A Coiled-Coil Nucleotide-Binding Domain Leucine-Rich Repeat Receptor Gene MeRPPL1 Plays a Role in the Replication of a Geminivirus in Cassava
Abstract
:1. Introduction
2. Materials and Methods
2.1. MeRPPL1 Expression Knockdown gRNA Cassette Design and Synthesis
2.2. Cloning the CRISPR Cassettes into pCAMBIA 1380 Delivery Vector
2.3. CRISPR-Mediated MeRPPL1 Expression Knockdown: Protoplast Isolation and Transfection
2.4. RNA Extraction and RT-qPCR Gene Expression Analysis
2.5. DNA Extraction and Viral Replication Quantification
2.6. Sequencing, Mutagenesis Analysis, and Protein Structure Prediction
3. Results
3.1. MeRPPL1 gRNA Cassette Confirmation
3.2. Protoplast Isolation and Viability
3.3. Expression of MeRPPL1 in CRISPR/Cas9-Treated Protoplasts
3.4. South African Cassava Mosaic Virus Replication Quantification
3.5. CRISPR/Cas9-Mediated Mutations in MeRPPL1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lebot, V. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams, Aroids; CABI Publishing: Wallingford, UK, 2008; ISBN 9781845934248. [Google Scholar]
- Zerbini, F.M.; Briddon, R.W.; Idris, A.; Martin, D.P.; Moriones, E.; Navas-Castillo, J.; Rivera-Bustamante, R.; Roumagnac, P.; Varsani, A.; ICTV Report Consortium. ICTV Virus Taxonomy Profile: Geminiviridae. J. Gen. Virol. 2017, 98, 131–133. [Google Scholar] [CrossRef]
- Rey, C.; Vanderschuren, H. Cassava Mosaic and Brown Streak Diseases: Current Perspectives and Beyond. Annu. Rev. Virol. 2017, 4, 429–452. [Google Scholar] [CrossRef]
- Owor, B.; Legg, J.P.; Okao-Okuja, G.; Obonyo, R.; Ogenga-Latigo, M.W. The Effect of Cassava Mosaic Geminiviruses on Symptom Severity, Growth and Root Yield of a Cassava Mosaic Virus Disease-Susceptible Cultivar in Uganda. Ann. Appl. Biol. 2004, 145, 331–337. [Google Scholar] [CrossRef]
- Legg, J.P.; Lava Kumar, P.; Makeshkumar, T.; Tripathi, L.; Ferguson, M.; Kanju, E.; Ntawuruhunga, P.; Cuellar, W. Cassava Virus Diseases: Biology, Epidemiology, and Management. Adv. Virus Res. 2015, 91, 85–142. [Google Scholar]
- Berrie, L.C.; Palmer, K.; Rybicki, E.P.; Hidayat, S.H.; Maxwell, D.P.; Rey, M.E.C. A New Isolate of African Cassava Mosaic Virus in South Africa. Afr. J. Root Tuber Crop. 1997, 2, 49–52. [Google Scholar]
- Alabi, O.J.; Kumar, P.L.; Naidu, R.A. Cassava Mosaic Disease: A curse to food security in sub-Saharan Africa. APSnet Features 2011, 7, 1–17. [Google Scholar]
- Fondong, V.N.; Rey, C. Recent Biotechnological Advances in the Improvement of Cassava. In Cassava; Waisundara, V., Ed.; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Akano, A.O.; Dixon, A.G.O.; Mba, C.; Barrera, E.; Fregene, M. Genetic Mapping of a Dominant Gene Conferring Resistance to Cassava Mosaic Disease. Theor. Appl. Genet. 2002, 105, 521–525. [Google Scholar] [CrossRef]
- Rabbi, I.Y.; Hamblin, M.T.; Kumar, P.L.; Gedil, M.A.; Ikpan, A.S.; Jannink, J.L.; Kulakow, P.A. High-Resolution Mapping of Resistance to Cassava Mosaic Geminiviruses in Cassava Using Genotyping-by-Sequencing and Its Implications for Breeding. Virus Res. 2014, 186, 87–96. [Google Scholar] [CrossRef]
- Okogbenin, E.; Egesi, C.N.; Olasanmi, B.; Ogundapo, O.; Kahya, S.; Hurtado, P.; Marin, J.; Akinbo, O.; Mba, C.; Gomez, H.; et al. Molecular Marker Analysis and Validation of Resistance to Cassava Mosaic Disease in Elite Cassava Genotypes in Nigeria. Crop Sci. 2012, 52, 2576–2586. [Google Scholar] [CrossRef]
- Wolfe, M.D.; Rabbi, I.Y.; Egesi, C.; Hamblin, M.; Kawuki, R.; Kulakow, P.; Lozano, R.; Del Carpio, D.P.; Ramu, P.; Jannink, J. Genome-Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. Plant Genome 2016, 9, plantgenome2015.11.0118. [Google Scholar] [CrossRef]
- Wu, X.; Valli, A.; García, J.A.; Zhou, X.; Cheng, X. The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019, 11, 203. [Google Scholar] [CrossRef]
- Ding, L.N.; Li, Y.T.; Wu, Y.Z.; Li, T.; Geng, R.; Cao, J.; Zhang, W.; Tan, X.L. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int. J. Mol. Sci. 2022, 23, 16200. [Google Scholar] [CrossRef] [PubMed]
- Ngou, B.P.M.; Ahn, H.-K.; Ding, P.; Jones, J.D.G. Mutual Potentiation of Plant Immunity by Cell-Surface and Intracellular Receptors. Nature 2021, 592, 110–115. [Google Scholar] [CrossRef]
- Sett, S.; Prasad, A.; Prasad, M. Resistance Genes on the Verge of Plant–Virus Interaction. Trends Plant Sci. 2022, 27, 1242–1252. [Google Scholar] [CrossRef]
- Maiti, S.; Paul, S.; Pal, A. Isolation, Characterization, and Structure Analysis of a Non-TIR-NBS-LRR Encoding Candidate Gene from MYMIV-Resistant Vigna mungo. Mol. Biotechnol. 2012, 52, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Yan, Z.; Wang, X.; Wang, Y.; Arens, M.; Du, Y.; Visser, R.G.F.; Kormelink, R.; Bai, Y.; Wolters, A.M.A. The NLR Protein Encoded by the Resistance Gene Ty-2 Is Triggered by the Replication-Associated Protein Rep/C1 of Tomato Yellow Leaf Curl Virus. Front. Plant Sci. 2020, 11, 545306. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Ohnishi, J.; Saito, A.; Ohyama, A.; Nunome, T.; Miyatake, K.; Fukuoka, H. An NB-LRR Gene, TYNBS1, Is Responsible for Resistance Mediated by the Ty-2 Begomovirus Resistance Locus of Tomato. Theor. Appl. Genet. 2018, 131, 1345–1362. [Google Scholar] [CrossRef]
- Sharma, N.; Sahu, P.; Prasad, A.; Muthamilarasan, M.; Waseem, M.; Khan, Y.; Thakur, J.K.; Chakraborty, S.; Prasad, S. The Sw5a gene confers resistance to ToLCNDV and triggers an HR response after direct AC4 effector recognition. Proc. Natl. Acad. Sci. USA 2021, 118, e2101833118. [Google Scholar] [CrossRef]
- Gill, U.; Scott, J.W.; Shekasteband, R.; Ogundiwin, E.; Schuit, C.; Francis, D.M.; Sim, S.-C.; Smith, H.; Hutton, S.F. Ty-6, a Major Begomovirus Resistance Gene on Chromosome 10, Is Effective against Tomato Yellow Leaf Curl Virus and Tomato Mottle Virus. Theor. Appl. Genet. 2019, 132, 1543–1554. [Google Scholar] [CrossRef]
- Lim, Y.W.; Mansfeld, B.N.; Schläpfer, P.; Gilbert, K.B.; Narayanan, N.N.; Qi, W.; Wang, Q.; Zhong, Z.; Boyher, A.; Gehan, J.; et al. Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses. Nat. Commun. 2022, 13, 3933. [Google Scholar] [CrossRef]
- Gedil, M.; Kumar, M.; Igwe, D. Isolation and Characterization of Resistant Gene Analogs in Cassava, Wild Manihot Species, and Castor Bean (Ricinus communis). Afr. J. Biotechnol. 2012, 11, 15111–15123. [Google Scholar] [CrossRef]
- Allie, F.; Pierce, E.J.; Okoniewski, M.J.; Rey, C. Transcriptional Analysis of South African Cassava Mosaic Virus-Infected Susceptible and Tolerant Landraces of Cassava Highlights Differences in Resistance, Basal Defense and Cell Wall Associated Genes during Infection. BMC Genom. 2014, 15, 1006. [Google Scholar] [CrossRef] [PubMed]
- Ramulifho, E.; Rey, M.E.C. Proteome Mapping of South African Cassava Mosaic Virus-Infected Susceptible and Tolerant Landraces of Cassava. Proteomes 2021, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Prochnik, S.; Marri, P.R.; Desany, B.; Rabinowicz, P.D.; Kodira, C.; Mohiuddin, M.; Rodriguez, F.; Fauquet, C.; Tohme, J.; Harkins, T.; et al. The Cassava Genome: Current Progress, Future Directions. Trop. Plant Biol. 2012, 5, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Kuon, J.E.; Qi, W.; Schläpfer, P.; Hirsch-Hoffmann, M.; Von Bieberstein, P.R.; Patrignani, A.; Poveda, L.; Grob, S.; Keller, M.; Shimizu-Inatsugi, R.; et al. Haplotype-Resolved Genomes of Geminivirus-Resistant and Geminivirus-Susceptible African Cassava Cultivars. BMC Biol. 2019, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Louis, B.; Rey, C. Resistance Gene Analogs Involved in Tolerant Cassava–Geminivirus Interaction That Shows a Recovery Phenotype. Virus Genes 2015, 51, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Concordet, J.P.; Haeussler, M. CRISPOR: Intuitive Guide Selection for CRISPR/Cas9 Genome Editing Experiments and Screens. Nucleic Acids Res. 2018, 46, W242–W245. [Google Scholar] [CrossRef] [PubMed]
- Chatukuta, P.; Rey, M.E.C. A Cassava Protoplast System for Screening Genes Associated with the Response to South African Cassava Mosaic Virus. Virol. J. 2020, 17, 184. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Berrie, L.C.; Rybicki, E.P.; Rey, M.E.C. Complete Nucleotide Sequence and Host Range of South African Cassava Mosaic Virus: Further Evidence for Recombination amongst Begomoviruses. J. Gen. Virol. 2001, 82, 53–58. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Haynes, J.L. Principles of Flow Cytometry. Cytometry 1988, 9, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Mariani, V.; Biasini, M.; Barbato, A.; Schwede, T. LDDT: A Local Superposition-Free Score for Comparing Protein Structures and Models Using Distance Difference Tests. Bioinformatics 2013, 29, 2722–2728. [Google Scholar] [CrossRef]
- Houngue, J.A.; Zandjanakou-Tachin, M.; Ngalle, H.B.; Pita, J.S.; Cacaï, G.H.T.; Ngatat, S.E.; Bell, J.M.; Ahanhanzo, C. Evaluation of Resistance to Cassava Mosaic Disease in Selected African Cassava Cultivars Using Combined Molecular and Greenhouse Grafting Tools. Physiol. Mol. Plant Pathol. 2019, 105, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Thuy, C.T.; Lopez-Lavalle, L.A.; Vu, N.A.; Hy, N.H.; Nhan, P.T.; Ceballos, H.; Newby, J.; Tung, N.B.; Hien, N.T.; Tuan, L.N.; et al. Identifying New Resistance to Cassava Mosaic Disease and Validating Markers for the CMD2 Locus. Agriculture 2021, 11, 829. [Google Scholar] [CrossRef]
- Sheat, S.; Winter, S. Developing Broad-Spectrum Resistance in Cassava against Viruses Causing the Cassava Mosaic and the Cassava Brown Streak Diseases. Front. Plant Sci. 2023, 14, 1042701. [Google Scholar] [CrossRef] [PubMed]
- Codjia, E.D.; Olasanmi, B.; Agre, P.A.; Uwugiaren, R.; Ige, A.D.; Rabbi, I.Y. Selection for Resistance to Cassava Mosaic Disease in African Cassava Germplasm Using Single Nucleotide Polymorphism Markers. S. Afr. J. Sci. 2022, 118, 1–7. [Google Scholar] [CrossRef]
- Vanitharani, R.; Chellappan, P.; Fauquet, C.M. Short Interfering RNA-Mediated Interference of Gene Expression and Viral DNA Accumulation in Cultured Plant Cells. Proc. Natl. Acad. Sci. USA 2003, 100, 9632–9636. [Google Scholar] [CrossRef]
- Houston, K.; Tucker, M.R.; Chowdhury, J.; Shirley, N.; Little, A. The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions. Front. Plant Sci. 2016, 7, 984. [Google Scholar] [CrossRef]
- von Dahlen, J.K.; Schulz, K.; Nicolai, J.; Rose, L.E. Global expression patterns of R-genes in tomato and potato. Front. Plant Sci. 2023, 14, 1216795. [Google Scholar] [CrossRef]
- Gouveia, B.C.; Calil, I.P.; Machado, J.P.B.; Santos, A.A.; Fontes, E.P.B. Immune Receptors and Co-Receptors in Antiviral Innate Immunity in Plants. Front. Microbiol. 2017, 7, 2139. [Google Scholar] [CrossRef]
- Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.F. PTI-ETI Crosstalk: An Integrative View of Plant Immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
- Wang, J.; Hao, F.; Song, K.; Jin, W.; Fu, B.; Wei, Y.; Shi, Y.; Guo, H.; Liu, W. Identification of a Novel NtLRR-RLK and Biological Pathways That Contribute to Tolerance of TMV in Nicotiana tabacum. Mol. Plant-Microbe Interact. 2020, 33, 996–1006. [Google Scholar] [CrossRef]
- Freeborough, W.; Gentle, N.; Rey, M.E.C. WRKY Transcription Factors in Cassava Contribute to Regulation of Tolerance and Susceptibility to Cassava Mosaic Disease through Stress Responses. Viruses 2021, 13, 1820. [Google Scholar] [CrossRef]
- Tashkandi, M.; Ali, Z.; Aljedaani, F.; Shami, A.; Mahfouz, M.M. Engineering Resistance against Tomato Yellow Leaf Curl Virus via the CRISPR/Cas9 System in Tomato. Plant Signal. Behav. 2018, 13, e1525996. [Google Scholar] [CrossRef]
- Pramanik, D.; Shelake, R.M.; Park, J.; Kim, M.J.; Hwang, I.; Park, Y.; Kim, J.Y. CRISPR/Cas9-Mediated Generation of Pathogen-Resistant Tomato against Tomato Yellow Leaf Curl Virus and Powdery Mildew. Int. J. Mol. Sci. 2021, 22, 1878. [Google Scholar] [CrossRef]
- Mubarik, M.S.; Wang, X.; Khan, S.H.; Ahmad, A.; Khan, Z.; Amjid, M.W.; Razzaq, M.K.; Ali, Z.; Azhar, M.T. Engineering Broad-Spectrum Resistance to Cotton Leaf Curl Disease by CRISPR-Cas9 Based Multiplex Editing in Plants. GM Crop. Food 2021, 12, 647–658. [Google Scholar] [CrossRef]
- Bendahmane, A.; Farnham, G.; Moffett, P.; Baulcombe, D. Constitutive Gain-of-Function Mutants in a Nucleotide Binding Site-Leucine Rich Repeat Protein Encoded at the Rx Locus of Potato. Plant J. 2002, 32, 195–204. [Google Scholar] [CrossRef]
- DeYoung, B.; Innes, R. Plant NBS-LRR Proteins in Pathogen Sensing and Host Defense. Nat. Immunol. 2006, 7, 1243–1249. [Google Scholar] [CrossRef]
- Howles, P.; Lawrence, G.; Finnegan, J.; McFadden, H.; Ayliffe, M.; Dodds, P.; Ellis, J. Autoactive Alleles of the Flax L6 Rust Resistance Gene Induce Non-Race-Specific Rust Resistance Associated with the Hypersensitive Response. Mol. Plant-Microbe Interact. 2005, 18, 570–582. [Google Scholar] [CrossRef]
- de la Fuente van Bentem, S.; Vossen, J.; de Vries, K.; van Wees, S.; Tameling, W.; Dekker, H.; de Koster, C.; Haring, M.; Takken, F.; Cornelissen, B. Heat Shock Protein 90 and Its Co-Chaperone Protein Phosphatase 5 Interact with Distinct Regions of the Tomato I-2 Disease Resistance Protein. Plant J. 2005, 43, 284–298. [Google Scholar] [CrossRef]
- Dodds, P.; Lawrence, G.; Catanzariti, A.; Teh, T.; Wang, C.; Ayliffe, M.; Kobe, B.; Ellis, J. Direct Protein Interaction Underlies Gene-for-Gene Specificity and Coevolution of the Flax Resistance Genes and Flax Rust Avirulence Genes. Proc. Natl. Acad. Sci. USA 2006, 103, 8888–8893. [Google Scholar] [CrossRef]
- van Ooijen, G.; Mayr, G.; Kasiem, M.; Albrecht, M.; Cornelissen, B.; Takken, F. Structure-Function Analysis of the NB-ARC Domain of Plant Disease Resistance Proteins. J. Exp. Bot. 2008, 59, 1383–1397. [Google Scholar] [CrossRef]
- Tameling, W.I.L.; Elzinga, S.D.J.; Darmin, P.S.; Vossen, J.H.; Takken, F.L.W.; Haring, M.A.; Cornelissen, B.J.C. The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity. Plant Cell 2002, 14, 2929–2939. [Google Scholar] [CrossRef]
- McHale, L.; Tan, X.; Koehl, P.; Michelmore, R.W. Plant NBS-LRR Proteins: Adaptable Guards. Genome Biol. 2006, 7, 212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramulifho, E.; Rey, C. A Coiled-Coil Nucleotide-Binding Domain Leucine-Rich Repeat Receptor Gene MeRPPL1 Plays a Role in the Replication of a Geminivirus in Cassava. Viruses 2024, 16, 941. https://doi.org/10.3390/v16060941
Ramulifho E, Rey C. A Coiled-Coil Nucleotide-Binding Domain Leucine-Rich Repeat Receptor Gene MeRPPL1 Plays a Role in the Replication of a Geminivirus in Cassava. Viruses. 2024; 16(6):941. https://doi.org/10.3390/v16060941
Chicago/Turabian StyleRamulifho, Elelwani, and Chrissie Rey. 2024. "A Coiled-Coil Nucleotide-Binding Domain Leucine-Rich Repeat Receptor Gene MeRPPL1 Plays a Role in the Replication of a Geminivirus in Cassava" Viruses 16, no. 6: 941. https://doi.org/10.3390/v16060941
APA StyleRamulifho, E., & Rey, C. (2024). A Coiled-Coil Nucleotide-Binding Domain Leucine-Rich Repeat Receptor Gene MeRPPL1 Plays a Role in the Replication of a Geminivirus in Cassava. Viruses, 16(6), 941. https://doi.org/10.3390/v16060941