, 116. [Google Scholar] [CrossRef]
- Ruder, M.; Mead, D.; Stallknecht, D.; Kedmi, M.; Klement, E.; Brown, J.; Carter, D.; Howerth, E. Experimental infection of Holstein cows and calves with EHDV-7 and preliminary evaluation of different inoculation methods. Vet. Ital. 2015, 51, 289–299. [Google Scholar] [CrossRef]
- Jones, A.; Turner, J.; Caminade, C.; Heath, A.; Wardeh, M.; Kluiters, G.; Diggle, P.; Morse, A.; Baylis, M. Bluetongue risk under future climates. Nat. Clim. Change 2019, 9, 153–157. [Google Scholar] [CrossRef]
- Gubbins, S.; Carpenter, S.; Baylis, M.; Wood, J.; Mellor, P. Assessing the risk of bluetongue to UK livestock: Uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number. J. R. Soc. Interface 2007, 5, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Backer, J.; Nodelijk, G. Transmission and control of African horse sickness in The Netherlands: A model analysis. PLoS ONE 2011, 6, e23066. [Google Scholar] [CrossRef]
- Ruder, M.; Allison, A.; Stallknecht, D.; Mead, D.; McGraw, S.; Carter, D.; Kubiski, S.; Batten, C.; Klement, E.; Howerth, E. Susceptibility of white-tailed deer (Odocoileus virginianus) to experimental infection with epizootic hemorrhagic disease virus serotype 7. J. Wildl. Dis. 2012, 48, 676–685. [Google Scholar] [CrossRef]
- Ruder, M.; Stallknecht, D.; Allison, A.; Mead, D.; Carter, D.; Howerth, E. Host and potential vector susceptibility to an emerging orbivirus in the United States: Epizootic hemorrhagic disease virus serotype 6. Vet. Pathol. 2016, 53, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.; Legg, T.; Folland, C. A new daily central England temperature series, 1772–1991. Int. J. Climatol. 1992, 12, 317–342. [Google Scholar] [CrossRef]
- Fairbanks, E.; Tildesley, M.; Daly, J. A systematic review quantifying host feeding patterns of Culicoides species responsible for pathogen transmission. bioRxiv 2024. [Google Scholar] [CrossRef]
- Sanders, C.; Shortall, C.; Gubbins, S.; Burgin, L.; Gloster, J.; Harrington, R.; Reynolds, D.; Mellor, P.; Carpenter, S. Influence of season and meteorological parameters on flight activity of Culicoides biting midges. J. Appl. Ecol. 2011, 48, 1355–1364. [Google Scholar] [CrossRef]
- Baker, T.; Carpenter, S.; Gubbins, S.; Newton, R.; Lo Iacono, G.; Wood, J.; Harrup, L. Can insecticide-treated netting provide protection for Equids from Culicoides biting midges in the United Kingdom? Parasites Vectors 2015, 8, 604. [Google Scholar] [CrossRef]
- Haider, N.; Kirkeby, C.; Kristensen, B.; Kjær, L.; Sørensen, J.; Bødker, R. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Sci. Rep. 2017, 7, 8175. [Google Scholar] [CrossRef]
- Haider, N.; Cuellar, A.; Kjær, L.; Sørensen, J.; Bødker, R. Microclimatic temperatures at Danish cattle farms, 2000–2016: Quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus. Parasites Vectors 2018, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Boyer, T.; Ward, M.; Singer, R. Climate, landscape, and the risk of orbivirus exposure in cattle in Illinois and western Indiana. Am. J. Trop. Med. Hyg. 2010, 83, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Hug, D.; Stegmayer, R.; Blanckenhorn, W.; Verhulst, N. Thermal preference of adult mosquitoes (Culicidae) and biting midges (Ceratopogonidae) at different altitudes in Switzerland. Med. Vet. Entomol. 2023, 37, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Elbers, A.; Gonzales, J. Culicoides (Diptera: Ceratopogonidae) Abundance Is Influenced by Livestock Host Species and Distance to Hosts at the Micro Landscape Scale. Insects 2023, 14, 637. [Google Scholar] [CrossRef] [PubMed]
- Gerry, A.; Monteys, V.; Vidal, J.; Francino, O.; Mullens, B. Biting rates of Culicoides midges (Diptera: Ceratopogonidae) on sheep in northeastern Spain in relation to midge capture using UV light and carbon dioxide-baited traps. J. Med. Entomol. 2014, 46, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Equine Infectious Disease Surveilence. Equine Quarterly Surveillance Report (Q1 2024). 2024. Available online: https://equinesurveillance.org/landing/resources/reports/dsr20241.pdf (accessed on 15 July 2024).
- Department for Environment, Food and Rural Affairs. Epizootic Haemorrhagic Disease in Europe: Preliminary Outbreak Assessment. 2022. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1124406/Epizootic_haemorrhagic_disease_in_europe.pdf (accessed on 15 July 2024).
- Department for Environment, Food and Rural Affairs. Epizootic Haemorrhagic Disease in Europe: Updated Outbreak Assessment #2. 2023. Available online: https://assets.publishing.service.gov.uk/media/6500653f1886eb000d9771eb/EHDv_Europe_30_Aug_23.pdf (accessed on 15 July 2024).
- Meloni, G.; Cossu, M.; Foxi, C.; Vento, L.; Circosta, S.; Burrai, E.; Masala, S.; Goffredo, M.; Satta, G. Combined larvicidal and adulticidal treatments to control Culicoides biting midges (Diptera: Ceratopogonidae): Results of a pilot study. Vet. Parasitol 2018, 257, 28–33. [Google Scholar] [CrossRef]
- Elbers, A.; Meiswinkel, R. Culicoides (Diptera: Ceratopogonidae) and livestock in the Netherlands: Comparing host preference and attack rates on a Shetland pony, a dairy cow, and a sheep. J. Vector Ecol. 2015, 40, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Swai, J.; Kibondo, U.; Ntabaliba, W.; Ngoyani, H.; Makungwa, N.; Mseka, A.; Chura, M.; Mascari, T.; Moore, S. CDC light traps underestimate the protective efficacy of an indoor spatial repellent against bites from wild Anopheles arabiensis mosquitoes in Tanzania. Malar. J. 2023, 22, 141. [Google Scholar] [CrossRef]
- Gebremariam, B.; Birke, W.; Zeine, W.; Ambelu, A.; Yewhalaw, D. Evaluation of Long-Lasting Insecticidal Nets (DuraNet®) Under laboratory and Semi-Field Conditions Using Experimental Huts Against Anopheles Mosquitoes in Jimma Zone, Southwestern Ethiopia. Environ. Health Insights 2021, 15, 1178630220974730. [Google Scholar] [CrossRef] [PubMed]
- Bayili, K.; Ki, H.; Bayili, B.; Sow, B.; Ouattara, A.; Small, G.; Hien, A.; Dabire, R.; Diabate, A. Laboratory and experimental hut trial evaluation of VECTRON™ T500 for indoor residual spraying (IRS) against insecticide resistant malaria vectors in Burkina Faso. Gates Open Res. 2022, 6, 57. [Google Scholar] [CrossRef]
- Mullens, B.; Velten, R.; Gerry, A.; Braverman, Y.; Endris, R. Feeding and survival of Culicoides sonorensis on cattle treated with permethrin or pirimiphos-methyl. Med. Vet. Entomol. 2000, 14, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Robin, M.; Archer, D.; McGowan, C.; Garros, C.; Gardes, L.; Baylis, M. Repellent effect of topical deltamethrin on blood feeding by Culicoides on horses. Vet. Rec. 2015, 176, 574. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Balaraman, V.; Kantor, A.; Lin, J.; Grant, D.; Held, N.; Franz, A. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion. PLoS Negl. Trop. Dis. 2017, 11, e0005976. [Google Scholar] [CrossRef] [PubMed]
- Serafim, T.; Coutinho-Abreu, I.; Oliveira, F.; Meneses, C.; Kamhawi, S.; Valenzuela, J. Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat. Microbiol. 2018, 3, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.; Ehrlich, H.; Magalhaes, T.; Miller, M.; Conway, P.; Bransfield, A.; Misencik, M.; Gloria-Soria, A.; Warren, J.; Andreadis, T.; et al. Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. Nat. Microbiol. 2020, 5, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Rozo-Lopez, P.; Londono-Renteria, B.; Drolet, B. Impacts of infectious dose, feeding behavior, and age of Culicoides sonorensis biting midges on infection dynamics of vesicular stomatitis virus. Pathogens 2021, 10, 816. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Stopard, I.; Byrne, H.; Armstrong, P.; Brackney, D.; Lambert, B. Investigating the dose-dependency of the midgut escape barrier using a mechanistic model of within-mosquito dengue virus population dynamics. PLoS Pathog. 2024, 20, e1011975. [Google Scholar] [CrossRef]
- Wang, Y.; Chitnis, N.; Fairbanks, E. Optimizing malaria vector control in the Greater Mekong Subregion: A systematic review and mathematical modelling study to identify desirable intervention characteristics. Parasites Vectors 2024, 17, 162. [Google Scholar] [CrossRef]
Parameter | Definition |
---|---|
Rate of gonotrophic cycle completion on day s. | |
Vector mortality rate on day s. | |
Rate of pathogen EIP completion on day s. | |
Proportion of blood meals from competent hosts, referred to as the blood index. | |
Average number of bites per vector per gonotrophic cycle. | |
Reduction in the rate of vector biting due to the presence of a vector-control tool. | |
Increase in the rate of vector mortality before biting due to the presence of a vector-control tool, relative to the rate of biting without the vector-control tool. | |
Rate of vector disarming due to the presence of a vector-control tool, relative to the rate of biting without the vector-control tool. | |
Increased probability of vector mortality after biting due to the presence of a vector control tool. | |
Proportion of the target hosts with access to the vector-control tool, referred to as coverage. | |
Adherence to using the vector-control tool, referred to as usage. | |
Probability of transmission from host to vector, given that the host is infectious. | |
Probability of transmission from vector to host, given that the vector is infectious. | |
Probability a vector which fed on day t survives until day . | |
Probability that a vector which fed on day t is infectious day , given transmission occurred during the bite on day t. | |
Probability of a host-encountering event on day s (defined as feeding or preprandial mortality or disarming due to the presence of a tool). | |
Probability of transmission of a pathogen from host to vector on day t. | |
Probability of transmission of a pathogen from vector to host on day . | |
Rate of preprandial killing on day s. | |
Rate of postprandial killing on day s. | |
Probability a vector is killed preprandially by day given it being fed on day t. | |
Probability a vector is killed postprandially by day given it being fed on day t. | |
The vectorial capacity on day t. |
Virus | Host Species | Infectious Period | Ref. | |
---|---|---|---|---|
BTV | Cattle | 0.9 | 20.6 | [32,33] |
AHSV | Horse | 0.77 | 4.4 | [34] |
SBV | Cattle | 0.76 | 3.04 | [29] |
EHDV | Deer | 0.9 † | 11.7 | [35,36] |
Parameter | Fixed Value | Range |
---|---|---|
0.50 | 0–1 | |
0.75 | 0–1 | |
15 | 10–20 | |
0.05 | 0.01–0.10 | |
0.50 | 0–1 |
Scenario | Bite Rate Reduction () | Relative Preprandial Mortality Rate Increase () | Relative Disarming Rate Increase () | Postprandial Mortality Increase () |
---|---|---|---|---|
Untreated | 0.75 | 0.00 | 0.00 | 0.00 |
20% mortality | 0.75 | 0.20 | 0.00 | 0.20 |
40% mortality | 0.75 | 0.40 | 0.00 | 0.40 |
20% mortality & 20% disarming | 0.75 | 0.20 | 0.20 | 0.20 |
Virus | Threshold Temperature | Days above Threshold Temperature | |
---|---|---|---|
Mean Temperature | Maximum Temperature | ||
BTV | 12.6 | 136.4 | 213.7 |
SBV | 12.4 | 140.4 | 217.5 |
AHSV | 12.6 | 136.4 | 213.7 |
EHDV | 19.5 | 11.4 | 79.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairbanks, E.L.; Daly, J.M.; Tildesley, M.J. Modelling the Influence of Climate and Vector Control Interventions on Arbovirus Transmission. Viruses 2024, 16, 1221. https://doi.org/10.3390/v16081221
Fairbanks EL, Daly JM, Tildesley MJ. Modelling the Influence of Climate and Vector Control Interventions on Arbovirus Transmission. Viruses. 2024; 16(8):1221. https://doi.org/10.3390/v16081221
Chicago/Turabian StyleFairbanks, Emma L., Janet M. Daly, and Michael J. Tildesley. 2024. "Modelling the Influence of Climate and Vector Control Interventions on Arbovirus Transmission" Viruses 16, no. 8: 1221. https://doi.org/10.3390/v16081221
APA StyleFairbanks, E. L., Daly, J. M., & Tildesley, M. J. (2024). Modelling the Influence of Climate and Vector Control Interventions on Arbovirus Transmission. Viruses, 16(8), 1221. https://doi.org/10.3390/v16081221