Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Virus Titration
2.3. Viral Growth Kinetics
2.4. Bioassay for Type I IFN Measurement
2.5. Sequencing
2.6. Animal Use
2.7. Reversion to Virulence Study through Experimental Infection in Pigs
2.8. Serum Neutralization Test (SNT)
2.9. Statistical Analysis
2.10. Ethics Statement
3. Results
3.1. Attenuation of Chimeric Viruses during Serial Passages in Pigs
3.2. Amino Acid Substitutions of Chimeric Viruses Passaged in Pigs
3.3. In Vitro Growth Kinetics of vGPE− and Chimeric Viruses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganges, L.; Crooke, H.R.; Bohórquez, J.A.; Postel, A.; Sakoda, Y.; Becher, P.; Ruggli, N. Classical Swine Fever Virus: The Past, Present and Future. Virus Res. 2020, 289, 198151. [Google Scholar] [CrossRef] [PubMed]
- Brown, V.R.; Miller, R.S.; McKee, S.C.; Ernst, K.H.; Didero, N.M.; Maison, R.M.; Grady, M.J.; Shwiff, S.A. Risks of Introduction and Economic Consequences Associated with African Swine Fever, Classical Swine Fever and Foot-And-Mouth Disease: A Review of the Literature. Transbound. Emerg. Dis. 2021, 68, 1910–1965. [Google Scholar] [CrossRef] [PubMed]
- Tautz, N.; Tews, B.A.; Meyers, G. The Molecular Biology of Pestiviruses. Adv. Virus Res. 2015, 93, 47–160. [Google Scholar] [PubMed]
- de Martin, E.; Schweizer, M. Fifty Shades of Erns: Innate Immune Evasion by the Viral Endonucleases of All Pestivirus Species. Viruses 2022, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- Postel, A.; Austermann-Busch, S.; Petrov, A.; Moennig, V.; Becher, P. Epidemiology, Diagnosis and Control of Classical Swine Fever: Recent Developments and Future Challenges. Transbound. Emerg. Dis. 2018, 65, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.; Kim, J.-A.; Kang, W.-M.; Yang, H.-S.; Park, C.; Jeong, K.; Moon, S.-U.; Park, C.-K.; Lyoo, Y.S.; Lee, C. Endemic Outbreaks Due to the Re-emergence of Classical Swine Fever After Accidental Introduction of Modified Live LOM Vaccine on Jeju Island, South Korea. Transbound. Emerg. Dis. 2019, 66, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.; Kim, J.-A.; Park, C.; Song, K.; Kang, W.-M.; Yang, K.; Lee, C. Pathogenicity of a Novel Classical Swine Fever LOM Vaccine-Derived Virus Isolated on Jeju Island, South Korea. Vet. Med. Sci. 2022, 8, 2434–2443. [Google Scholar] [CrossRef] [PubMed]
- Holinka, L.G.; Fernandez-Sainz, I.; Sanford, B.; O’Donnell, V.; Gladue, D.P.; Carlson, J.; Lu, Z.; Risatti, G.R.; Borca, M.V. Development of an Improved Live Attenuated Antigenic Marker CSF Vaccine Strain Candidate with an Increased Genetic Stability. Virology 2014, 471–473, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Li, L.; Zhao, Y.; Tu, J.; Pan, Z. Identification of Two Amino Acids Within E2 Important for the Pathogenicity of Chimeric Classical Swine Fever Virus. Virus Res. 2016, 211, 79–85. [Google Scholar] [CrossRef]
- Blome, S.; Moß, C.; Reimann, I.; König, P.; Beer, M. Classical Swine Fever Vaccines—State-of-the-art. Vet. Microbiol. 2017, 206, 10–20. [Google Scholar] [CrossRef]
- Coronado, L.; Perera, C.L.; Rios, L.; Frías, M.T.; Pérez, L.J. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines 2021, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Sakoda, Y.; Yoshino, F.; Nomura, T.; Yamamoto, N.; Sato, Y.; Okamatsu, M.; Ruggli, N.; Kida, H. Selection of Classical Swine Fever Virus with Enhanced Pathogenicity Reveals Synergistic Virulence Determinants in E2 and NS4B. J. Virol. 2012, 86, 8602–8613. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, P.A.; van Gennip, H.G.P.; Moormann, R.J.M. An Experimental Marker Vaccine and Accompanying Serological Diagnostic Test Both Based on Envelope Glycoprotein E2 of Classical Swine Fever Virus (CSFV). Vaccine 1999, 17, 433–440. [Google Scholar] [CrossRef] [PubMed]
- König, M.; Lengsfeld, T.; Pauly, T.; Stark, R.; Thiel, H.J. Classical Swine Fever Virus: Independent Induction of Protective Immunity by Two Structural Glycoproteins. J. Virol. 1995, 69, 6479–6486. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yuan, Y.; Ankenbauer, R.G.; Nelson, L.D.; Witte, S.B.; Jackson, J.A.; Welch, S.-K.W. Construction of Chimeric Bovine Viral Diarrhea Viruses Containing Glycoprotein Erns of Heterologous Pestiviruses and Evaluation of the Chimeras as Potential Marker Vaccines Against BVDV. Vaccine 2012, 30, 3843–3848. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Choe, S.; Kim, K.-S.; Jeoung, H.-Y.; Cha, R.M.; Park, G.-S.; Shin, J.; Park, G.-N.; Cho, I.-S.; Song, J.-Y.; et al. Assessment of the Efficacy of an Attenuated Live Marker Classical Swine Fever Vaccine (Flc-LOM-BErns) in pregnant sows. Vaccine 2019, 37, 3598–3604. [Google Scholar] [CrossRef] [PubMed]
- Postel, A.; Becher, P. Genetically Distinct Pestiviruses Pave the Way to Improved Classical Swine Fever Marker Vaccine Candidates Based on the Chimeric Pestivirus Concept. Emerg. Microbes Infect. 2020, 9, 2180–2189. [Google Scholar] [CrossRef] [PubMed]
- Huynh, L.T.; Isoda, N.; Hew, L.Y.; Ogino, S.; Mimura, Y.; Kobayashi, M.; Kim, T.; Nishi, T.; Fukai, K.; Hiono, T.; et al. Generation and Efficacy of Two Chimeric Viruses Derived from GPE− Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses 2023, 15, 1587. [Google Scholar] [CrossRef]
- von Freyburg, M.; Ege, A.; Saalmüller, A.; Meyers, G. Comparison of the Effects of RNase-Negative and Wild-Type Classical Swine Fever Virus on Peripheral Blood Cells of Infected Pigs. J. Gen. Virol. 2004, 85, 1899–1908. [Google Scholar] [CrossRef]
- Kim, T.; Huynh, L.T.; Hirose, S.; Igarashi, M.; Hiono, T.; Isoda, N.; Sakoda, Y. Characteristics of Classical Swine Fever Virus Variants Derived from Live Attenuated GPE− Vaccine Seed. Viruses 2021, 13, 1672. [Google Scholar] [CrossRef]
- Vilcek, S.; Ridpath, J.F.; Van Campen, H.; Cavender, J.L.; Warg, J. Characterization of a Novel Pestivirus Originating from a Pronghorn Antelope. Virus Res. 2005, 108, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; van Elk, C.; van de Bildt, M.; van Run, P.; Petry, M.; Jesse, S.T.; Jung, K.; Ludlow, M.; Kuiken, T.; Osterhaus, A. An Evolutionary Divergent Pestivirus Lacking the Npro Gene Systemically Infects a Whale Species. Emerg. Microbes Infect. 2019, 8, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Huynh, L.T.; Sohn, E.-J.; Park, Y.; Kim, J.; Shimoda, T.; Hiono, T.; Isoda, N.; Hong, S.-H.; Lee, H.-N.; Sakoda, Y. Development of a Dual Immunochromatographic Test Strip to Detect E2 and Erns Antibodies against Classical Swine Fever. Front. Microbiol. 2024, 15, 1383976. [Google Scholar] [CrossRef] [PubMed]
- Sakoda, Y.; Fukusho, A. Establishment and Characterization of a Porcine Kidney Cell Line, FS-L3, Which Forms Unique Multicellular Domes in Serum-Free Culture. Vitr. Cell. Dev. Biol. Anim. 1998, 34, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Ocaña-Macchi, M.; Bel, M.; Guzylack-Piriou, L.; Ruggli, N.; Liniger, M.; McCullough, K.C.; Sakoda, Y.; Isoda, N.; Matrosovich, M.; Summerfield, A. Hemagglutinin-Dependent Tropism of H5N1 Avian Influenza Virus for Human Endothelial Cells. J. Virol. 2009, 83, 12947–12955. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Nagashima, N.; Ruggli, N.; Summerfield, A.; Kida, H.; Sakoda, Y. Npro of Classical Swine Fever Virus Contributes to Pathogenicity in Pigs by Preventing Type I Interferon Induction at Local Replication Sites. Vet. Res. 2014, 45, 47. [Google Scholar] [CrossRef]
- Kameyama, K.; Sakoda, Y.; Tamai, K.; Igarashi, H.; Tajima, M.; Mochizuki, T.; Namba, Y.; Kida, H. Development of an Immunochromatographic Test Kit for Rapid Detection of Bovine Viral Diarrhea Virus Antigen. J. Virol. Methods 2006, 138, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Itakura, Y.; Matsuno, K.; Ito, A.; Gerber, M.; Liniger, M.; Fujimoto, Y.; Tamura, T.; Kameyama, K.; Okamatsu, M.; Ruggli, N.; et al. A Cloned Classical Swine Fever Virus Derived from the Vaccine Strain GPE− Causes Cytopathic Effect in CPK-NS Cells Via Type-I Interferon-Dependent Necroptosis. Virus Res. 2020, 276, 197809. [Google Scholar] [CrossRef]
- Mittelholzer, C.; Moser, C.; Tratschin, J.-D.; Hofmann, M.A. Analysis of Classical Swine Fever Virus Replication Kinetics Allows Differentiation of Highly Virulent from Avirulent Strains. Vet. Microbiol. 2000, 74, 293–308. [Google Scholar] [CrossRef]
- Tetsuo, M.; Matsuno, K.; Tamura, T.; Fukuhara, T.; Kim, T.; Okamatsu, M.; Tautz, N.; Matsuura, Y.; Sakoda, Y. Development of a High-Throughput Serum Neutralization Test Using Recombinant Pestiviruses Possessing a Small Reporter Tag. Pathogens 2020, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Igarashi, M.; Enkhbold, B.; Suzuki, T.; Okamatsu, M.; Ono, C.; Mori, H.; Izumi, T.; Sato, A.; Fauzyah, Y.; et al. In Vivo Dynamics of Reporter Flaviviridae Viruses. J. Virol. 2019, 93, e01191-19. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Furuuchi, S.; Kumagai, T.; Sasahara, J. A Mutant of Hog Cholera Virus Inducing Interference in Swine Testicle Cell Cultures. Am. J. Vet. Res. 1970, 31, 1787–1794. [Google Scholar] [PubMed]
- Sasahara, J.; Kumagai, T.; Shimizu, Y.; Furuuchi, S. Field Experiments of Hog Cholera Live Vaccine Prepared in Guinea-Pig Kidney Cell Culture. Natl. Inst. Anim. Health Q. 1969, 9, 83–91. [Google Scholar]
- Ishikawa, K.; Nagai, H.; Katayama, K.; Tsutsui, M.; Tanabayashi, K.; Takeuchi, K.; Hishiyama, M.; Saitoh, A.; Takagi, M.; Gotoh, K.; et al. Comparison of the Entire Nucleotide and Deduced Amino Acid Sequences of the Attenuated Hog Cholera Vaccine Strain GPE− and the Wild-Type Parental Strain ALD. Arch. Virol. 1995, 140, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Ruggli, N.; Nagashima, N.; Okamatsu, M.; Igarashi, M.; Mine, J.; Hofmann, M.A.; Liniger, M.; Summerfield, A.; Kida, H.; et al. Intracellular Membrane Association of the N-Terminal Domain of Classical Swine Fever Virus NS4B Determines Viral Genome Replication and Virulence. J. Gen. Virol. 2015, 96, 2623–2635. [Google Scholar] [CrossRef]
- Sakoda, Y.; Yamaguchi, O.; Fukusho, A. A New Assay for Classical Swine Fever Virus Based on Cytopathogenicity in Porcine Kidney Cell Line FS-L3. J. Virol. Methods 1998, 70, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, E.; Fan, S.; Ding, H.; Ma, S.; Zhu, M.; Deng, S.; Chen, J.; Zhao, M. Important Roles of C-Terminal Residues in Degradation of Capsid Protein of Classical Swine Fever Virus. Virol. J. 2019, 16, 127. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Yang, Q.; Naveed Anwar, M.; Yu, S.; Qiu, H.-J. Complex Virus–Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview. Viruses 2017, 9, 171. [Google Scholar] [CrossRef]
- Li, W.; Wu, B.; Soca, W.A.; An, L. Crystal Structure of Classical Swine Fever Virus NS5B Reveals a Novel N-Terminal Domain. J. Virol. 2018, 92, e00324-18. [Google Scholar] [CrossRef]
- Liu, W.; Shi, X.; Gong, P. A Unique Intra-Molecular Fidelity-Modulating Mechanism Identified in a Viral RNA-Dependent RNA Polymerase. Nucleic Acids Res. 2018, 46, 10840–10854. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; von Freyburg, M.; Elbers, K.; Meyers, G. Recovery of Virulent and RNase-Negative Attenuated Type 2 Bovine Viral Diarrhea Viruses from Infectious cDNA Clones. J. Virol. 2002, 76, 8494–8503. [Google Scholar] [CrossRef] [PubMed]
- Meyers, G.; Saalmüller, A.; Büttner, M. Mutations Abrogating the RNase Activity in Glycoprotein Erns of the Pestivirus Classical Swine Fever Virus Lead to Virus Attenuation. J. Virol. 1999, 73, 10224–10235. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, Twelfth Edition 2023. Chapter 3.9.3, Classical Swine Fever (Infection with Classcial Swine Fever Virus). Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.09.03_CSF.pdf (accessed on 6 April 2024).
Passage (P) | Virus | Pig ID | Clinical Signs | Virus Recovery | SNT Titer at dpi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blood (log10 TCID50/mL) at dpi | Tissue (log10 TCID50/g) | ||||||||||||
0 | 2 | 3 | 4 | 5 | 6 | 7 | Tonsil | 0 | 7 | ||||
P1 | vGPE−/PAPeV Erns | #384 | N/O | — | — | — | — | — | — | — | 102.8 | <1 | <1 |
#385 | N/O | — | — | — | — | — | — | — | + | <1 | <1 | ||
vGPE−/PhoPeV Erns | #386 | N/O | — | — | — | — | — | — | — | 102.3 | <1 | <1 | |
#387 | N/O | — | — | — | — | — | — | — | + | <1 | <1 | ||
vGPE− | #382 | N/O | — | — | — | — | — | — | — | 103.1 | <1 | <1 | |
#383 | N/O | — | — | — | — | — | — | — | 104.6 | <1 | <1 | ||
P2 | vGPE−/PAPeV Erns | #390 | N/O | — | — | — | — | — | — | — | — | <1 | <1 |
#391 | N/O | — | — | — | — | — | — | — | — | <1 | <1 | ||
vGPE−/PhoPeV Erns | #392 | N/O | — | — | — | — | — | — | — | — | <1 | <1 | |
#393 | N/O | — | — | — | — | — | — | — | + | <1 | <1 | ||
vGPE− | #388 | N/O | — | — | — | — | — | + | — | 103.9 | <1 | <1 | |
#389 | N/O | — | — | — | — | — | — | — | 104.0 | <1 | <1 | ||
P3 | vGPE−/PhoPeV Erns | #396 | N/O | — | — | — | — | — | — | — | — | <1 | <1 |
#397 | N/O | — | — | — | — | — | — | — | + | <1 | <1 | ||
vGPE− | #394 | N/O | — | — | — | — | — | — | — | 104.0 | <1 | <1 | |
#395 | N/O | — | — | — | — | — | — | — | 104.0 | <1 | <1 | ||
P4 | vGPE−/PhoPeV Erns | #405 | N/O | — | — | — | — | — | — | — | — | <1 | <1 |
#406 | N/O | — | — | — | — | — | — | — | — | <1 | <1 | ||
vGPE− | #403 | N/O | — | — | — | — | — | — | — | 104.8 | <1 | <1 | |
#404 | N/O | — | — | — | — | — | — | — | 103.6 | <1 | <1 | ||
P5 | vGPE− | #407 | N/O | — | — | — | — | — | — | + | 105.0 | <1 | <1 |
#408 | N/O | — | — | — | — | + | + | — | 104.8 | <1 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, L.T.; Otsuka, M.; Kobayashi, M.; Ngo, H.D.; Hew, L.Y.; Hiono, T.; Isoda, N.; Sakoda, Y. Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study. Viruses 2024, 16, 1120. https://doi.org/10.3390/v16071120
Huynh LT, Otsuka M, Kobayashi M, Ngo HD, Hew LY, Hiono T, Isoda N, Sakoda Y. Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study. Viruses. 2024; 16(7):1120. https://doi.org/10.3390/v16071120
Chicago/Turabian StyleHuynh, Loc Tan, Mikihiro Otsuka, Maya Kobayashi, Hung Dinh Ngo, Lim Yik Hew, Takahiro Hiono, Norikazu Isoda, and Yoshihiro Sakoda. 2024. "Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study" Viruses 16, no. 7: 1120. https://doi.org/10.3390/v16071120
APA StyleHuynh, L. T., Otsuka, M., Kobayashi, M., Ngo, H. D., Hew, L. Y., Hiono, T., Isoda, N., & Sakoda, Y. (2024). Assessment of the Safety Profile of Chimeric Marker Vaccine against Classical Swine Fever: Reversion to Virulence Study. Viruses, 16(7), 1120. https://doi.org/10.3390/v16071120