Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Virus
2.2. Plasmids and Antibodies
2.3. Construction of Infectious Clones
2.4. Rescue and In Vitro Characterization of Vaccine Candidates
2.5. Animal Study
2.5.1. Animal Sourcing and Maintenance
2.5.2. Experimental Design
2.5.3. Detection of CSFV Genome in Fetuses
2.5.4. Serological Tests of Sows and Fetuses
CSFV Ab Test for CSFV Antibody Detection
Double-Competitive DIVA ELISA (6B8 dcELISA) Testing for DIVA Purposes
2.6. Statistical Analysis
3. Results
3.1. All Vaccine Candidate Viruses Were Rescued In Vitro and Were Genetically Stable
3.2. Rescued Candidate Viruses Showed Robust Replication In Vitro
3.3. Pregnant Sow Safety Study Results
3.3.1. Validity of the Study
3.3.2. Candidates in Groups 1, 2, and 4 Showed Promising Safety Profiles in Pregnant Sows and Fetuses
3.3.3. No CSFV Genome Detected in Fetal Samples for Two Vaccine Candidates
3.4. Candidates Showed DIVA Features in Sows after Vaccination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganges, L.; Crooke, H.R.; Bohórquez, J.A.; Postel, A.; Sakoda, Y.; Becher, P.; Ruggli, N. Classical swine fever virus: The past, present and future. Virus Res. 2020, 289, 198151. [Google Scholar] [CrossRef]
- Smith, D.B.; Meyers, G.; Bukh, J.; Gould, E.A.; Monath, T.; Scott Muerhoff, A.; Pletnev, A.; Rico-Hesse, R.; Stapleton, J.T.; Simmonds, P.; et al. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J. Gen. Virol. 2017, 98, 2106–2112. [Google Scholar] [CrossRef]
- Coronado, L.; Perera, C.L.; Rios, L.; Frias, M.T.; Perez, L.J. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines 2021, 9, 154. [Google Scholar] [CrossRef]
- Postel, A.; Nishi, T.; Kameyama, K.-I.; Meyer, D.; Suckstorff, O.; Fukai, K.; Becher, P. Reemergence of Classical Swine Fever, Japan. Emerg. Infect. Dis. 2019, 25, 1228–1231. [Google Scholar] [CrossRef]
- Gong, W.; Wu, J.; Lu, Z.; Zhang, L.; Qin, S.; Chen, F.; Peng, Z.; Wang, Q.; Ma, L.; Bai, A.; et al. Genetic diversity of subgenotype 2.1 isolates of classical swine fever virus. Infect. Genet. Evol. 2016, 41, 218–226. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Xu, L.; Li, J.; Wu, H.; Yang, C.; Chen, X.; Deng, Y.; Sun, Y.; Tu, C.; et al. Different clinical presentations of subgenotype 2.1 strain of classical swine fever infection in weaned piglets and adults, and long-term cross-protection conferred by a C-strain vaccine. Vet. Microbiol. 2021, 253, 108915. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, Y.; Zhang, G. Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021, 13, 445. [Google Scholar] [CrossRef]
- Xing, C.; Lu, Z.; Jiang, J.; Huang, L.; Xu, J.; He, D.; Wei, Z.; Huang, H.; Zhang, H.; Murong, C.; et al. Sub-subgenotype 2.1c isolates of classical swine fever virus are dominant in Guangdong province of China, 2018. Infect. Genet. Evol. 2019, 68, 212–217. [Google Scholar] [CrossRef]
- Gong, W.; Li, J.; Wang, Z.; Sun, J.; Mi, S.; Lu, Z.; Cao, J.; Dou, Z.; Sun, Y.; Wang, P.; et al. Virulence evaluation of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet. Microbiol. 2019, 232, 114–120. [Google Scholar] [CrossRef]
- Ji, W.; Guo, Z.; Ding, N.Z.; He, C.Q. Studying classical swine fever virus: Making the best of a bad virus. Virus Res. 2015, 197, 35–47. [Google Scholar] [CrossRef]
- Luo, Y.; Li, S.; Sun, Y.; Qiu, H.-J. Classical swine fever in China: A minireview. Vet. Microbiol. 2014, 172, 1–6. [Google Scholar] [CrossRef]
- Luo, Y.; Ji, S.; Lei, J.-L.; Xiang, G.-T.; Liu, Y.; Gao, Y.; Meng, X.-Y.; Zheng, G.; Zhang, E.-Y.; Wang, Y.; et al. Efficacy evaluation of the C-strain-based vaccines against the subgenotype 2.1d classical swine fever virus emerging in China. Vet. Microbiol. 2017, 201, 154–161. [Google Scholar] [CrossRef]
- Robert, E.; Goonewardene, K.; Lamboo, L.; Perez, O.; Goolia, M.; Lewis, C.; Erdelyan, C.N.G.; Lung, O.; Handel, K.; Moffat, E.; et al. Molecular and Pathological Characterization of Classical Swine Fever Virus Genotype 2 Strains Responsible for the 2013–2018 Outbreak in Colombia. Viruses 2023, 15, 2308. [Google Scholar] [CrossRef]
- Raut, A.A.; Aasdev, A.; Mishra, A.; Dutta, B.; Bharali, A.; Konwar, N.; Dubey, C.K.; Chingtham, S.; Pawar, S.D.; Raghuvanshi, R.; et al. Detection of coinfection of a divergent subgroup of genotype I Japanese encephalitis virus in multiple classical swine fever virus outbreaks in pigs of Assam, India. Transbound. Emerg. Dis. 2021, 68, 2622–2627. [Google Scholar] [CrossRef]
- Qiu, H.; Shen, R.; Tong, G. The Lapinized Chinese Strain Vaccine Against Classical Swine Fever Virus: A Retrospective Review Spanning Half A Century. Agric. Sci. China 2006, 5, 1–14. [Google Scholar] [CrossRef]
- McCarthy, R.R.; Everett, H.E.; Graham, S.P.; Steinbach, F.; Crooke, H.R. Head Start Immunity: Characterizing the Early Protection of C Strain Vaccine Against Subsequent Classical Swine Fever Virus Infection. Front. Immunol. 2019, 10, 1584. [Google Scholar] [CrossRef]
- Dong, X.-N.; Chen, Y.-H. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 2007, 25, 205–230. [Google Scholar] [CrossRef]
- Han, Y.; Xie, L.; Yuan, M.; Ma, Y.; Sun, H.; Sun, Y.; Li, Y.; Qiu, H.-J. Development of a marker vaccine candidate against classical swine fever based on the live attenuated vaccine C-strain. Vet. Microbiol. 2020, 247, 108741. [Google Scholar] [CrossRef]
- Li, F.; Li, B.; Niu, X.; Chen, W.; Li, Y.; Wu, K.; Li, X.; Ding, H.; Zhao, M.; Chen, J.; et al. The Development of Classical Swine Fever Marker Vaccines in Recent Years. Vaccines 2022, 10, 603. [Google Scholar] [CrossRef]
- Blome, S.; Wernike, K.; Reimann, I.; König, P.; Moß, C.; Beer, M. A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn® CSF Marker): A review of vaccine properties. Vet. Res. 2017, 48, 51. [Google Scholar] [CrossRef]
- Lim, S.-I.; Song, J.-Y.; Kim, J.; Hyun, B.-H.; Kim, H.-Y.; Cho, I.-S.; Kim, B.; Woo, G.-H.; Lee, J.-B.; An, D.-J. Safety of classical swine fever virus vaccine strain LOM in pregnant sows and their offspring. Vaccine 2016, 34, 2021–2026. [Google Scholar] [CrossRef]
- Park, G.-N.; Shin, J.; Choe, S.; Kim, K.-S.; Kim, J.-J.; Lim, S.-I.; An, B.-H.; Hyun, B.-H.; An, D.-J. Safety and Immunogenicity of Chimeric Pestivirus KD26_E2LOM in Piglets and Calves. Vaccines 2023, 11, 1622. [Google Scholar] [CrossRef]
- Jelsma, T.; Post, J.; Born, E.v.D.; Segers, R.; Kortekaas, J. Assessing the Protective Dose of a Candidate DIVA Vaccine against Classical Swine Fever. Vaccines 2021, 9, 483. [Google Scholar] [CrossRef]
- Yi, W.; Wang, H.; Qin, H.; Wang, Q.; Guo, R.; Wen, G.; Pan, Z. Construction and efficacy of a new live chimeric C-strain vaccine with DIVA characteristics against classical swine fever. Vaccine 2023, 41, 2003–2012. [Google Scholar] [CrossRef]
- Cao, T.; Li, X.; Xu, Y.; Zhang, S.; Wang, Z.; Shan, Y.; Sun, J.; Fang, W.; Li, X. Npro of Classical Swine Fever Virus Suppresses Type III Interferon Production by Inhibiting IRF1 Expression and Its Nuclear Translocation. Viruses 2019, 11, 998. [Google Scholar] [CrossRef]
- Tamura, T.; Nagashima, N.; Ruggli, N.; Summerfield, A.; Kida, H.; Sakoda, Y. Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites. Vet. Res. 2014, 45, 47. [Google Scholar] [CrossRef]
- Langedijk, J.P.M.; van Veelen, P.A.; Schaaper, W.M.M.; de Ru, A.H.; Meloen, R.H.; Hulst, M.M. A Structural Model of Pestivirus E rns Based on Disulfide Bond Connectivity and Homology Modeling Reveals an Extremely Rare Vicinal Disulfide. J. Virol. 2002, 76, 10383–10392. [Google Scholar] [CrossRef]
- Lussi, C.; Sauter, K.-S.; Schweizer, M. Homodimerisation-independent cleavage of dsRNA by a pestiviral nicking endoribonuclease. Sci. Rep. 2018, 8, 8226. [Google Scholar] [CrossRef]
- Meyer, C.; Freyburg, M.V.; Elbers, K.; Meyers, G. Recovery of virulent and RNase-negative attenuated type 2 bovine viral diarrhea viruses from infectious cDNA clones. J. Virol. 2002, 76, 8494–8503. [Google Scholar] [CrossRef] [PubMed]
- Tews, B.A.; Schürmann, E.-M.; Meyers, G. Mutation of cysteine 171 of pestivirus Erns RNase prevents homodimer formation and leads to attenuation of classical swine fever virus. J. Virol. 2009, 83, 4823–4834. [Google Scholar] [CrossRef] [PubMed]
- Meyers, G.; Saalmüller, A.; Büttner, M. Mutations Abrogating the RNase Activity in Glycoprotein E rns of the Pestivirus Classical Swine Fever Virus Lead to Virus Attenuation. J. Virol. 1999, 73, 10224–10235. [Google Scholar] [CrossRef]
- Mayer, D.; Hofmann, M.A.; Tratschin, J.-D. Attenuation of classical swine fever virus by deletion of the viral Npro gene. Vaccine 2004, 22, 317–328. [Google Scholar] [CrossRef]
- Meyers, G.; Ege, A.; Fetzer, C.; von Freyburg, M.; Elbers, K.; Carr, V.; Prentice, H.; Charleston, B.; Schürmann, E.-M. Bovine viral diarrhea virus: Prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J. Virol. 2007, 81, 3327–3338. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Liu, H.; Wang, J.; Sun, Y.; Chen, N. Safety, efficacy, and DIVA feasibility on a novel live attenuated classical swine fever marker vaccine candidate. Vaccine 2022, 40, 7219–7229. [Google Scholar] [CrossRef]
- Terrestrial Manual Online Access-WOAH-World Organisation for Animal Health. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-manual-online-access/ (accessed on 30 October 2023).
- Vannier, P.; Plateau, E.; Tillon, J.P. Congenital tremor in pigs farrowed from sows given hog cholera virus during pregnancy. Am. J. Vet. Res. 1981, 42, 135–137. [Google Scholar]
- Johnson, K.P.; Ferguson, L.C.; Byington, D.P.; Redman, D.R. Multiple fetal malformations due to persistent viral infection. I. Abortion, intrauterine death, and gross abnormalities in fetal swine infected with hog cholera vaccine virus. Lab. Investig. J. Tech. Methods Pathol. 1974, 30, 608–617. [Google Scholar]
- Plateau, E.; Vannier, P.; Tillon, J.P. Atypical hog cholera infection: Viral isolation and clinical study of in utero transmission. Am. J. Vet. Res. 1980, 41, 2012–2015. [Google Scholar] [PubMed]
- Muñoz-González, S.; Ruggli, N.; Rosell, R.; Pérez, L.J.; Frías-Leuporeau, M.T.; Fraile, L.; Montoya, M.; Cordoba, L.; Domingo, M.; Ehrensperger, F.; et al. Postnatal Persistent Infection with Classical Swine Fever Virus and Its Immunological Implications. PLoS ONE 2015, 10, e0125692. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Tong, C.; Li, D.; Wan, J.; Yuan, X.; Li, X.; Peng, J.; Fang, W. Antigenic analysis of classical swine fever virus E2 glycoprotein using pig antibodies identifies residues contributing to antigenic variation of the vaccine C-strain and group 2 strains circulating in China. Virol. J. 2010, 7, 378. [Google Scholar] [CrossRef]
- Karstentischer, B.; von Einem, J.; Kaufer, B.; Osterrieder, N. Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 2006, 40, 191–197. [Google Scholar] [CrossRef]
- Hoffmann, B.; Beer, M.; Schelp, C.; Schirrmeier, H.; Depner, K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J. Virol. Methods 2005, 130, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.; Orlich, M.; Thiel, H.J. Complete genomic sequence of border disease virus, a pestivirus from sheep. J. Virol. 1998, 72, 5165–5173. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Li, X.; Lv, X.; Liu, K.; Ren, J.; Zhai, J.; Song, Y. Current progress on innate immune evasion mediated by Npro protein of pestiviruses. Front. Immunol. 2023, 14, 1136051. [Google Scholar] [CrossRef] [PubMed]
- Seago, J.; Hilton, L.; Reid, E.; Doceul, V.; Jeyatheesan, J.; Moganeradj, K.; McCauley, J.; Charleston, B.; Goodbourn, S. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J. Gen. Virol. 2007, 88, 3002–3006. [Google Scholar] [CrossRef]
- Choe, S.; Kim, J.-H.; Kim, K.-S.; Song, S.; Cha, R.M.; Kang, W.-C.; Kim, H.-J.; Park, G.-N.; Shin, J.; Jo, H.-N.; et al. Adverse Effects of Classical Swine Fever Virus LOM Vaccine and Jeju LOM Strains in Pregnant Sows and Specific Pathogen-Free Pigs. Pathogens 2019, 9, 18. [Google Scholar] [CrossRef]
Parental Strain | Virulence of Parental Strain | Vaccine Candidate | Attenuation Marker | DIVA Marker | ||
---|---|---|---|---|---|---|
Npro | Erns-His (aa79) | Erns-Cys (aa171) | 6B8 Epitope | |||
GD18 | Moderate | GD18-ddNpro-ErnsH-KARD | Deletion of amino acid (aa) residues 5–168 from N-terminus of Npro | Yes | No | S14 to K G22 to A E24 to R G25 to D |
GD18-ddErnsHC-KARD | No | Yes | Yes | |||
QZ07 | Low | QZ07-sdErnsH-KARD | No | Yes | No | |
QZ07-ddErnsHC-KARD | No | Yes | Yes |
Group No. | Treatment Code | No. of Pregnant Sows | Vaccine Dose | Time of Treatment | Clinical Observation | Rectal Temperature | Blood Sampling | End of Study and Sampling |
---|---|---|---|---|---|---|---|---|
1 | GD18-ddErnsHC-KARD | 8 | 105.0 TCID50, by intramuscular vaccination | 55th or 56th day of gestation | Day post vaccination (DPV) 0, approx. 45 | DPV -2, -1, and 0 to DPI 7 | DPV -3, 3, 7, and 14 and necropsy day | DPV 42–45 (98th–101st day of gestation) Necropsy of sows for fetus condition observation Blood sampling of sows and fetuses Collection of fetus tissue samples |
2 | QZ07-ddErnsHC-KARD | 8 | ||||||
3 | GD18-ddNpro-ErnsH-KARD | 8 | ||||||
4 | QZ07-sdErnsH-KARD | 8 | ||||||
5 | Alfort-Erns H297K | 3 | ||||||
6 | N/A a | 5 | N/A | N/A | N/A | N/A | Within two weeks after farrowing | Natural farrowing of newborn piglets for condition assessment |
Group | Treatment | No. of Pregnant Sows | Total Number of Fetuses | Normal Fetuses | Mummified Fetuses | Macerated Fetuses | Sow Seroconversion by IDEXX ELISA | |||
---|---|---|---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | |||||
1 | GD18-ddErnsHC-KARD | 8 | 143 | 142 | 99.3 | 1 | 0.7 | 0 | 0 | 8/8 |
2 | QZ07-ddErnsHC-KARD | 8 | 134 | 133 | 99.2 | 1 | 0.8 | 0 | 0 | 8/8 |
3 | GD18-ddNpro-ErnsH-KARD | 7 a | 124 | 124 | 100 | 0 | 0 | 0 | 0 | 4/7 |
4 | QZ07-sdErnsH-KARD | 8 | 128 | 128 | 96.8 | 2 | 1.7 | 2 | 1.7 | 8/8 |
5 | Alfort-Erns H297K | 3 | 44 | 8 | 18.2 | 2 | 4.5 | 34 b | 77.3 | 3/3 |
6 | N/A c | 5 | 79 | 65 | 81.3 d | N/A | N/A | N/A | N/A | 0/5 |
Group | Treatment | RT-qPCR Results of Fetal Tissues and Blood Samples a | Summary b | |||||
---|---|---|---|---|---|---|---|---|
Spleen | Thymus | Kidney | Intestine | Tonsil | Umbilical Blood | |||
1 | GD18-ddErnsHC-KARD | 0/143 | 1D/142 | 1D/142 | 2D/142 | 0/143 | 2D/142 | 6D/854 |
2 | QZ07-ddErnsHC-KARD c | 2D and 1P/133 | 3P/4 | 2D and 1P /4 | 2D and 1P/4 | 3P/4 | 1D and 2P/3 | 7D and 11P/152 |
4 | QZ07-sdErnsH-KARD | 3D/126 | 2D/128 | 2D/128 | 2D/128 | 2D/126 | 2D/124 | 13D/760 |
5 | Alfort-Erns H297K | 44P/44 | 1D and 42P/44 | 44P/44 | 43P/43 | 43P/43 | 14P/14 | 1D and 230P/232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, C.; Mundt, A.; Meindl-Boehmer, A.; Haist, V.; Gallei, A.; Chen, N. Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses 2024, 16, 1043. https://doi.org/10.3390/v16071043
Tong C, Mundt A, Meindl-Boehmer A, Haist V, Gallei A, Chen N. Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses. 2024; 16(7):1043. https://doi.org/10.3390/v16071043
Chicago/Turabian StyleTong, Chao, Alice Mundt, Alexandra Meindl-Boehmer, Verena Haist, Andreas Gallei, and Ning Chen. 2024. "Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows" Viruses 16, no. 7: 1043. https://doi.org/10.3390/v16071043
APA StyleTong, C., Mundt, A., Meindl-Boehmer, A., Haist, V., Gallei, A., & Chen, N. (2024). Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses, 16(7), 1043. https://doi.org/10.3390/v16071043